X17 discovery potential from $yD \rightarrow e^+e^-pn$ with neutron tagging

Cornelis J.G. Mommers and Marc Vanderhaeghen, Institut für Kernphysik and PRISMA⁺ Cluster of Excellence, JGU Mainz

1. What is X17?

The ATOMKI group found **anomalous signals** in the decays of excited ⁸Be (bottom figure), ⁴He, and ¹²C nuclei with statistical significances exceeding 6σ . To account for these anomalies, they proposed the existence of **X17**, a light boson with a mass of 17.02(10) MeV. This conjecture has sparked a global experimental **effort** to replicate the anomaly.

2. X17 at electron accelerators

- Ongoing experiments focus on nuclear decays.
- X17 must take part in other processes.
- In $yn \rightarrow e^+e^-n$ the X17 signal would be clearly visible over the QED background.
- Direct search in this way would provide a **timely** and independent confirmation of X17's existence.

Illustration adapted from Quanta Magazine

State	Scalar	Pseudoscalar	Vector	Axial vector
⁸ Be(18.15)		$\ell = 1$	<i>l</i> = 1	<i>l</i> = 0, 2
⁸ Be(17.64)		<i>ℓ</i> = 1	<i>P</i> = 1	l = 0.2

•MAGIX experiment at MESA is ideal for such a search.

• Low energy yet high-intensity beam (E_{γ} = 105 MeV) • High-resolution spectrometers (δm_{ee} = 0.1 MeV)

3. Neutron tagging

•Neutron target is not available in the lab. • $\gamma D \rightarrow e^+e^-pn$ with neutron tagging instead. • Bound neutron is quasi free, proton a spectator. Scattering events primarily on quasi-free neutron.

The Bethe-Heitler process. Here, X17 is off resonance, so its contribution is negligible.

The Compton (Born, π° *t*-channel exchange, and electric and magnetic nucleon polarizability) and X17 production processes.

⁴ He(21.01)		$\ell = 0$		$\ell = 1$
⁴ He(20.21)	$\ell = 0$		$\ell = 1$	
¹² C(17.23)	$\ell = 1$		<i>l</i> = 0, 2	<i>l</i> = 1

4. X17 signal would be visible over **QED** background

X17 signal would appear as a **sharp** spike in a single bin.

140

- Consider models for a pseudoscalar (P), vector (V) and axial-vector (A) X17.
- Use beryllium and carbon measurements to constrain X17 coupling to nucleons.
- •X17 signal (dashed) is visible over the QED background.
- Slight tension between couplings derived from beryllium and carbon nuclear decays highlights need for independent verification.

			1	1	I	1	
	- 100	-					

Dark and light bands indicate a 2σ and 3σ variation in the couplings. Uncertainties in the QED background come from nucleon polarizabilities.

Light bands indicate a 1σ variation in the couplings.