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The scientific method: how we create ‘knowledge’
Theory / model

usually mathematical

self-consistent

simple explanations, few (arbitrary) parameters

testable predictions / hypotheses

Experiment

modify or even reject theory in case of

disagrement with data

if theory requires too many adjustments it

becomes unattractive

generate surprises

Advance of scientific knowledge is evolutionary process

with occasional revolutions

Statistical methods are important part of this process

in particular in quantitative sciences like physics

Karl Popper

(1902–1994)
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Statistics in science
Statistics is needed to:

characterise and summarise experimental results (impractical to always deal with raw data)

quantify uncertainty of a measurement

assess whether two measurements of the same quantity are compatible,

combine measurements

estimate parameters of an underlying model or theory

test hypotheses:

determine whether a model is compatible with data

…
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Aims of this mini-series
Understand statistical concepts

I Ability to understand physics papers

I Know some methods / standard statistical toolbox

Statistical inference: from data to knowledge

I Should we believe a physics claim?

I Develop intuition

I Know (some) pitfalls: avoid making mistakes others have already made

Use tools

I Hands-on part with Python / Jupyter

I Application to your own work? You decide!
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Practical information
Three sessions:

1. Basics, introduction, statistical distributions

2. Parameter estimation

3. Confidence intervals, hypothesis testing

About 60 minutes of lecture, then ≥ 30 minutes hands-on tutorial

I hope this will be useful for you,

but keep in mind that there is much more

to statistics than can be covered

in three brief hours.
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Useful reading material
Books:

G. Cowan, Statistical Data Analysis

R. Barlow, Statistics: A guide to the use of statistical methods in the physical sciences

L. Lyons, Statistics for Nuclear and Particle Physicists

A. J. Bevan, Statistical data analysis for the physical sciences

G. Bohm, G. Zech, Introduction to Statistics and Data Analysis for Physicists (available online)

Lectures on the web:

G. Cowan, Royal Holloway University London: Statistical Data Analysis

K. Reygers, U Heidelberg, Stat. Methods in Particle Physics
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Dealing with uncertainty
Underlying theory is probabilistic (quantum mechanics / QFT)

source of true randomness

Limited knowledge about measurement process

even without QM

random measurement errors

Things we could know in principle, but don’t

e.g. from limitations of cost, time, …

Quantify uncertainty using tools and concepts from probability
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Mathematical definition of probability

A∩B
A B

S

Kolmogorov axioms:

Consider a set S (the sample space) with subsets A, B, …(events).

Define a function on the power set of S, P : P(S) 7→ [0,1] with
1. P(A) ≥ 0 for all A ⊂ S

2. P(S) = 1

3. P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅,

i.e. when A and B are exclusive

From these we can derive further properties:

P(Ā) = 1− P(A)
P(A ∪ Ā) = 1

P(∅) = 0

If A ⊂ B, then P(A) ≤ P(B)
P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

for the mathematically inclined: proper treatment will use measure theory
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Interpretation — intuition about probability
Classical definition

I Assign equal probabilities based on symmetry of problem,

e.g. rolling ideal dice: P(6) = 1/6
I difficult to generalise, sounds somewhat circular

Frequentist: relative frequency

I A,B, . . . outcomes of a repeatable experiment

P(A) = lim
n→∞

times outcome is A in n repetitions

n

Bayesian: subjective probability

I A,B, . . . are hypotheses (statements that are either true or false)

P(A) = degree of belief that A is true

…all three definitions consistent with Kolmogorov’s axioms
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Conditional probability, independent events
Conditional probability for two events A and B:

P(A|B) = P(A ∩ B)
P(B)

“ probability of A given B ”

Example: rolling dice

P(n < 3|n even) = P((n < 3) ∩ (n even))
P(n even) = 1/6

1/2
= 1/3

Events A and B independent ⇐⇒ P(A ∩ B) = P(A) · P(B)
A is independent of B if P(A|B) = P(A)
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Bayes’ theorem
Definition of conditional probability:

P(A|B) = P(A ∩ B)
P(B) and P(B|A) = P(B ∩ A)

P(A)

But obviously P(A ∩ B) = P(B ∩ A), so:

P(A|B) = P(B|A)P(A)
P(B)

Allows to ‘invert’ statements about probability:

of great interest to us. Want to infer P(theory|data) from P(data|theory)

Often these two are confused, knowingly or unknowingly

(advertising, political campaigns, …)
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Bayes’ theorem: degree of belief in a theory
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Tools for physicists: Statistics | SoSe 2023 | 13



Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97

Suppose your result is +; should you be worried?
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Example for Bayes’ theorem: Rare disease
Base probability (for anyone) to have a disease D:

P(D) = 0.0001

P(no D) = 0.9999

Consider a test for D: result is positive or negative (+ or –):

P(+|D) = 0.98

P(−|D) = 0.02

P(+|no D) = 0.03

P(−|no D) = 0.97

Suppose your result is +; should you be worried?

P(D|+) = P(+|D) P(D)
P(+|D) P(D) + P(+|no D) P(no D)

= 0.98× 0.0001
0.98× 0.0001+ 0.03× 0.9999 = 0.0033

Probability that you have disease is 0.32%, i.e. you’re probably ok
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Digression: what if prevalence is (much) higher?
Assume 100× higher prevalence in population:

P(D) = 0.01

P(no D) = 0.99

Then,

P(D|+) = P(+|D)P(D)
P(+|D)P(D) + P(+|no D)P(no D)

= 0.98× 0.01
0.98× 0.01+ 0.03× 0.99 = 0.248

should you be worried? This can’t be answered by statistics, of course …

At least take another (independent) test …
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Criticisms — Frequentists vs. Bayesians
Criticisms of the frequentist interpretation

I n → ∞ can never be achieved in practice. When is n large enough?
I Want to talk about probabilities of events that are not repeatable

I P(rain tomorrow) — but there’s only one tomorrow

I P(Universe started with a big bang) — only one universe available

I P is not an intrinsic property of A, but depends on how the ensemble of possible outcomes was

constructed

I P(person I talk to is a physicist) strongly depends on whether I am at a conference or at the beach

Criticisms of the subjective interpretation

I ‘Subjective’ estimate has no place in science

I How can quantify the prior state of our knowledge?

‘Bayesians address the questions everyone is interested in by using

assumptions that no one believes, while Frequentists use impeccable

logic to deal with an issue that is of no interest to anyone’

— Louis Lyons
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Describing data
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Random variables and probability density functions
Random variable:

Variable whose possible values are numerical outcomes of a random phenomenon

Probability density function (pdf) of a continuous variable:

P(X found in [x, x + dx]) = p(x)dx

Normalisation:
+∞∫

−∞

p(x)dx = 1 x must be somewhere
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Visualisation: Histograms
Histogram

representation of the frequencies of numerical

outcome of a random phenomenon

pdf ' histogram for

infinite data sample

zero bin width

normalised to unit area

p(x) = lim
∆x→0

N(x)
N∆x
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Median, mean, and mode
Arithmetic mean of a data sample (‘sample mean’):

x̄ = 1

N

N

∑
i=1

xi

Mean of a pdf:

µ ≡ 〈x〉 ≡
∫

x p(x)dx

≡ expectation value E [x]

Median:

point with 50% probability above and 50% prob.

below

Mode:

most likely value

0 10 20 30 40 50 60
x

0.00

0.01

0.02

0.03

0.04

0.05

0.06

pd
f(x

)

Mean: 20.013

Median: 12.018

not necessarily the same, for skewed

distributions
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Variance, standard deviation
Variance of a distribution (pdf):

V(x) =
∫
dx p(x) (x − µ)2 = E [(x − µ)2]

Variance of a data sample

V(x) = 1

N
∑
i

(xi − µ)2 = x2 − µ2

Requires knowledge of true mean µ.

Replacing µ by sample mean x̄ results in underestimated variance!

Instead, use this:

V̂(x) = 1

N − 1
∑
i

(xi − x)2

Standard deviation:

σ =
√
V(x)
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Multivariate distributions
Outcome of an experiment

characterised by tuple (x1, . . . , xn)

P(A ∩ B) = f (x, y)dx dy

with f (x, y) the ‘joint pdf’

Normalisation∫
· · ·

∫
f (x1, . . . , xn)dx1 · · · dxn = 1

Sometimes, only the pdf of one component is wanted:

f1(x1) =
∫

· · ·
∫

f (x1, . . . , xn)dx2 · · · dxn

≈ projection of joint pdf onto individual axis: marginalised pdf
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Covariance and correlation
Covariance:

cov[x, y] = E [(x − µx)(y − µy)]

Correlation coefficient:

ρxy = cov[x, y]
σx σy

If x, y independent:

pdf factorises, i.e. f (x, y) = fx(x) fy(y),
and covariance becomes

E [(x − µx)(y − µy)] =
∫

(x − µx)fx(x)dx
∫

(y − µy)fy(y)dy = 0

Note: converse not necessarily true
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Covariance and correlation

Same (linear) correlation coefficient, but very different 2D shapes!
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Always visualise your data!
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Always visualise your data!
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Always visualise your data!

https://www.autodesk.com/research/publications/same-stats-different-graphsTools for physicists: Statistics | SoSe 2023 | 26
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Linear combinations of random variables
Consider two random variables x and y with known covariance cov[x, y]

〈x + y〉 = 〈x〉 + 〈y〉

〈ax〉 = a 〈x〉

V [ax] = a2V [x]

V [x + y] = V [x] + V [y] + 2 cov[x, y]

For uncorrelated variables, simply add variances.

How about combination of N independent measurements (estimates) of a quantity, xi ± σ, all drawn

from the same underlying distribution?

x̄ = 1

N
∑ xi best estimate

V [Nx̄] = N2σ

σx̄ = 1√
N

σ
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Combination of measurements: weighted mean
Suppose we have N independent measurements of the same quantity, but each with a different

uncertainty: xi ± δi
Weighted sum:

x = w1x1 + w2x2

δ2 = w2
1δ21 + w2

2δ22

Determine weights w1,w2 under constraint w1 + w2 = 1 such that δ2 is minimised:

wi =
1/δ2

i

1/δ2
1

+ 1/δ2
2

If original raw data of the two measurements are available, can improve this estimate by combining raw

data

alternatively, use log-likelihood curves to combine measurements
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Correlation 6= causation

F. Messerli, N Engl J Med 2012; 367:1562

Correlation coefficient: 0.791

significant correlation

(p < 0.0001)

0.4 kg/year/capita to produce

one additional Nobel laureate

improved cognitive function

associated with regular intake

of dietary flavonoids?
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Some important distributions
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Uniform distribution

f (x; a,b) =

 1
b−a

a ≤ x ≤ b

0 otherwise

Properties:

E [x] = 1

2
(a + b)

V [x] = 1

12
(a + b)2

Example:

Strip detector:

resolution for one-strip clusters:

pitch /
√
12
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Gaussian
A.k.a. normal distribution

g(x; µ, σ) = 1√
2πσ

exp
(

− (x − µ)2
2σ2

)
Mean: E [x] = µ

Variance: V [x] = σ2
- 3 - 2 - 1φ μ

,σ
2
(

0.8

0.6

0.4

0.2

0.0

−5 −3 1 3 5

x

1.0

−1 0 2 4−2−4

x)

0,μ=
0,μ=
0,μ=
−2,μ=

2 0.2,σ =
2 1.0,σ =
2 5.0,σ =
2 0.5,σ =

Standard normal distribution: µ = 0, σ = 1

Cumulative distribution related to error function

Φ(x) = 1√
2π

x∫
−∞

e− z2

2 dz = 1

2

[
erf
(

x√
2

)
+ 1

]

In Python: scipy.stats.norm(loc, scale)
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p-value
Probability for a Gaussian distribution corresponding to [µ − Zσ, µ + Zσ]:

P(Zσ) = 1√
2π

∫ +Z

−Z
e− x2

2 = Φ(Z) − Φ(−Z) = erf
(

Z√
2

)
68.27% of area within ±1σ

95.45% of area within ±2σ

99.73% of area within ±3σ

90% of area within ±1.645σ

95% of area within ±1.960σ

99% of area within ±2.576σ

p-value:

probability that random process (fluctuation)

produces a measurement at least this far from the

true mean

p-value := 1− P(Zσ)

Available in ROOT: TMath::Prob(Z*Z)
and Python: 2*stats.norm.sf(Z)

Deviation p-value (%)

1σ 31.73
2σ 4.55
3σ 0.270
4σ 0.00633
5σ 0.000057 3
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Why are Gaussians so useful?
Central limit theorem: sum of n random variables approaches Gaussian distribution, for large n

True, if fluctuation of sum is not dominated by the fluctuation of one (or a few) terms

Good example: velocity component vx of air molecules

So-so example: total deflection due to multiple Coulomb scattering.

Rare large angle deflections give non-Gaussian tail

Bad example: energy loss of charged particles traversing thin gas layer.

Rare collisions make up large fraction of energy loss á Landau PDF

See practical part of today’s lecture
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Binomial distribution
N independent experiments

Outcome of each is either ‘success’ or ’failure’

Probability for success is p

f (k;N,p) =
(
N

k

)
pk(1− p)N−k E [k] = Np V [k] = Np(1− p)

(
N

k

)
= N!

k!(N − k)!
binomial coefficient: number of permutations to have k successes in N tries

Use binomial distribution to model processes with two outcomes

Example: detection efficiency = #(particles seen by detector) / #(all particles passing detector)

In the limit N → ∞,p → 0,Np = ν = const, binomial distribution can be approximated by a Poisson

distribution
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Poisson distribution

p(k; ν) = νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution, then also

n1 + n2

Can be approximated by Gaussian for large ν

Examples:

Clicks of a Geiger counter in a given time

interval

Cars arriving at a traffic light in one minute
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Poisson distribution

p(k; ν) = νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution, then also

n1 + n2

Can be approximated by Gaussian for large ν

Examples:

Clicks of a Geiger counter in a given time

interval

Cars arriving at a traffic light in one minute

probability of k events occurring in fixed interval of

time if events …

… occur with constant rate

… independently of time since last event

Tools for physicists: Statistics | SoSe 2023 | 36



Poisson distribution

p(k; ν) = νk

k!
e−ν

E [k] = ν; V [k] = ν

Properties:

If n1, n2 follow Poisson distribution, then also

n1 + n2

Can be approximated by Gaussian for large ν

Examples:

Clicks of a Geiger counter in a given time

interval

Cars arriving at a traffic light in one minute

Rare events:

Number of Prussian cavalrymen killed by

horse-kicks

Observe 10 army corps over 20 years:

122 deaths due to horse kicks,

therefore on average 0.61 deaths / (corps ×
year)
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Exponential distribution

f (x; ξ) =

 1
ξ e

−x/ξ x ≤ 0

0 otherwise

E [x] = ξ; V [x] = ξ2

Example:

Decay time of an unstable particle at rest

f (t; τ) = 1

τ
e−t/τ

τ = mean lifetime

Lack of memory (unique to exponential): f (t − t0|t ≥ t0) = f (t)
Probability for an unstable nucleus to decay in the next minute is independent of whether the nucleus

was just created or has already existed for a million years.

Tools for physicists: Statistics | SoSe 2023 | 37



χ2 distribution
x1, . . . , xn be n independent standard normal (µ = 0, σ = 1) random variables. Then the sum of their

squares

z =
n

∑
i=1

x2i = ∑
i

(x′ − µ′)2
σ′2

follows a χ2 distribution with n degrees of freedom.

f (z; n) = zn/2−1

2n/2Γ( n
2
)
e−z/2, z ≥ 0

E [z] = n, V [z] = 2n

Quantify goodness of fit, compatibility of

measurements, …
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Student’s t distribution
Let x1, . . . , xn be distributed as N(µ, σ).

Sample mean and

estimate of variance:
x̄ = 1

n
∑
i

xi , σ̂2 = 1

n − 1
∑
i

(xi − x̄)2

Don’t know true µ, therefore have to estimate variance by σ̂.

x̄−µ

σ/
√
n
follows N(0,1) x̄−µ

σ̂/
√
n
not Gaussian:

Student’s t-distribution with n − 1 d.o.f.
f (t; n) =

Γ( n+1
2

)
√
nπΓ( n

2
)

(
1+ t2

n

)− n+1
2

For n → ∞, f (t; n) → N(t;0,1)
Applications:

Hypothesis tests: assess statistical

significance between two sample means

Set confidence intervals (more of that

later)
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Landau distribution
Describes energy loss of a (heavy) charged particle in a thin layer of material due to ionisation

tail with large energy loss due to occasional high-energy scattering, e.g. creation of delta rays

f (λ) = 1

π

∫ ∞

0
exp(−u ln u − λu) sin(πu)du

λ = ∆ − ∆0

ξ

∆: actual energy loss
∆0: location parameter

ξ: material property

Unpleasant: mean and variance (all moments, really) are not defined
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Julien SIMON, CC-BY-SA 3.0

Delta rays
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Tools
Usable and useful tools (e.g. for your analysis) depend on environment / external constraints and

factors

within working group

international collaboration

personal preferences

…

Don’t underestimate the cost of choosing a different approach than everyone else around you!

It may be worth it, though; just be aware of the implications!
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Tools
From my own experience with data analysis in HEP experiments:

Use a version control system, such as git

To paraphrase Willem van der Poel’s ‘Zero One Infinity’ rule:

The only numbers you should care about are Zero, One, and Infinity

If you have to do something more than once, automate!

Corollary: interactive tools are nice, but scripts are much better ‘in production’,

especially to produce plots

By all means explore your data using JupyterLab or other interactive tools,

but then export the result as executable script

Make use of well-maintained libraries, toolkits &c for common tasks

Yes, you can write your own algorithms to perform function minimisation or matrix inversion — but

should you?
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Interactive session
https://bit.ly/3ANSWhN
choose ‘Tools for Physicists: Statistics environment’
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