
Why I am learning a new
programming language -
and why you should too!
A brief introduction to the  
Rust programming language

by Dr. Michael O. Distler <distler@uni-mainz.de>

Mainz, 26 April 2023

Workshop “Tools for Physicists” organized by Dr. Bernd-Peter Otte
1

mailto:distler@uni-mainz.de

Content

• Introduction - Moore’s Law

• Functional Programming

• Introduction to Rust

• Concurrency in Rust by example

2

50 Years of Microprocessor Trend Data

https://github.com/karlrupp/microprocessor-trend-data/3

What about the future?
• Well, frequency and power will not experience any

significant changes.
• Further improvements in instructions per clock may

slightly increase single-threaded performance further,
but not by a big margin.

• Transistor counts and number of cores are the two
interesting quantities: 
How long can we keep Moore's Law going?

• We will (probably) see an increase in the number of
cores in proportion to the number of transistors.

• ☞ massively parallel algorithms are required
4

Programming Paradigms
• Structured/Procedural
• Object-Oriented Programming
• Functional Programming
• …

Python Paradigms
• Structured - Functions, loops, conditionals
• OOP - Classes, objects, methods
• FP - ??? functions ???

5

"Uncle Bob" Martin - "The Future of Programming"

• Structured Programming: 
 Don't use unrestrained GOTOs

• Object Oriented Programming: 
 Don't use pointers to functions

• Functional Programming:  
 Don't use assignment

6

"If we have made any advances in software since
1945 it is almost entirely in what not to do”

YouTube

https://youtu.be/ecIWPzGEbFc

What is wrong with assignment?

State

Door.open = true
Door.open = false

coding = "awesome"
coding = coding + "!!"

7

What is wrong with assignment?

Side-effects

names = ['Jan', 'Kim', 'Sara']

def double_name():
 for (i, name) in enumerate(names):
 names[i] = name + name
 print(names)

prints out: ['JanJan', 'KimKim', 'SaraSara']

8

Problems with state

• Race conditions

• Complexity

• Unpredictability

9

Race conditions

groceries = ["apple", "banana", "orange",
 "strawberries", "cherries"]
basket = []

def get_groceries():
 for item in groceries:
 if item not in basket:
 basket.append(item)
 print(basket)

10

Unpredictable results

x = 1

def times_two():
 x = x*2

print(times_two())
=> 2

print(times_two())
=> 4

11

stateless
x = 1

def times_two():
 x = x*2

12

 def times_two(x):
 return x*2

 times_two(1)

NO STATE means:
• Immutability
• Predictability: f(x)==f(x)

HPC2018 lecture02: calculate π

#include <stdio.h>

#define f(A) (4.0/(1.0+A*A))

const int n = 1000000000;

int main(int argc, char* argv[])

{

 int i;

 double w, x, sum, pi;

 w = 1.0/n;

 sum = 0.0;

 for (i=0; i<n; i++) {

 x = w * ((double)i + 0.5);

 sum = sum + f(x);

 }

 printf("pi = %.15f\n", w*sum);

 return 0;

}

13

What is the  
problem?

⇡ =
Z 1

0

4

1 + x2
dx

1

except that one should
better use the Gauss-

Legendre quadrature here

https://www.hi-mainz.de/de/research/computing/lectures/introduction-to-hpc-programming-2018

lecture02: calculate π

#include <stdio.h>

#define f(A) (4.0/(1.0+A*A))

const int n = 1000000000;

int main(int argc, char* argv[])

{

 int i;

 double w, x, sum, pi;

 w = 1.0/n;

 sum = 0.0;

 for (i=0; i<n; i++) {

 x = w * ((double)i + 0.5);

 sum = sum + f(x);

 }

 printf("pi = %.15f\n", w*sum);

 return 0;

}

14

const N: usize = 1_000_000_000;

const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {

 4.0/(1.0+x*x)

}

fn main() {

 let mut sum = 0.0;

 for i in 0..N {

 let x = W*((i as f64) + 0.5);

 sum = sum + f(x);

 }

 println!("pi = {}", W*sum);

}

lecture02: calculate π

15

const N: usize = 1_000_000_000;

const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {

 4.0/(1.0+x*x)

}

fn main() {

 let mut sum = 0.0;

 for i in 0..N {

 let x = W*((i as f64) + 0.5);

 sum = sum + f(x);

 }

 println!("pi = {}", W*sum);

}

const N: usize = 1_000_000_000;

const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {

 4.0/(1.0+x*x)

}

fn main() {

 let sum : f64 = (0..N)

 .into_iter()

 .map(|i| f(W*((i as f64)+0.5)))

 .sum::<f64>();

 println!("pi = {}", W*sum);

}

stateful ☞ bad functional ☞ good

lecture02: calculate π

16

extern crate rayon;

const N: usize = 1_000_000_000;

const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {

 4.0/(1.0+x*x)

}

fn main() {

 use rayon::prelude::*;

 let sum : f64 = (0..N)

 .into_par_iter()

 .map(|i| f(W*((i as f64)+0.5)))

 .sum::<f64>();

 println!("pi = {}", W*sum);

}

functional program ☞ 
multithreading is almost trivial

const N: usize = 1_000_000_000;

const W: f64 = 1f64/(N as f64);

fn f(x: f64) -> f64 {

 4.0/(1.0+x*x)

}

fn main() {

 let sum : f64 = (0..N)

 .into_iter()

 .map(|i| f(W*((i as f64)+0.5)))

 .sum::<f64>();

 println!("pi = {}", W*sum);

}

!

!
!

writing safe concurrent code is, 
at present, rocket science - or is it ???

17
https://bholley.net/blog/

Rust (programming language) 
From Wikipedia, the free encyclopedia

18

Rust is a systems programming language
• with a focus on safety, especially safe concurrency,
• supporting both functional and imperative paradigms.
Rust is syntactically similar to C++,
• but its designers intend it to provide better memory

safety while still maintaining performance.
Rust is on its seventh year as the "most loved
programming language" in the Stack Overflow
Developer Survey in 2016 - 2022.

Rust (programming language) 
From Wikipedia, the free encyclopedia

19

• Rust was originally designed by Graydon Hoare at
Mozilla Research (~2010), with contributions from
Dave Herman, Brendan Eich, and many others.

• Version 1.0 stable in May 2015
• Its designers have refined the language through the

experiences of writing the Servo web browser layout
engine and the Rust compiler.

• The compiler is free and open-source software, dual-
licensed under the MIT License and Apache License
2.0.

Rust’s Buzzwords
Rust can be relevant to nuclear physicists for several reasons:

1. Performance: Rust is designed for high performance, which is
crucial in nuclear physics simulations and data processing
tasks. The language's low-level control, zero-cost abstractions,
and efficient memory management allow it to achieve
performance comparable to C and C++.

2. Memory safety: Nuclear physics often involves complex
simulations with numerous calculations and data
manipulations. Rust's ownership system and borrowing
mechanism ensure memory safety without sacrificing
performance, reducing the likelihood of memory-related bugs
and crashes.

20

Rust’s Buzzwords
3. Parallel and concurrent programming: Nuclear physicists

frequently deal with large datasets and computationally
intensive tasks, which benefit from parallel and concurrent
processing. Rust's safe concurrency model, along with libraries
like Rayon, make it easier to write parallel code without
introducing data races or other concurrency-related bugs.

4. Functional programming: Rust supports functional
programming, which can help nuclear physicists write more
concise, composable, and easily parallelizable code. The use of
higher-order functions, pattern matching, and iterators can lead
to more maintainable and efficient code for complex nuclear
physics simulations.

21

Rust’s Buzzwords
5. Interoperability: Rust can interface with other languages, such as

Python or C/C++, allowing nuclear physicists to leverage existing
code or libraries. This makes it easier to integrate Rust into existing
nuclear physics projects, benefiting from its safety and performance
features while retaining compatibility with widely-used scientific tools
and libraries.

6. Growing ecosystem: Rust has a growing ecosystem of scientific
computing libraries, which can be beneficial for nuclear physicists.
Additionally, the Rust community is active and supportive, providing
valuable resources for learning and troubleshooting.

22

In summary, Rust's performance, memory safety, support for parallel
programming, functional programming features, interoperability, and
growing ecosystem make it a relevant and attractive choice for nuclear
physicists working on complex simulations and data processing tasks.

Aside: Safety & Garbage Collection

Memory must be reused, 
but there are different strategies:

• C: “Just follow these rules perfectly, you’re smart”

• Java, JS, etc: “Wait a minute, I’ll take care of it”

• Rust: “I’ll prove correctness at compile time”

23

What Rust has to offer

• Strong safety guarantees... 
No seg-faults, no data-races, 
expressive type system.

• ...without compromising on performance.  
No garbage collector, no runtime.

• Goal: 
Confident, productive systems programming

24

What’s concurrency?

In computer science, concurrency
is a property of systems in which
several computations are executing
simultaneously, and potentially
interacting with each other.

25

// What does this print?
int main() {
 int pid = fork();
 printf("%d\n", pid);
}

Concurrency is hard!

• Data Races

• Race Conditions

• Deadlocks

• Use after free

• Double free

26

Exploitable

What’s safety?

27

void example() {

 vector<string> vector;

 // ...

 auto& elem = vector[0];

 vector.push_back(some_string);

 cout << elem;

}

elem
vector

…

[0]
[1]

Mutation

Aliased Pointers

Rust’s Solution

28

Rust’s Solution
Ownership/Borrowing

No runtime Memory
Safety

No data
races

C++ GC

Ownership

29

fn main() {

 let mut v = Vec::new();

 v.push(1);

 v.push(2);

 take(v);

 // ...

}

fn take(v: Vec<i32>) {

 // ...

}

v 1
2move ownership

Ownership

30

fn main() {

 let mut v = Vec::new();

 v.push(1);

 v.push(2);

 take(v);

 v.push(3);

}

fn take(v: Vec<i32>) {

 // ...

}

error: use of moved variable v

Borrowing

31

fn main() {

 let mut v = Vec::new();

 push(&mut v);

 read(&v);

 // ...

}

fn push(v: &mut Vec<i32>)
{

 v.push(1);

}

fn read(v: Vec<i32>) {

 // …

}

Safety in Rust

• Rust statically prevents aliasing + mutation

• Ownership prevents double-free

• Borrowing prevents use-after-free

• Overall, no segfaults!

32

Rust’s core concepts: Lifetimes

• In Rust, lifetimes are a way to express the scope in which
references to data are valid. They help the Rust compiler
ensure that references do not outlive the data they point to,
which prevents dangling references and ensures memory
safety. Lifetimes are denoted using a single quote and a
descriptive name, such as 'a.

• It's important to note that lifetimes are a compile-time
concept, and they don't have any runtime overhead. The Rust
compiler uses lifetimes to perform static analysis and verify
the safety of the code.

33

Rust’s core concepts: Lifetimes

• In this example, the longest function takes two string references as
arguments and returns a reference to the longest string. The lifetime
annotation 'a is used to express that the input references (str1 and str2)
and the output reference all share the same lifetime.

• This means that the returned reference will be valid as long as the shortest
of the input references is valid. The Rust compiler uses this information to
ensure that the returned reference does not outlive the data it points to,
preventing memory safety issues.

34

fn longest<'a>(str1: &'a str, str2: &'a str) -> &'a str {

 if str1.len() > str2.len() {

 str1

 } else {

 str2

 }

}

Rust’s core concepts: enums and pattern matching

• In Rust, enums (short for enumerations) are a way to define a
custom data type that can have one of several possible variants.
Each variant can have associated data, making enums a versatile
and expressive tool for modeling complex data structures. Enums
in Rust are similar to algebraic data types in functional
programming languages.

• Pattern matching is a powerful language construct in Rust that
allows you to destructure and inspect data structures, like enums,
in a concise and expressive way. It is typically used with the
match expression or if let statement to handle different cases of
enums or other complex data structures.

35

Rust’s core concepts: enums and pattern matching

36

enum Color {

 Red,

 Green,

 Blue,

 Custom { r: u8, g: u8, b: u8 },

}

fn describe_color(color: Color) {

 match color {

 Color::Red => println!("This is red"),

 Color::Green => println!("This is green"),

 Color::Blue => println!("This is blue"),

 Color::Custom { r, g, b } => println!("Custom color: R={}, G={}, B={}", r, g, b),

 }

}

fn main() {

 let red = Color::Red;

 let custom_color = Color::Custom { r: 128, g: 64, b: 255 };

 describe_color(red);

 describe_color(custom_color);

}

Enums and pattern matching in Rust allow
you to express complex data types and
handle different cases in a type-safe, clear,
and concise manner. They are particularly
useful when dealing with multiple possible
states or error conditions.

Rust’s core concepts: `Result` and `Option` types
The `Result` and `Option` types are part of the Rust core language, and they
are defined in the standard library (`std`). They are essential building blocks
for handling error cases and optional values in a type-safe and idiomatic way.

• The `Option` type is an enumeration that represents an optional value. It
has two variants: `Some(T)` and `None`. The `Some(T)` variant represents
the presence of a value of type `T`, while the `None` variant represents the
absence of a value. The `Option` type is commonly used in Rust to express
the possibility of a value being missing or uninitialized, and it helps prevent
null pointer-related bugs.

37

fn find_even_number(numbers: &[i32]) -> Option<i32> {

 for &number in numbers {

 if number % 2 == 0 {

 return Some(number);

 }

 }

 None

}

Rust’s core concepts: `Result` and `Option` types
• The Result type is an enumeration used to represent the outcome of a

computation that might fail. It has two variants: Ok(T) and Err(E). The
Ok(T) variant represents a successful computation with a resulting value
of type T, while the Err(E) variant represents a computation that failed
with an error of type E. The Result type encourages Rust developers to
handle errors explicitly, leading to more robust and maintainable code.

38

use std::fs::File;

use std::io::Read;

fn read_file_contents(file_path: &str) -> Result<String, std::io::Error> {

 let mut file = File::open(file_path)?;

 let mut contents = String::new();

 file.read_to_string(&mut contents)?;

 Ok(contents)

}

Rust’s core concepts: immutability

Immutability is a crucial aspect of Rust's programming philosophy and plays
a vital role in ensuring memory safety, data consistency, and promoting more
predictable code.

• Memory safety: By default, Rust enforces immutability, which means that
once a variable is initialized, its value cannot be changed. This helps
prevent data races and other concurrency-related bugs, especially when
working with shared or borrowed data.

• Easier reasoning about code: Immutability simplifies reasoning about code
as it eliminates side effects caused by shared mutable state. When a
variable is immutable, you can be sure that its value will not change
unexpectedly, making it easier to understand the flow of data and logic in
your program.

39

Rust’s core concepts: immutability
• Functional programming: Immutability is a core concept of functional programming,

which Rust supports through its type system and syntax. By embracing immutability,
Rust encourages writing code that is more composable, reusable, and easier to test.

• Optimizations: Immutability can lead to compiler optimizations, such as better utilization
of CPU caches or dead code elimination. The Rust compiler can make certain
assumptions about the behavior of the code when variables are immutable, leading to
improved performance.

• Encouraging good programming practices: Immutability promotes the use of more
explicit patterns for managing state and updating data. For example, when using
immutable data structures, you need to create a new instance with the updated data
rather than modifying the existing instance in place. This approach can prevent bugs
caused by unintentional side effects or shared mutable state.

In summary, immutability is important in Rust because it helps ensure memory safety,
simplifies code reasoning, supports functional programming principles, enables compiler
optimizations, and encourages good programming practices. By embracing immutability,
Rust developers can create more robust, maintainable, and efficient programs.

40

Smart pointer
… are data structures that not only act like a
pointer but also have additional metadata and
capabilities. 
Examples:

• Vec<T>

• Box<T> for allocating values on the heap

• Rc<T>, a reference counting type that enables
multiple ownership

41

Iterators and Closures

Functional Language Features:

• Closures, a function-like construct you
can store in a variable

• Iterators, a way of processing a series of
elements

42

I did not talk about …
• Macros

• Testing

• Generic Types, Traits

• Cargo and crates.io

• Futures

• Unsafe or advanced Rust

• …
43

Further reading and viewing
• The Rust Programming Language  

https://doc.rust-lang.org/stable/book/

• Vorlesung „Programmieren in Rust“, Universität
Osnabrück, Wintersemester 2016/17. 
https://github.com/LukasKalbertodt/programmieren-in-rust

• https://www.karlrupp.net/2018/02/42-years-of-
microprocessor-trend-data/

• https://youtu.be/ecIWPzGEbFc

• https://youtu.be/6f5dt923FmQ

44

https://github.com/LukasKalbertodt/programmieren-in-rust
https://youtu.be/ecIWPzGEbFc
https://youtu.be/6f5dt923FmQ

Installing Rust

• rustup: the Rust toolchain installer  
https://www.rust-lang.org/tools/install

curl https://sh.rustup.rs \  
 -—silent --output rustup-init.sh  
sh rustup-init.sh

45

Why I am learning a new
programming language - and
why you should too! 
 - part 2 -
A brief introduction to the  
Rust programming language

by Dr. Michael O. Distler <distler@uni-mainz.de>

Mainz, 26 April 2023

Workshop “Tools for Physicists” organized by Dr. Bernd-Peter Otte
46

mailto:distler@uni-mainz.de

Content

• Ownership and borrowing.
• Traits: Send and Sync.
• Smart pointers: Arc<T> and Mutex<T>.
• Asynchronous communication 

between threads: mpsc::channel.
• Examples: ping, ring, 

(dining philosophers problem)

47

Ownership

48

fn main() {

 let mut v = Vec::new();

 v.push(1);

 v.push(2);

 take(v);

 // ...

}

fn take(v: Vec<i32>) {

 // ...

}

v 1
2move ownership

Ownership

49

fn main() {

 let mut v = Vec::new();

 v.push(1);

 v.push(2);

 take(v);

 v.push(3);

}

fn take(v: Vec<i32>) {

 // ...

}

error: use of moved variable v

Borrowing

50

fn main() {

 let mut v = Vec::new();

 push(&mut v);

 read(&v);

 // ...

}

fn push(v: &mut Vec<i32>)
{

 v.push(1);

}

fn read(v: Vec<i32>) {

 // …

}

Traits: Copy and Clone

Traits abstract over behavior that types can have
in common.

Examples: Copy and Clone

• Copies happen implicitly, for example as part of
an assignment y = x. The behavior of Copy is
not overloadable; it is always a simple bit-wise
copy.

51

Traits: Copy and Clone

Traits abstract over behavior that types can have in common.

Examples: Copy and Clone

• Cloning is an explicit action, x.clone(). The implementation
of Clone can provide any type-specific behavior necessary
to duplicate values safely. For example, the implementation
of Clone for String needs to copy the pointed-to string
buffer in the heap. A simple bitwise copy of String values
would merely copy the pointer, leading to a double free
down the line. For this reason, String is Clone but not Copy.

52

Traits: Send and Sync

Send and Sync are fundamental to Rust's
concurrency story.

• A type is Send if it is safe to send it to another
thread.

• A type is Sync if it is safe to share between
threads (&T is Send).

53

Smart pointer
… are data structures that not only act like a
pointer but also have additional metadata and
capabilities. 
Examples:

• Vec<T>

• Box<T> for allocating values on the heap

• Rc<T>, a reference counting type that enables
multiple ownership

54

Smart pointer: Arc<T>
• Arc<T>: A thread-safe reference-counting pointer. 'Arc'

stands for 'Atomically Reference Counted'.

• The type Arc<T> provides shared ownership of a value of
type T, allocated in the heap. Invoking clone on Arc
produces a new Arc instance, which points to the same
value on the heap as the source Arc, while increasing a
reference count. When the last Arc pointer to a given value
is destroyed, the pointed-to value is also destroyed.

• Shared references in Rust disallow mutation by default, and
Arc is no exception: you cannot generally obtain a mutable
reference to something inside an Arc.

55

Smart pointer: Arc<T>

56

// lecture13/src/bin/arc.rs

// cd lecture13; cargo run --bin arc

use std::sync::Arc;

use std::thread;

fn main() {

 let five = Arc::new(5);

 for _ in 0..10 {

 let five = Arc::clone(&five);

 thread::spawn(move || {

 println!("{:?}", five);

 });

 }

}

Change the code, so each thread prints it’s ID.

Smart pointer: Mutex<T>
• Mutex<T>: A mutual exclusion primitive useful for

protecting shared data

• This mutex will block threads waiting for the lock to
become available. The mutex can also be statically
initialized or created via a new constructor. Each
mutex has a type parameter which represents the
data that it is protecting. The data can only be
accessed through the RAII guards returned from
lock and try_lock, which guarantees that the data is
only ever accessed when the mutex is locked.

57

RAII: Resource acquisition is initialization

Communication between threads
pub fn channel<T>() -> (Sender<T>,
Receiver<T>)

• Creates a new asynchronous channel, returning
the sender/receiver halves. All data sent on the
Sender will become available on the Receiver in
the same order as it was sent, and no send will
block the calling thread (this channel has an
"infinite buffer", unlike sync_channel, which will
block after its buffer limit is reached). recv will
block until a message is available.

58

Communication between threads
pub fn channel<T>() -> (Sender<T>,
Receiver<T>)

• The Sender can be cloned to send to the same
channel multiple times, but only one Receiver is
supported.

• If the Receiver is disconnected while trying to send
with the Sender, the send method will return a
SendError. Similarly, if the Sender is disconnected
while trying to recv, the recv method will return a
RecvError.

59

Communication between threads

60

use std::sync::mpsc::channel;

use std::thread;

let (sender, receiver) = channel();

// Spawn off an expensive computation

thread::spawn(move|| {

 sender.send(expensive_computation()).unwrap();

});

// Do some useful work for awhile

// Let's see what that answer was

println!("{:?}", receiver.recv().unwrap());

Smart pointer: Mutex<T>

61

use std::sync::{Arc, Mutex};

use std::thread;

use std::sync::mpsc::channel;

const N: usize = 10;

let data = Arc::new(Mutex::new(0));

let (tx, rx) = channel();

for _ in 0..N {

 let (data, tx) = (Arc::clone(&data), tx.clone());

 thread::spawn(move || {

 let mut data = data.lock().unwrap();

 *data += 1;

 if *data == N {

 tx.send(()).unwrap();

 }

 });

}

rx.recv().unwrap();

Change the code, so the
value of data is printed

Exercise 3

62

1. Try to understand ‘ping.rs’
2. Run the program: 

cargo run --bin ping -- --cycles 100000

3. Change the transmitted data size. 
Does the transmit time change? 
Why (not)?

Exercise 4

63

1. Try to understand ‘ring.rs’
2. Run the program: 

time target/debug/ring --threads 16

3. Try to understand ‘MPIring.c’
4. Run the program: 

time mpirun target/debug/MPIring

5. Do you notice a difference?
6. Double the number of threads in both

cases

