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Precision tests of the Standard Model 
with -decaysβ



ℒeq = − 2GμēγμνeL ⋅ Ūiγμ(1 − γ5)VijDj + h . c .

ℒeμ = − 2 2GμēγανeL ⋅ ¯νμLγαμ + h . c .

ℒeνpn = − 2GμVudēγμνL ⋅ p̄γμ(gpn
V − gpn

A γ5)n + h . c .

Universality, Completeness & CKM unitarity
Fermi	constant	from	muon	life0me:	GF = Gμ = 1.1663788(7) × 10−5GeV−2

SM:	same	W-coupling	to	LH	leptons	and	quarks,	but	strength	shared	between	3	genera0ons

At	low	energy	accessible	via	 -decas	of	hadrons,	e.g.	β n → peν̄

Universality	+	Completeness	of	SM	(only	3	gen’s)	—>	unitary	CKM	matrix	 	
Top-row	unitarity	condi0on:	

V†V = 1
|Vud |2 + |Vus |2 + |Vub |2 = 1

Ui = (u, c, t)T

Dj = (d, s, b)T

Conserved	vector	current:	 	but	gpn
V = 1 + O((md − mu)2) gud

A = 1 → gpn
A ≈ 1.276

Precise	measurements	of	 	—>	precision	tests	of	EW	sector	of	SM	(currently	0.02%)	
Get	rid	of	 	—>	superallowed	nuclear	decays	between	states	

gV
gA JP = 0+
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Top-row CKM unitarity deficit 
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|Vud |2 + |Vus |2 + |Vub |2 = 0.9985(6)Vud
(4)Vus

∼ 10−5∼ 0.95 ∼ 0.05
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Inconsistencies	between	measurements	of	 	and	 	and	SM	predic0ons	
Most	precise	 	from	superallowed	nuclear	decays

Vud Vus
Vud



Status	of	Vud
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0+-0+	nuclear	decays:	long-standing	champion

|Vud |2 =
2984.43s

ℱt(1+ΔV
R) |V0+−0+

ud | = 0.97370 (1)exp, nucl (3)NS (1)RC[3]total

Nuclear uncertainty x 3

|Vud |2 =
5024.7 s

τn(1 + 3gA2)(1+ΔR)

Neutron	decay:	discrepancies	in	life0me	 	and	axial	charge	 ;	compe00ve!τn gA

|V free n
ud | = 0.9733 (2)τn

(3)gA
(1)RC[4]total

Single	best	measurements	only

PDG	average
|V free n

ud | = 0.9733 (3)τn
(8)gA

(1)RC[9]total

RC not a limiting factor: more precise experiments  a-coming

|Vπℓ3
ud | = 0.9739 (27)exp (1)RC

Pion	decay	 :	theore0cally	cleanest,	experimentally	toughπ+ → π0e+νe

|Vud |2 =
0.9799
(1+δ)

Γπℓ3

0.3988(23) s−1 Future exp: 1 o.o.m. (PIONEER)



Status	of	Vud

Major reduction of uncertainties in the past few years

ΔV
R = 0.02467(22)

Factor 2 improvement

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804; 
C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001; 
A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008  
C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301; 
K. Shiells, P. Blunden, W. Melnitchouk, Phys. Rev. D 104 (2021) 033003; 
L. Hayen, Phys. Rev. D 103 (2021) 113001

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng, Phys.Rev.Lett. 124 (2020) 19, 192002δ = 0.0332(3)

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501gA = − 1.27641(56)

7

Universal correction  to free and bound neutron decay 
Identified 40 years ago as the bottleneck for precision improvement 
Novel approach dispersion relations + experimental data + lattice QCD

ΔV
R

Theory

RC to semileptonic pion decay

Factor 3 improvement

Experiment

Factor 4 improvement

UCN  F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501τ
τn = 877.75(28)+16

−12
Factor 2-3 improvement

aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506gA = − 1.2677(28)



Precise  from superallowed 
nuclear decays and BSM searches

Vud



Precise  from superallowed decaysVud
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Superallowed	0+-0+	nuclear	decays:		
- only	conserved	vector	current		
- many	decays	
- all	rates	equal	modulo	phase	space

Experiment:	f	-	phase	space	(Q	value)	and	t	-	par0al	half-life	(t1/2,	branching	ra0o)
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`	values:	same	within	~2%	but	not	exactly!	
Reason:	SU(2)	slightly	broken	
a. RC	(e.m.	interac0on	does	not	conserve	isospin)	
b. Nuclear	WF	are	not	SU(2)	symmetric		
						(proton	and	neutron	distribu0on	not	the	same)

33

Superallowed 0+ → 0+ nuclear beta decay

The simplest 
nuclear beta
decay!

“Outer correction”
Nuclear structure

effects in inner RC
Isospin-breaking

correction

experimental
ft-value free-nucleon 

inner RC

(discussed before)

(well under control)
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To obtain Vud —> absorb all decay-specific corrections into universal Ft

ft(1 + RC + ISB) = ℱt(1 + ΔV
R) = ft(1 + δ′ R)(1 − δC + δNS)(1 + ΔV

R)

Outer: QED Isospin-breaking Nuclear structure Universal inner
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Ft = 3072.1± 0.7

Average	of	14	decays	-	0.02%

Hardy,	Towner	1973	-	2020

Precise  from superallowed decaysVud



Status of isospin-breaking correction δC



Isospin	symmetry	breaking	in	superallowed	 -decayβSUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)

TABLE X. Corrections δ′
R , δNS, and δC that are applied to

experimental f t values to obtain F t values.

Parent δ′
R δNS δC1 δC2 δC

nucleus (%) (%) (%) (%) (%)

Tz = −1
10C 1.679 −0.345(35) 0.010(10) 0.165(15) 0.175(18)
14O 1.543 −0.245(50) 0.055(20) 0.275(15) 0.330(25)
18Ne 1.506 −0.290(35) 0.155(30) 0.405(25) 0.560(39)
22Mg 1.466 −0.225(20) 0.010(10) 0.370(20) 0.380(22)
26Si 1.439 −0.215(20) 0.030(10) 0.405(25) 0.435(27)
30S 1.423 −0.185(15) 0.155(20) 0.700(20) 0.855(28)
34Ar 1.412 −0.180(15) 0.030(10) 0.665(55) 0.695(56)
38Ca 1.414 −0.175(15) 0.020(10) 0.745(70) 0.765(71)
42Ti 1.427 −0.235(20) 0.105(20) 0.835(75) 0.940(78)
Tz = 0
26mAl 1.478 0.005(20) 0.030(10) 0.280(15) 0.310(18)
34Cl 1.443 −0.085(15) 0.100(10) 0.550(45) 0.650(46)
38mK 1.440 −0.100(15) 0.105(20) 0.565(50) 0.670(54)
42Sc 1.453 0.035(20) 0.020(10) 0.645(55) 0.665(56)
46V 1.445 −0.035(10) 0.075(30) 0.545(55) 0.620(63)
50Mn 1.444 −0.040(10) 0.035(20) 0.610(50) 0.645(54)
54Co 1.443 −0.035(10) 0.050(30) 0.720(60) 0.770(67)
62Ga 1.459 −0.045(20) 0.275(55) 1.20(20) 1.48(21)
66As 1.468 −0.060(20) 0.195(45) 1.35(40) 1.55(40)
70Br 1.486 −0.085(25) 0.445(40) 1.25(25) 1.70(25)
74Rb 1.499 −0.075(30) 0.115(60) 1.50(26) 1.62(27)

cautious. Furthermore, because the uncertainty is associated
with the Z2α3 term, it is expected to be a smooth function
of Z2 and thus to behave systematically since any shift in the
value of δ′

R must affect all F t values in the same direction.
We then proceed as follows: We evaluate the individual

transition F t values without including any uncertainties
associated with δ′

R and obtain an average F t . Then we shift all
the individual δ′

R terms up and down by one-third of the Z2α3

contribution, recalculate the F t values and determine F t for
both. The shifts in the value of the latter—±0.36 s for the data
in Table IX—becomes the systematic uncertainty assigned to
F t to account for the uncertainty in δ′

R. Note that our choice to
take one-third of the Z2α3 term is rather arbitrary, but has the
benefit that it is still conservative and at the same time results
in the uncertainty in δ′

R having an impact on the overall result
that is comparable to its impact in our previous survey [6].

We turn now to the third radiative term δNS, which arises
from an evaluation of the low-energy part of the γW -box
graph for an axial-vector weak interaction. If it is assumed
that the γN and WN vertices are both with the same nucleon,
N , then the evaluated box graph becomes proportional to
the Fermi β-decay operator, yielding a universal correction
already included in %V

R.
If instead the γ and W interactions in the γW -box

graph for an axial-vector current are with different nucleons
in the nucleus, then the evaluation involves two-nucleon
operators, which necessitates a nuclear-structure calculation.
This component of the radiative correction we denote by δNS
and list its values in column 3 of Table X. The values and their
uncertainties have been taken from Table VI in Ref. [192].

For this correction term, a number of model calculations were
carried out for each nucleus [192] and the uncertainties listed
were chosen to encompass the spread in the results from these
calculations. Therefore the uncertainty is nucleus-specific and,
as such, can be treated as statistical and not systematic. We
thus combine it in quadrature with the experimental errors in
determining the F t-value uncertainties.

2. Isospin-symmetry-breaking correction

In this section we describe only the set of isospin-
symmetry-breaking corrections, δC , that we have used in
deriving the corrected F t values given in Table IX. A
discussion of other alternative calculations of δC—and our
reasons for rejecting them—is postponed to Sec. IV. The set we
have selected follows from a semiphenomenological approach
based on the shell model combined with Woods-Saxon radial
functions. This model, which we designate as SM-WS, has
been described in detail by us in Ref. [192], where also
the results for δC are tabulated. We describe the model only
briefly here, while making two minor updates to our previous
results.

The calculation is done in two parts, which is made possible
by our dividing δC into two terms:

δC = δC1 + δC2. (4)

The idea is that δC1 follows from a tractable shell-model
calculation that does not include significant nodal mixing,
while δC2 corrects for the nodal mixing that would be present
if the shell-model space were much larger.

For δC1, a modest shell-model space (usually one major
oscillator shell) is employed, in which Coulomb and other
charge-dependent terms are added to the charge-independent
effective Hamiltonian customarily used for the shell model.
These charge-dependent additional terms are separately ad-
justed for each superallowed β transition to reproduce the
b and c coefficients of the isobaric multiplet mass equation
(IMME) for the triplet of T = 1, 0+ states that includes the
parent and daughter states of the transition.

Since the Coulomb force is long range, its influence in
configuration space extends much further than the single
major oscillator shell included in the calculation of δC1. To
incorporate the effects of multishell mixing, we note first that
its principal impact is to change the structure of the radial wave
function by introducing mixing with radial functions that have
more nodes. Since this mixing primarily affects protons, it
results in proton radial functions that differ from the neutron
ones so, when the overlap is computed, its departure from unity
determines the value of δC2. The radial functions themselves
are derived from a Woods-Saxon potential. Again there is
a case-by-case adjustment in the Woods-Saxon potentials
to ensure that the different measured proton and neutron
separation energies in the β-decay parents and daughters are
correctly reproduced.

The SM-WS calculations of Towner and Hardy [192] must
clearly be classified as semiphenomenological. A number of
transition-specific nuclear properties have been fitted in their
determination of δC. In contrast, most of the alternative models
discussed in Sec. IV are first-principles theory calculations.

025501-11

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

HT:	shell	model	with	phenomenological		
Woods-Saxon	poten0al	locally	adjusted	to:	
• Masses	of	the	isotriplet	T=1,	0+	(IMME)	
• Neutron	and	proton	separa0on	energies	
• Known	charge	radii	of	stable	isotopes

12

MF = ⟨ f |τ+ | i⟩

Tree-level	Fermi	matrix	element

	—	Isospin	operator	
	—	members	of	T=1	isotriplet

τ+

| i⟩, | f ⟩

If	isospin	symmetry	were	exact,	 	

Isospin	symmetry	is	broken	in	nuclear	states		
(e.g.	Coulomb,	nucleon	mass	difference,	…)	

In	presence	of	isospin	symmetry	breaking	(ISB):	

MF → M0 = 2

|MF |2 = |M0 |2 (1 − δC)

ISB	correc0on	is	crucial	for	 	extrac0onVud

δC ∼ 0.17% − 1.6%!



ISB	or	scalar	BSM	interac0ons?

Once	all	correc0ons	are	included:	
CVC	—>	Ft	constant	

	par0cularly	important	for	alignment!δC

Fit	to	14	transi0ons:			
Ft	constant	within	0.02%	if	using	SM-WS

SUPERALLOWED 0+ → 0+ NUCLEAR . . . PHYSICAL REVIEW C 91, 025501 (2015)
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FIG. 2. (a) In the top panel are plotted the uncorrected experi-
mental f t values as a function of the charge on the daughter nucleus.
(b) In the bottom panel, the corresponding F t values are given; they
differ from the f t values by the inclusion of the correction terms δ′

R ,
δNS, and δC. The horizontal gray band gives one standard deviation
around the average F t value.

of χ2/ν associated with the current F t result is higher than
the corresponding value in 2008 but this undoubtedly reflects
the fact that one additional transition has been added and the
data for some of the other transitions are more precise today
than they were 6 years ago. In any case, the confidence level
for the new result remains very high: 91%.

C. Uncertainty budgets

We show the contributing factors to the individual F t-value
fractional uncertainties in two figures. The first, Fig. 3,
encompasses the nine cases with stable daughter nuclei. Their
experimental parameters have been measured with increasing
precision for many years, so we refer to these as the “traditional
nine.” The remaining eleven cases, of which five now approach
the traditional nine in precision, appear in Fig. 4. In both
figures, the first three bars in each group of five show the
contributions from experiment, while the last two correspond
to theory. Although we are now treating the contribution from
δ′
R as a systematic uncertainty that is applied to the final

average F t , nevertheless we show a bar as a rough guide

10C 14O 26mAl 34Cl 38mK 42Sc 46V 50Mn 54Co

0.02

0.10

0.08

0.06

0.04

0

0.14

0.12
Q-value

Half-life

Branching ratio

R
’

C NS-

Parent nucleus

)
%( ytniatrecnu lanoitcarF

FIG. 3. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that con-
tributes to the final F t values for the “traditional nine” superallowed
transitions. The bars for δ′

R are only a rough guide to the effect on
each transition of this term’s systematic uncertainty. See text.
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FIG. 4. Summary histogram of the fractional uncertainties at-
tributable to each experimental and theoretical input factor that
contributes to the final F t values for the 11 other superallowed
transitions. Where the error is cut off with a jagged line at 40 parts in
104, no useful experimental measurement has been made. The bars
for δ′

R are only a rough guide to the effect on each transition of this
term’s systematic uncertainty. See text.
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standard deviations. Is there any way the |Vud | value in Eq. (10)
could possibly be shifted to this value? It can be seen in
Eq. (8) that |Vud |2 is inversely proportional to both F t and
(1 + !V

R). For F t to account for such a shift, it would have to
decrease by six standard deviations. That is unlikely enough
but, because all 14 measured transitions agree with one another
and with CVC, all 14 would have to undergo the same shift, a
virtual impossibility. The only other possibility is a shift in the
nucleus-independent radiative correction, !V

R, which would
have to be reduced from 2.36(4)% to 2.24%. This is a change
equal to three times the stated uncertainty which, while not
impossible, is rather unlikely.

(4) f+(0), fK/fπ correct, K#3, K#2 correct, unitarity
not satisfied. With |Vus | determined from K#3 decays and
|Vus |/|Vud | from K#2 decays, each with the Nf = 2 + 1 + 1
lattice coupling constants, a value of |Vud | can be obtained from
their ratio. The result, |Vud | = 0.9670(44), has a somewhat
larger error bar than other determinations from kaon physics
because no constraint to satisfy unitarity has been imposed.
Nevertheless, the result is two of its standard deviations away
from the nuclear β-decay value for |Vud | and the unitarity
sum is likewise not satisfied, with |Vu|2 = 0.985(9) and a
deficit, !CKM = −0.015(9), of 1.8 standard deviations. For
the β-decay value of |Vud | to be shifted into agreement with
this kaon-derived value would require the nucleus-independent
radiative correction !V

R to be increased from 2.36(4)% to
3.88%, 40 times its stated uncertainty. Surely this can be ruled
out.

One must conclude that there is no definitive answer for
|Vus | as of now since the two approaches to its measurement
from kaon decay are not completely consistent with one
another. On balance, though, the result for |Vus |/|Vud | obtained
from K#2 and pion decays seems the most reliable because it
shows the greatest consistency as the lattice calculations have
improved, which reinforces the idea that systematic errors are
reduced when a ratio is used. If we then accept the Nf =
2 + 1 + 1 result on line 4 of Table XIII and combine it with
our result for |Vud | from Eq. (10), we get |Vus | = 0.2248(6)
and a unitary sum of |Vu|2 = 0.999 56(49).

D. Scalar currents

1. Fundamental scalar current

The standard model prescribes the weak interaction to be
an equal mix of vector (V ) and axial-vector (A) interactions
that maximizes parity violation. Searches for physics beyond
the standard model therefore seek evidence that parity is
not maximally violated (owing to the presence of right-hand
currents) or that the interaction is not pure V − A (owing to the
presence of scalar or tensor currents). The data in this survey
allow us to contribute to the search for a scalar interaction
because, if present, it would have a measurable effect on
superallowed 0+ → 0+ β transitions.

A scalar interaction would generate an additional term [5]
to the shape-correction function, which forms part of the
integrand of the statistical rate function, f , an integral over
the β-decay phase space. The additional term takes the form
(1 + bF γ1/W ), where W is the total electron energy in electron

Z of daughter
2010 30 400

3070

3080

3090

3060

FIG. 7. Corrected F t values from Table IX plotted as a function
of the charge on the daughter nucleus, Z. The curved lines represent
the approximate loci the F t values would follow if a scalar current
existed with bF = ±0.004.

rest-mass units, and γ1 =
√

[1 − (αZ)2]. The strength of the
scalar interaction is contained in the unknown constant, bF ,
which is called the Fierz interference term [218]. Thus, the
impact of a scalar interaction on the F t values would be to
introduce a dependence on 〈1/W 〉, the average inverse decay
energy of each β+ transition. No longer would the F t values
be constant over the whole range of nuclei but they would
instead exhibit a smooth dependence on 〈1/W 〉. Since 〈1/W 〉
is largest for the lightest nuclei, and decreases monotonically
with increasing Z and A, the largest deviation of F t from
constancy would occur for the cases of 10C and 14O.

We have reevaluated the statistical rate function, f , for
each transition using a shape-correction function that includes
the presence of the scalar interaction via a Fierz interference
term, bF , which we treat as an adjustable parameter. We then
obtained a value of bF that minimized the χ2 in a least-squares
fit to the expression F t = constant. The result we obtained is

bF = −0.0028 ± 0.0026, (17)

a marginally larger result than the value from our last survey [6]
but with the same uncertainty. Note that the uncertainty quoted
here is one standard deviation (68% CL), as obtained from the
fit. In Fig. 7 we illustrate the sensitivity of this analysis by
plotting the measured F t values together with the loci of F t
values that would be expected if bF = ±0.004. There is no
statistically compelling evidence for bF to be nonzero.1

The result in Eq. (17) can also be expressed in terms of
the coupling constants that Jackson, Treiman, and Wyld [218]
introduced to write a general form for the weak-interaction
Hamiltonian. Since we are dealing only with Fermi superal-
lowed transitions, we can restrict ourselves to scalar and vector
couplings, for which the Hamiltonian becomes

HS+V = (ψpψn)
(
CSφeφνe

+ C ′
Sφeγ5φνe

)

+ (ψpγµψn)
[
CV φeγµ(1 + γ5)φνe

]
, (18)

in the notation and metric of Ref. [218]. We have taken the
vector current to be maximally parity violating, as indicated

1It is interesting to note that if we were to derive an averageF t value
from the data while allowing bF to vary freely, the corresponding
value for |Vud | would become 0.9745(4), a result quite consistent
with the one we quote in Eq. (10), but with an uncertainty nearly
twice as large.
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to the significance of the δ′
R uncertainty for each transition.

In each case, we take the height of that bar to correspond to
one-third the size of the Z2α3 term in the expression for δ′

R

(see Sec. III A 1).
From Fig. 3, it can be seen that for seven of the nine

transitions plotted there—all but those from 10C and 14O—the
contributions from their three experimental uncertainties are
substantially smaller than the corresponding contributions
from the theoretical uncertainty due to the combined nuclear-
structure-dependent corrections, (δC − δNS). The same can be
said for the transitions from 62Ga and 74Rb, which appear
among the TZ = 0 cases illustrated in Fig. 4, although for these
two cases the theoretical uncertainties are 3–10 times larger
than they are for the lighter nuclei because of nuclear-model
ambiguities.

There is good reason for these nine cases to have particu-
larly small experimental uncertainties. They are all transitions
from TZ = 0 parent nuclei, which populate even-even daugh-
ters in which there are no, or very few, 1+ states at low enough
energy to be available for competing Gamow-Teller decays.
Thus, the branching ratios for the superallowed transitions
are all >99% and have very small associated uncertainties,
the largest being for the decays of 54Co and 74Rb, which
both have a 3 × 10−4 fractional uncertainty. In both cases,
this is because they are predicted to have Gamow-Teller
branches that are too weak to have been observed but numerous
enough that their total strength is not negligible. To account
for such competition, one must first make a sensitive search
for weak branches and then resort to an estimate of the
strength of the branches that could have been missed at the
level of experimental sensitivity achieved. Such estimates are
currently based on shell-model calculations, as first suggested
in Ref. [93], and obviously they introduce some additional
uncertainty.

The presence of numerous weak Gamow-Teller branches
becomes an increasingly significant issue for the heavier-mass
nuclei, which have increasingly large QEC values. For cases
with A ! 62, they present a major experimental challenge
if they are to be fully characterized. To date this has been
accomplished for the decays of 62Ga [36,66] and 74Rb [55] but
at considerable effort. It remains to be seen if the same level of
precision will ultimately be achievable for 66As and 70Br, the
two other cases in the bottom panel of Fig. 4, or for the even
heavier TZ = 0 parents that extend beyond 74Rb up to 98In.

The decays of 10C, 14O, and all the transitions depicted
in the top panel of Fig. 4 originate from TZ = −1 parent
nuclei and populate odd-odd daughters in which there are low-
lying 1+ states strongly fed by Gamow-Teller decay. These
branches are of comparable intensity to the superallowed
one so they—or the superallowed branch itself—must be
measured directly with high relative precision, a very difficult
proposition. The outcome is branching-ratio uncertainties that
exceed all the other contributions to theF t-value uncertainties,
experimental or theoretical, for these cases. (Measurements of
weak competing branches in the TZ = 0 cases discussed in
the previous paragraph require high sensitivity but not high
relative precision because the total Gamow-Teller branching
is more than a factor of 100 weaker than the superallowed
branch for all of them.) Advances in experimental techniques

for measuring branching ratios have improved the situation in
recent years [94,141] and will improve it even more within the
next few years. Nevertheless, it is unlikely that these cases will
ever equal the overall level of precision already achieved for
the TZ = 0 parent decays. Their value lies instead in testing the
calculated corrections for isospin-symmetry breaking [141], as
described in Sec. IV C.

IV. ISOSPIN-SYMMETRY BREAKING

Our own isospin-symmetry-breaking calculations, which
take a semiphenomenological approach based on the shell-
model together with Woods-Saxon radial functions (denoted
SM-WS), have been discussed in Sec. III A 2. The results
obtained there for δC are listed in the last column of Table X
and are repeated for comparison purposes in the second column
of Table XI. Those are not the only calculations of δC . There
are a number of others that have appeared in the literature, of
which we outline some more recent entries here.

A. Other δC calculations

SM-HF. Ormand and Brown [199] were the first to suggest
that the calculation of the radial overlap—i.e., the δC2 com-
ponent of δC—might be better served if a mean-field Hartree-
Fock potential were used rather than the phenomenological
Woods-Saxon potential. The most recent calculation of this
type is by Hardy and Towner [6] and their results are listed

TABLE XI. Recent δC calculations (in percent units) based
on models labeled SM-WS (shell-model, Woods-Saxon), SM-HF
(shell-model, Hartree-Fock), RPA (random phase approximation),
IVMR (isovector monopole resonance), and DFT (density functional
theory). Also given is the χ 2/ν, χ 2 per degree of freedom, from the
confidence test discussed in the text.

RPA

SM-WS SM-HF PKO1 DD-ME2 PC-F1 IVMRa DFT

Tz = −1
10C 0.175 0.225 0.082 0.150 0.109 0.147 0.650
14O 0.330 0.310 0.114 0.197 0.150 0.303
22Mg 0.380 0.260 0.301
34Ar 0.695 0.540 0.268 0.376 0.379
38Ca 0.765 0.620 0.313 0.441 0.347
Tz = 0
26mAl 0.310 0.440 0.139 0.198 0.159 0.370
34Cl 0.650 0.695 0.234 0.307 0.316
38mK 0.670 0.745 0.278 0.371 0.294 0.434
42Sc 0.665 0.640 0.333 0.448 0.345 0.770
46V 0.620 0.600 0.580
50Mn 0.645 0.610 0.550
54Co 0.770 0.685 0.319 0.393 0.339 0.638
62Ga 1.475 1.205 0.882
74Rb 1.615 1.405 1.088 1.258 0.668 1.770
χ 2/ν 1.4 6.4 4.9 3.7 6.1 4.3b

aRodin [205] also computes δC = 0.992% for both 66As and 70Br.
bThe result for 62Ga has not been included in the least-squares fit from
which this value for χ 2/ν has been obtained.
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FIG. 1. Isospin-symmetry breaking correction δC obtained from
different models: shell model with WS radial wave functions (SM-
WS) [2,4,5], shell model with HF wave functions (SM-HF) [6,7],
J (T )-projected HF theory with two different Skyrme functionals (SV-
DFT and SHZ2-DFT) [9], relativistic RPA (RHF-RPA and RH-RPA)
[10], isovector monopole resonance theory (IVMR) [11], and the
Damgaard model [12].

added to a relativistic Hartree or Hartree-Fock (HF) calculation
was used by Liang et al. [10]. In addition, Auerbach [11] uses a
model where the main isospin-symmetry-breaking effects are
attributed to the isovector monopole resonance. The last two
results are again systematically lower than the shell-model or
J (T )-projected HF values. For completeness, we show also an
earlier estimation of the correction using perturbation theory
on the basis of individual harmonic-oscillator wave functions
by Damgaard [12]. It is clear that all these calculations have a
significant spread in the obtained values of δC , thus raising the
question of credibility of the results.

The values for δC tabulated by Towner and Hardy in Ref. [1]
excellently support both the CVC hypothesis over the full range
of Z values and the top-row unitarity of the CKM matrix.
However, this agreement is not sufficient to reject the other
calculations, since these aspects of the standard model have
to be confirmed experimentally. The validity of CVC does not
constrain the absolute F t value. The disagreement between
model predictions and the importance of the issue motivated
us to reexamine this correction in a consistent approach based
on the nuclear shell model.

Within the shell model, the eigenproblem is solved by con-
struction and diagonalization of the Hamiltonian matrix using
a Slater determinant spherical harmonic-oscillator basis. The
eigenstates are thus given in terms of linear combinations of
many-body basis states. In order to describe isospin-symmetry
breaking effects, the many-body Hamiltonian should contain
Coulomb and charge-dependent terms of nuclear origin. If
the eigenproblem is solved in a sufficiently large A-body
basis of many harmonic-oscillator shells, the eigenvectors
can be used to compute a realistic Fermi matrix elements,
as, for example, has been done for 10C in the no-core shell
model with 3N forces included [13]. However, for heavier
nuclei, calculations are feasible only in restricted model spaces,
containing one or two harmonic-oscillator shells beyond a
closed-shell core. Effective isospin-nonconserving interaction
introduces the isospin-symmetry breaking in the mixing of

various harmonic-oscillator configurations within the model
space. In addition, calculation of transition matrix elements
involves radial integrals which should be computed using real-
istic spherically symmetric proton and neutron wave functions,
obtained from a finite-range potential with a Coulomb term.
The protons in a parent nucleus are less bound than the neutrons
in a daughter nucleus because of the Coulomb repulsion. Since
the model space is restricted to a single oscillator shell, in
practice the only way to deal with the problem is to replace the
harmonic-oscillator radial wave functions by single-particle
wave functions obtained from a realistic spherically symmetric
mean-field potential. This accounts for the isospin-symmetry
breaking effects beyond the valence space. Thus, there are
two sources of the deviation of the Fermi matrix element
from its model-independent value: one is from the effective
charge-dependent Hamiltonian and the other is from the radial
mismatch of proton and neutron single-particle wave functions.
It will be shown below that, within the first-order perturbation
theory, the correction δC can be expressed as a sum of two
terms corresponding to the two sources of isospin-symmetry
breaking mentioned above.

The present study focuses on the radial mismatch between
proton and neutron single-particle wave functions, which
represents the main contribution to the nuclear structure
correction to the Fermi matrix element. Currently, two types
of a mean-field potential are considered in this respect. The
first one is the phenomenological WS potential including a
central, a spin-orbit, and an electrostatic repulsion term. A
series of calculations using this potential has been carried
out by Towner and Hardy [2,4]. These authors adjusted case-
by-case the depth of the volume term or added an additional
surface-peak term to reproduce experimental proton and neu-
tron separation energies. In addition, they adjusted the length
parameter of the central term to fix the charge radii of the
parent nuclei. The second type of a mean-field potential is
that obtained from self-consistent HF calculations using a
zero-range Skyrme force, as was first proposed by Ormand
and Brown in 1985 [14] and refined in the subsequent papers
[6,7].

The results obtained from both types of mean-field potential
are equivalently in good agreement with the CVC hypothesis;
however, the δC values from Skyrme-HF calculations are con-
sistently smaller than those obtained from the WS calculations.
This discrepancy was thought to be due to the insufficiency of
the Slater approximation for treating the Coulomb exchange
term. Towner and Hardy highlighted that the asymptotic
limit of the Coulomb potential in the Slater approximation is
overestimated by one unit of Z. To retain this property, they
proposed a modified HF protocol [5], namely they performed
a single calculation for the nucleus with (A − 1) nucleons
and (Z − 1) protons and then used the proton and the neutron
eigenfunctions from the same calculation to compute the radial
overlap integrals. Their result leads to a significant increase of
the corresponding correction to the Fermi matrix element and
provides a better agreement with the values obtained with WS
radial wave functions. However, we warn that such a method
is rooted in Koopman’s theorem, which is not fully respected
by the HF calculations, in particular with a density-dependent
effective interaction.
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

−1
2

∑

a %=g

〈a;1||M(1)||g;1〉∗〈a;1||V ||g;1〉
Ea,1 − E g,1

−1
6

∑

a

〈a;2||M(1)||g;1〉∗〈a;2||V ||g;1〉
Ea,2 − E g,1

−
∑

a

〈a;2||V ||g;1〉∗〈a;2||M(1)||g;1〉
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

+
∑

a %=g

〈a;1||M(1)||g;1〉∗〈a;1||V ||g;1〉
Ea,1 − E g,1

−1
3

∑

a

〈a;2||M(1)||g;1〉∗〈a;2||V ||g;1〉
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

〈a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z〉 = C

11;T ′T ′
z

1T z;1T ′′
z
〈a; T ′||M(1)||g;1〉

〈a; T ′, T ′
z|V |g;1, T z〉 = C

11;T ′T ′
z

1T z;10 〈a; T ′||V ||g;1〉, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|〈a;0||V ||g;1〉|2
(Ea,0 − E g,1)2 + 1

2

∑

a %=g

|〈a;1||V ||g;1〉|2
(Ea,1 − E g,1)2

−5
6

∑

a

|〈a;2||V ||g;1〉|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ( Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|〈a; T ||V (1)
C ||g;1〉|2

Ea,T − E g,1
, (18)

with a %= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z〉, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T 〉 are of the 
order (N − Z)/A ( 1. Hence, in this approximation scheme all ma-
trix elements are equal, 〈M; T ||V (1)

C ||g; 1〉 ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

〈φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ〉, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

〈φ|M(1)
0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable

'M(1)
A ≡ 〈 f |M(1)

+1|i〉 + 〈 f |M(1)
0 | f 〉 (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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Nuclear	Hamiltonian:	H = H0 + VISB ≈ H0 + VC

Coulomb	poten0al	for	uniformly	charged	sphere

ISB	due	to	IV	monopole,	VISB ≈
Ze2

8πR3 ∑
i

r2
i
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0

Same	operator	generates	nuclear	radii
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In this Letter we explore the connection between δC and a set 
of experimentally accessible quantities that are sensitive to the 
same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
√

2.
A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
sition. The irreducible tensors of rank 1 in the isospin space with 
its components are: M(1)

0 = M(1)
z , M(1)

±1 = ∓(M(1)
x ± iM(1)

y )/
√

2.

3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
6

R2
CW + O(t2), (5)

where

R2
CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as

R p/n,φ =

√√√√ 1
X

〈φ|
A∑

i=1

r2
i

(
1
2

∓ T̂ z(i)
)

|φ〉, (7)

with − for the proton and + for the neutron and X = Zφ or Nφ , 
respectively. These radii naturally connect to the z-component of 
the isovector monopole operator,

〈φ|M(1)
0 |φ〉 = Nφ

2
R2

n,φ − Zφ

2
R2

p,φ . (8)

In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable

'M(1)
A ≡ 〈 f |M(1)

+1|i〉 + 〈 f |M(1)
0 | f 〉 (9)

offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,

'M(1)
B ≡ 1

2

(
Z1 R2

p,1 + Z−1 R2
p,−1

)
− Z0 R2

p,0 (10)

which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
A,B and δC

To investigate the underlying physics of 'M(1)
A,B , we resort to 

the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
nantly transforms as an isovector (T = 1, T z = 0) [44]. The neglect 
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same ISB nuclear matrix elements. These observables encompass 
recoil effects in the superallowed decay process, nuclear charge 
radii across the isotriplet, and the neutron skin of the stable 
daughter nucleus. The relevant combinations are constructed such 
that non-ISB contributions cancel out, and a clean probe of the 
isospin mixing effects is obtained.

2. Basic notation

We adopt the “nuclear physics convention” for the isospin pro-
jection, (T z)p = −1/2. We consider β+ transitions i → f across
the isotriplet with T z,i = 0 and T z, f = +1 (which we will explain 
later). The Fermi matrix element is defined as M F = 〈 f |τ̂+|i〉, with 
τ̂+ the isospin-raising operator, and the states |i〉, | f 〉 normalized 
to 1.

The nuclear states are eigenstates of the full Hamiltonian H
which we split as H = H0 + V , with H0 the part that conserves 
isospin and V the ISB perturbation term. We label the eigenstates 
of H0 as |a; T , T z〉 where a denotes all quantum numbers un-
related to isospin (we use a = g for the ground state isotriplet 
that undergoes superallowed beta decay). The corresponding en-
ergy eigenvalues are labeled as Ea,T , which may depend on a and 
T but not T z . In the absence of V , the bare Fermi matrix element 
reads M0

F = 〈g; 1, T z, f |τ̂+|g; 1, T z,i〉 =
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A key ingredient in our analysis is the isovector monopole op-

erator,

&M(1) =
A∑

i=1

r2
i
&̂T (i) (3)

where &̂T (i) is the isospin operator of the nucleon i, and &ri its po-
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its components are: M(1)
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3. Key experimental observables

The charged weak form factors in superallowed decays of spin-
less nuclei are:

〈 f (p f )| Jλ†
W (0)|i(pi)〉 = f+(t)(pi + p f )

λ + f−(t)(pi − p f )
λ, (4)

where Jλ†
W (x) = d̄(x)γ λ(1 − γ5)u(x) is the charged weak current, 

and t = (pi − p f )
2. The contribution of f−(t) to the differential 

decay rate is suppressed simultaneously by kinematics and by ISB, 
so we can only probe f+(t). In the Breit frame (p0

i = p0
f ), f+(0) =

M F and we define f+(t) = M F f̄+(t) with f̄+(0) = 1. For small t
we have,

f̄+(t) = 1 + t
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CW + O(t2), (5)

where
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CW ≡ −

√
2〈 f |M(1)

+1|i〉
M F

(6)

defines a “charged weak radius” associated to the charged weak 
form factor, and one may safely set M F →

√
2 above given our 

precision goal. This radius may in principle be measured through 
recoil effects in beta decays or neutrino-nucleus scattering. We dis-
cuss the feasibility of such measurements in later paragraphs.

Further, we define the root mean square (RMS) radii of the 
proton and neutron distribution in a nucleus φ (with the proton 
number Zφ and the neutron number Nφ ) as
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with − for the proton and + for the neutron and X = Zφ or Nφ , 
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In absence of ISB, the Wigner-Eckart theorem requires the equality 
〈g; 1, 1|M(1)

+1|g; 1, 0〉 = −〈g; 1, 1|M(1)
0 |g; 1, 1〉. Hence, the following 

combined experimental observable
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+1|i〉 + 〈 f |M(1)
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offers a very clean probe of ISB effect. Furthermore, we define an-
other experimentally accessible quantity,
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which combines the R p across the isotriplet (−1, 0, 1 denote T z of 
the nucleus). Again, 'M(1)

B vanishes in the isospin limit, providing 
another clean probe of isospin mixing effects. 'M(1)

A,B are the two 
key experimental observables that we focus on in this Letter.

While the RMS radii R p,n are generally not observable, they 
are directly related to nuclear charge and neutral weak radii 
RCh,φ, RNW,φ . The former are measurable for both stable and un-
stable nuclear isotopes, mainly from the atomic spectroscopy [28]. 
The nuclear RMS charge radii are largely given by R p , as the cor-
rections due to the charge radii of the proton and the neutron 
can easily be included, along with the spin-orbit interaction ef-
fects [29–32]. New results for charge radii of unstable isotopes are 
anticipated, e.g., from the BECOLA facility at FRIB [33].

Nuclear weak radii are accessible with parity-violating electron 
scattering (PVES) on nuclear targets. The object of interest is the 
neutron skin Rn − R p ∝ RNW − RCh which is the subject of a vibrant 
experimental program at electron scattering facilities [34–38] with 
the scope of obtaining insights into the properties of the neutron-
rich matter with relevance for astrophysics [39]. Since fixed-target 
PVES is only viable with a stable target nucleus, we concentrate 
on (observationally) stable superallowed daughter nuclei, most of 
which are T z, f = +1 members of the isotriplet, which motivates 
the definition of Eq. (9). In addition, RMS charge radii of stable 
nuclei are known to 0.1 − 0.01% precision [28], which opens the 
possibility to extract the respective weak RMS radii with a sub-
percent precision [40].

The difference in the proton and neutron distributions within a 
nucleus can generically come from two sources: the neutron excess 
and ISB effects. In asymmetric nuclei with N > Z the skin is mainly 
generated by the symmetry energy [41], although even there the 
ISB effects may be non-negligible [42]. For nearly symmetric nu-
clei with N ≈ Z , such as those participating in the superallowed 
decays, the ISB effects become comparable. Discussions about the 
relation between ISB effects and the neutron skin exist in the liter-
ature [43], but to the best of our knowledge, this is the first time 
the neutron skin of the members of a superallowed isotriplet is 
directly related to δC in that isotriplet.

4. The connection between !M (1)
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To investigate the underlying physics of 'M(1)
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the perturbation theory formalism outlined in Refs. [16,17] The 
only simplifying assumption is that the ISB operator V predomi-
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2

Transition radius 
From  spectrumβ

Neutron skin 
From PVES

Charge radii from atomic spectra 
and electron scattering

Since	N	≠	Z	for	 	factors	 	remove	the	symmetry	energy	to	isolate	ISB	
(Usually	PVES	—>	neutron	skins	—>	symmetry	energy	—>	nuclear	EOS	—>	nuclear	astrophysics)

Tz = ± 1 Z±1,0

νe
e+

Ai
Af

W− e− e−

A±1,0 A±1,0

γ
⃗e− e−

Af Af

γZ

0+, T = 1, Tz = − 1
0+, T = 1, Tz = 0

0+, T = 1, Tz = 1

E.g.	42
22Ti →42

21 Sc →42
20 Ca

FCh(Q2) = 1 − R2
ChQ

2 /6 + …APV = −
GFQ2

4 2πα

QW

Z
FNW(Q2)
FCh(Q2)

FCW(Q2) = 1 − R2
CWQ2 /6 + …



Electroweak radii constrain ISB in superallowed -decayβ

18

		and	radii	expressed	via	the	same	set	of	matrix	elementsδC

Employ	the	correct	isospin	formalism	by	Schwenk,	Miller	0805.0603;	0910.2790

C.-Y. Seng and M. Gorchtein Physics Letters B 838 (2023) 137654

of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

−1
2

∑

a %=g

〈a;1||M(1)||g;1〉∗〈a;1||V ||g;1〉
Ea,1 − E g,1

−1
6

∑

a

〈a;2||M(1)||g;1〉∗〈a;2||V ||g;1〉
Ea,2 − E g,1

−
∑

a

〈a;2||V ||g;1〉∗〈a;2||M(1)||g;1〉
Ea,2 − E g,1

+ O(V 2) (11)

and

!M(1)
B = Re

{

−2
3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

+
∑

a %=g

〈a;1||M(1)||g;1〉∗〈a;1||V ||g;1〉
Ea,1 − E g,1

−1
3

∑

a

〈a;2||M(1)||g;1〉∗〈a;2||V ||g;1〉
Ea,2 − E g,1

}

+ O(V 2) (12)

where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

〈a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z〉 = C

11;T ′T ′
z

1T z;1T ′′
z
〈a; T ′||M(1)||g;1〉

〈a; T ′, T ′
z|V |g;1, T z〉 = C

11;T ′T ′
z

1T z;10 〈a; T ′||V ||g;1〉, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|〈a;0||V ||g;1〉|2
(Ea,0 − E g,1)2 + 1

2

∑

a %=g

|〈a;1||V ||g;1〉|2
(Ea,1 − E g,1)2

−5
6

∑

a

|〈a;2||V ||g;1〉|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ( Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|〈a; T ||V (1)
C ||g;1〉|2

Ea,T − E g,1
, (18)

with a %= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z〉, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T 〉 are of the 
order (N − Z)/A ( 1. Hence, in this approximation scheme all ma-
trix elements are equal, 〈M; T ||V (1)

C ||g; 1〉 ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,
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where the reduced matrix elements are defined via the Wigner-
Eckart theorem:
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with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)

B ensures that the isoscalar operator 
∑

i r2
i in Eq. (7) does 

not enter the matrix elements at O(V ). Meanwhile, the ISB correc-
tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads
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Ea,T − Eg,1

Compare	to	IMME	(masses	across	an	isomul0plet)

2

adopted in these analysis is the ability of the model cal-
culation to align the Ft-values of different superallowed
transitions, per request of the conserved vector current
(CVC) hypothesis [50]. This criterion effectively ruled
out all but one calculation, namely the WS result, which
they used in their subsequent analysis. However, this
strategy is not without controversy: for example, one
cannot rule out the possibility that the CVC hypothe-
sis is invalidated by physics beyond the Standard Model
(BSM), or that there is constant shift to all values of δC.
It has also been pointed out that the theory framework
on which the WS calculation is based contains several
inconsistencies, e.g. not using the correct isospin oper-
ator [51–53], and correcting for these might lead to a
substantial reduction of the δC values.

A major limitation of existing calculations of δC is the
absence of direct constraints from measurable ISB ob-
servables which can be used to quantify the theory un-
certainties. The most precisely studied ISB observable
in nuclear systems is the isobaric multiplet mass equa-
tion (IMME) that describes the mass splitting between
isobaric analog states [54–57]; it was used in a number
of studies to either fix the model parameters [35] or as a
preliminary test of the methodology’s applicability [58].
However, there is no overlap between the leading nuclear
matrix elements that contribute to the IMME coefficients
and to δC, so the extent to which IMME constrains δC
is not entirely clear. To overcome this limitation, we

identified in Ref. [48] a set of ISB observables ∆M (1)
A,B

constructed from the electroweak nuclear radii across the
isotriplet, which depend on the same nuclear matrix el-
ements as δC. Measurements of the former from atomic
spectroscopy, beta decay recoil effects and fixed-target
scattering experiments allow one to constrain the lat-
ter. To illustrate this idea, we adopted a simple isovector
monopole dominance picture to derive a proportionality

relation between ∆M (1)
A,B and δC. Despite being model-

dependent, this simple picture offers a useful guidance
for the precision target of future experiments.

In this work we further explore the idea in Ref.[48] in a
model-independent way. We construct a set of functions
of an energy variable ζ FTz

(ζ) (Tz = −1, 0, 1) that de-
pend on the nuclear matrix elements common to δC and

∆M (1)
A,B. We show how the needed ISB observables can

be derived from FTz
and its derivatives. Therefore, if a

theory approach can reliably calculate FTz
as a function

of ζ, it simultaneously predicts ∆M (1)
A,B and δC with a

correlated degree of accuracy. A good agreement of the
calculations with the experimental measurements for the
former will imply the reliability of the theory prediction
for the latter. In this sense, the approach advocated here
directly constrains δC and its uncertainty by the experi-
ment.

The content of this work is arranged as follows. In Sec-
tion II we derive the leading perturbative expression of
δC and argue that existing model calculations may con-
tain large systematic uncertainties. In Section III we re-

A
WS RPA

δ
−1

C
(%) δ

0
C(%) ∆C δ

−1

C
(%) δ

0
C(%) ∆C

26 0.435(27) 0.310(18) 0.34(8) 0.176 0.139 0.23

34 0.659(40) 0.613(49) 0.07(10) 0.268 0.234 0.14

38 0.745(47) 0.628(54) 0.17(11) 0.313 0.278 0.12

42 0.960(63) 0.690(46) 0.32(9) 0.384 0.333 0.14

46 0.760(87) 0.620(63) 0.20(15) / / /

50 0.660(49) 0.660(32) 0.00(0) / / /

54 0.790(67) 0.770(67) 0.03(4) / 0.319 /

Table I: δ−1,0
C

and ∆C computed with WS and RPA.

view the central idea in Ref.[48], namely the construction

of the two ISB observables ∆M (1)
A,B from the measurable

electroweak nuclear radii. In Section IV we define the
functions FTz

(ζ) and demonstrate their connection to δC
and ∆M (1)

A,B. In Section V we discuss possible strategies
to compute FTz

(ζ) as a function of ζ, which simultane-

ously predicts ∆M (1)
A,B and δC. In Section VI we draw

our conclusions.

II. ISB IN PERTURBATION THEORY

To discuss the perturbative expression of ISB observ-
ables, we split the full Hamiltonian as H = H0+V , where
H0 is the unperturbed, isospin-conserving part and V is
the ISB perturbation term. We label the eigenstates of
H0 as |a;T, Tz〉 (with unperturbed energy Ea,T ), where
T, Tz are the isospin quantum numbers, and a represents
all other quantum numbers unrelated to isospin. In par-
ticular, the ground state isotriplet that undergoes super-
allowed beta decay transitions is labelled as |g; 1, Tz〉.

The most commonly studied ISB observable is IMME,

E(a, T, Tz) = a(a, T ) + b(a, T )Tz + c(a, T )T 2
z , (4)

which takes its form based on the fact that any two-
nucleon interaction can at most be isotensor, i.e. we can
write V = V (1)+V (2), where the superscript denotes the
isospin. The coefficients b and c characterize the strength
of ISB effects. To first order in perturbation theory, they
are related to the diagonal matrix element of V :

b ∼ 〈a;T, Tz|V (1)|a;T, Tz〉 , c ∼ 〈a;T, Tz|V (2)|a;T, Tz〉 .
(5)

Experimental measurements show in general |b| % |c|
which indicates the dominance of isovector ISB effects.
For instance, in JP = 0+, T = 1 isomultiplets, one ob-
serves that the ratio |b/c| ≥ 15 for A ≥ 26, and increases
with increasing A [59].

On the other hand, δC depends on a completely dif-
ferent set of nuclear matrix elements than the IMME
coefficients b and c. To see this, we start with the ex-
act formalism by Miller and Schwenk [51], and label the
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Unlike	 	—	IMME	only	depends	on	diagonal	m.e.	—	indirect	constraintδC, ΔM(1)
A,B

Different	scaling	with	ISB:	δC ∼ ISB2, ΔM(1)
A ∼ ISB1, ΔM(1)

B ∼ ISB3
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of the isotensor ISB is likely to introduce an uncertainty of the 
order of 10-15%. Inserting the full set of intermediate (isospin-
symmetric!) nuclear states, we obtain,

!M(1)
A = −1

3

∑

a

〈a;0||M(1)||g;1〉∗〈a;0||V ||g;1〉
Ea,0 − E g,1

−1
2

∑

a %=g
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Ea,1 − E g,1

−1
6
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−
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+ O(V 2) (11)

and
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where the reduced matrix elements are defined via the Wigner-
Eckart theorem:

〈a; T ′, T ′
z|M(1)

T ′′
z
|g;1, T z〉 = C

11;T ′T ′
z

1T z;1T ′′
z
〈a; T ′||M(1)||g;1〉

〈a; T ′, T ′
z|V |g;1, T z〉 = C

11;T ′T ′
z

1T z;10 〈a; T ′||V ||g;1〉, (13)

with Cs the Clebsch-Gordan coefficients. Note that our definition 
of !M(1)
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i in Eq. (7) does 
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tion δC starts at O(V 2) in accord with the (generalized) Behrends-
Sirlin-Ademollo-Gatto theorem [45,46], and reads

δC = 1
3

∑

a

|〈a;0||V ||g;1〉|2
(Ea,0 − E g,1)2 + 1

2

∑

a %=g

|〈a;1||V ||g;1〉|2
(Ea,1 − E g,1)2

−5
6

∑

a

|〈a;2||V ||g;1〉|2
(Ea,2 − E g,1)2 + O(V 3). (14)

Further insight can be obtained with a more detailed infor-
mation on V . It is well known that the dominant source of the 
isospin mixing in the nuclear states is played by Coulomb repul-
sion between protons [47,48], with its prevailing part coming from 
a one-body potential where each proton is subject to a mean field. 
Furthermore, we take the potential of a uniformly charged sphere 
of radius RC , inside which the whole nucleus resides [24]:

V C ≈ − Ze2

4π R3
C

A∑

i=1

(
1
2

r2
i − 3

2
R2

C

)(
1
2

− T̂ z(i)
)

. (15)

While there is an ambiguity that Z is different across the isotriplet, 
it is safe to take Z ≈ A/2, since |T z| ( Z . As already mentioned, 
we disregard the isotensor contributions. In this case, only the 
isovector component breaks isospin symmetry; taking furthermore 
into account the fact that the T z is always a good quantum number 
as it counts the neutrons and protons in the nucleus, we connect 
the ISB Coulomb potential with the isovector monopole operator,

V (1)
C = (Ze2/8π R3

C )M(1)
0 , (16)

and in what follows we will take V = V (1)
C . Consequently, we can 

rewrite Eqs. (11), (12) as:

!M(1)
A = 1

3
$0 + 1

2
$1 + 7

6
$2 + O(V 2)

!M(1)
B = 2

3
$0 − $1 + 1

3
$2 + O(V 2), (17)

where

$T ≡ −8π R3
C

Ze2

∑

a

|〈a; T ||V (1)
C ||g;1〉|2

Ea,T − E g,1
, (18)

with a %= g for T = 1. This should be compared to the expression 
for δC in Eq. (14) (with V → V (1)

C ). We observe that !M(1)
A,B and δC

share the same set of reduced matrix elements in the T = 0, 1, 2
channels, imposing a strong experimental constraint on δC. This is 
one of the central results of this work.

The fact that these quantities essentially probe the same under-
lying physics means that any nuclear theory approach capable to 
compute δC can also be used to compute !M(1)

A,B , and thus com-
pared to the experiment.

5. Isovector monopole dominance

An even more straightforward relation between !M(1)
A,B and δC

can be established by invoking the concept of isovector monopole 
dominance [24,49], which states that the sum over reduced ma-
trix elements of the isovector monopole operator is largely satu-
rated by the contribution from the giant isovector monopole states 
(IVMS) which we denote as |M; T , T z〉, with energies E M,T . Fur-
thermore, it is argued that the difference between the reduced 
matrix elements at different isospin channels of |M; T 〉 are of the 
order (N − Z)/A ( 1. Hence, in this approximation scheme all ma-
trix elements are equal, 〈M; T ||V (1)

C ||g; 1〉 ≡ u for T = 0, 1, 2. From 
Eq. (14) it appears that for δC to be non zero, a splitting between 
the IVMS energies in different isospin channels E M,0, E M,1, E M,2
must be introduced. This splitting comes about from the symme-
try potential with the result from Ref. [24],

E M,T − E g,1 = ξω[1 + (T 2 + T − 4)κ/2], T = 0,1,2 (19)

with κ ≡ 2V 1/(ξωA), V 1 the strength of the symmetry potential, 
ω the harmonic oscillator frequency, and ξ a model parameter de-
scribing the IVMS strength. With these ingredients we obtain:

δC ≈ κ(4 − 13κ + 12κ2 − κ3)

(1 − 2κ)2(1 − κ2)2

u2

ξ2ω2 , (20)

we see that it is suppressed by the small energy splitting parame-
ter κ . The same treatment applies to !M(1)

A,B ; they are all propor-
tional to the same unknown reduced matrix element u2, and could 
be connected to δC as:

δC ≈ − Ze2

8π R3
C

κ(4 − 13κ + 12κ2 − κ3)

(κ2 − 4κ + 2)(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
A

≈ − Ze2

8π R3
C

(4 − 13κ + 12κ2 − κ3)

2κ(1 − 2κ)(1 − κ2)

1
ξω

!M(1)
B , (21)

where u2 now drops out. Hence we have obtained a direct relation 
between δC and !M(1)

A,B , with a proportionality constant bearing 
a residual model dependence. We notice that !M(1)

A is not sup-
pressed by κ , so its sensitivity to δC is enhanced by 1/κ ; on the 
other hand !M(1)

B is suppressed by κ2 so it requires a much higher 

3
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Table 1
Estimation of !M(1)

A and |!M(1)
A /(AR2/4)| from different models. See paragraphs after Eq. (23) for explanations. A few remarks: A = 46, 50 are missing in 

the RPA calculation, while the DFT calculation gives an unusually large δC for A = 38.

Transitions δC (%) !M(1)
A (fm2)

∣∣∣∣
!M(1)

A
AR2/4

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg 0.310 0.329 0.30 0.139 0.08 -2.2 -2.3 -2.1 -1.0 -0.6 3.2 3.3 3.0 1.4 0.8
34Cl →34 S 0.613 0.75 0.57 0.234 0.13 -5.0 -6.1 -4.6 -1.9 -1.0 4.6 5.6 4.3 1.8 1.0
38mK →38 Ar 0.628 1.7 0.59 0.278 0.15 -5.4 -14.6 -5.1 -2.4 -1.3 4.2 11.2 3.9 1.8 1.0
42Sc →42 Ca 0.690 0.77 0.42 0.333 0.18 -6.2 -6.9 -3.8 -3.0 -1.6 4.0 4.5 2.5 2.0 1.1
46V →46 Ti 0.620 0.563 0.38 / 0.21 -5.8 -5.3 -3.6 / -2.0 3.3 3.0 2.0 / 1.1
50Mn →50 Cr 0.660 0.476 0.35 / 0.24 -6.4 -4.6 -3.4 / -2.4 3.1 2.3 1.7 / 1.2
54Co →54 Fe 0.770 0.586 0.44 0.319 0.28 -7.8 -5.9 -4.4 -3.2 -2.8 3.3 2.5 1.9 1.4 1.2

Table 2
Estimation of !M(1)

B and |!M(1)
B /(AR2/2)| from different models.

Transitions !M(1)
B (fm2)

∣∣∣∣
!M(1)

B
AR2/2

∣∣∣∣ (%)

WS DFT HF RPA Micro WS DFT HF RPA Micro

26mAl →26 Mg -0.12 -0.12 -0.11 -0.05 -0.03 0.08 0.09 0.08 0.04 0.02
34Cl →34 S -0.17 -0.21 -0.16 -0.06 -0.04 0.08 0.10 0.07 0.03 0.02
38mK →38 Ar -0.15 -0.42 -0.15 -0.07 -0.04 0.06 0.16 0.06 0.03 0.01
42Sc →42 Ca -0.15 -0.17 -0.09 -0.07 -0.04 0.05 0.06 0.03 0.02 0.01
46V →46 Ti -0.12 -0.11 -0.08 / -0.04 0.03 0.03 0.02 / 0.01
50Mn →50 Cr -0.12 -0.09 -0.06 / -0.04 0.03 0.02 0.02 / 0.01
54Co →54 Fe -0.13 -0.10 -0.07 -0.05 -0.05 0.03 0.02 0.02 0.01 0.01

experimental precision to observe a deviation from zero. Further-
more, the ratio between !M(1)

A,B depends only on κ , so a simul-
taneous measurement of the two may pin down κ , which further 
solidifies their relation to δC.

6. Targeted experimental precision

Following the strategy outlined above, we devise the experi-
mental precision required for the quantities !M(1)

A,B , which would 
allow to address the reliability of the estimates of δC and its un-
certainty in a less model-dependent way. First, to fix the propor-
tionality constant, we take:

Z ≈ A/2, RC ≈
√

5/3 × 1.1 fm × A1/3, (22)

with the standard expectation for the nuclear RMS radius, R ≈
1.1 fm × A1/3, related to the radius of a nucleus as a uni-
form sphere by R2 = (3/5)R2

C . We take further parameters from 
Ref. [24],

V 1 ≈ 100 MeV, ω ≈ 41 MeV × A−1/3, ξ ≈ 3. (23)

More recent discussions of these parameters supporting the above 
choices can be found in Refs. [50,51]. Next, we may, e.g., take the 
estimates of δC available in the literature and substitute them into 
the first line of Eq. (21). This returns an estimate of the size of 
!M(1)

A , which informs, how precise the measurement of this quan-
tity should be to discriminate the model dependence of δC.

Restricting ourselves to superallowed decays with T z,i = 0 and 
T z, f = +1 and requiring the daughter nucleus to be (observation-
ally) stable, we study the transitions with 26 ≤ A ≤ 54. We take 
δC as calculated in the nuclear shell model with the Woods-Saxon 
(WS) potential [10], the density functional theory (DFT) [20], the 
Hartree-Fock (HF) calculation [22], the random phase approxima-
tion (RPA) with PKO1 parameterization [23], as well as the “micro-
scopic” model of Ref. [24,52] which gives δC ≈ 2 ×18.0 ×10−7 A5/3. 

The estimated size of !M(1)
A indicates the targeted absolute preci-

sion in the measurements of 〈 f |M(1)
+1|i〉 and 〈 f |M(1)

0 | f 〉. The lat-
ter implies subtracting two large terms, N R2

n, f /2 and Z R2
p, f /2, 

each of the typical size AR2/4. Therefore, we may use the ratio 
!M(1)

A /(AR2/4) as an estimate of the precision of the RMS radii of 
the nuclear neutron and proton distributions required to probe the 
ISB effects.

The results of our numerical analysis are summarized in Ta-
ble 1. We find that most models predict a generic size of !M(1)

A ∼
1 fm2, with a precision level (1 −3)% needed for the R2

p, f and R2
n, f

measurements in order to probe the isospin mixing effect, i.e. start 
seeing a deviation of !M(1)

A from zero. If it turns out that a non-

zero !M(1)
A is not observed at this precision, it could indicate that 

the actual values of δC are smaller than most existing model pre-
dictions, as suggested in [17,18]. The model predictions for !M(1)

A
span over an order of magnitude for 38mK→ 38Ar, and half that 
range for 34Cl→ 34S and 42Sc→ 42Ca decays, reflecting a similar 
model dependence in δC in these channels. Hence, an experimen-
tal study of !M(1)

A for these systems even at a moderate precision 
will shed light on the model dependence of δC. An analogous anal-
ysis for !M(1)

B is summarized in Table 2; following Eq. (10), we 
use !M(1)

B /(AR2/2) as a measure of the precision goal. We ob-
serve that, due to the κ2-suppression, a much higher precision 
(0.01-0.1)% is required to probe δC experimentally through !M(1)

B .

7. Discussion of the experimental feasibility

To constrain !M(1)
A we need R2

Ch and R2
NW for the stable nu-

cleus, as well as R2
CW. Considering A = 38 where the spread in 

model predictions is as large as an order of magnitude (9), even a 
10% precision of these radii allows to discriminate between mod-
els. The typical R2

Ch precision is per mille or better. R2
NW remains 

to be measured in fixed-target electron-nucleus scattering experi-
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A and |!M(1)
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the RPA calculation, while the DFT calculation gives an unusually large δC for A = 38.
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experimental precision to observe a deviation from zero. Further-
more, the ratio between !M(1)

A,B depends only on κ , so a simul-
taneous measurement of the two may pin down κ , which further 
solidifies their relation to δC.

6. Targeted experimental precision

Following the strategy outlined above, we devise the experi-
mental precision required for the quantities !M(1)

A,B , which would 
allow to address the reliability of the estimates of δC and its un-
certainty in a less model-dependent way. First, to fix the propor-
tionality constant, we take:

Z ≈ A/2, RC ≈
√

5/3 × 1.1 fm × A1/3, (22)

with the standard expectation for the nuclear RMS radius, R ≈
1.1 fm × A1/3, related to the radius of a nucleus as a uni-
form sphere by R2 = (3/5)R2

C . We take further parameters from 
Ref. [24],

V 1 ≈ 100 MeV, ω ≈ 41 MeV × A−1/3, ξ ≈ 3. (23)

More recent discussions of these parameters supporting the above 
choices can be found in Refs. [50,51]. Next, we may, e.g., take the 
estimates of δC available in the literature and substitute them into 
the first line of Eq. (21). This returns an estimate of the size of 
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A , which informs, how precise the measurement of this quan-
tity should be to discriminate the model dependence of δC.
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T z, f = +1 and requiring the daughter nucleus to be (observation-
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A ∼
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A from zero. If it turns out that a non-
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A is not observed at this precision, it could indicate that 

the actual values of δC are smaller than most existing model pre-
dictions, as suggested in [17,18]. The model predictions for !M(1)
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span over an order of magnitude for 38mK→ 38Ar, and half that 
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Can	discriminate	models	if	independent	informa0on	on	nuclear	radii	is	available	
	from	measured	radii	—>	test	models	for	 	

Charge	radii	across	superallowed	isotriplets?	
Some	are	known	(but	difficult	—	unstable	isotopes,	some	g.s.	are	not	 )	
Typically,	precision	is	not	enough	to	make	a	quan0ta0ve	statement	—	need	to	improve!

ΔMA δC

0+

For	numerical	analysis:	lowest	isovector	monopole	resonance	dominates	
One	ISB	matrix	element,	one	energy	splitng	

Model	for	 predic0on	for	δC → ΔM(1)
A,B

Electroweak radii constrain ISB in superallowed -decayβ
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Impact of atomic spectra and nuclear radii?

Sta0s0cal	rate	func0on:			f ≈ m−5
e ∫

E0(Z)

me

| ⃗pe |Ee(E0 − Ee)2F(Z, Ee)S(Z, Ee)C(Z, Ee)…dEe

• Fermi	Func0on	 :	point	Coulomb,	finite	size,	…		(pointlike	CC	transi0on!)	

• Weak	CC	form	factor	effect	 :	integra0ng	over	the	neutrino	momentum	(tree-level)	

• Shape	factor	 :	overlap	of	CC	and	charge	FF

F(Z, Ee)

C(Z, Ee)

S(Z, Ee)

We	said	that	`-values	are	experimental	—	but	not	quite!	
A	few	theory	ingredients	are	absorbed:	Coulomb	distor0ons,	nuclear	form	factors,	atomic	screening…

Fermi	func0on:	analy0cal	point-Coulomb	 	-	regularized	at	the	nuclear	radius	(def.!)	
—>	Uniform	sphere	of	radius	 ,	can	evaluate	at	origin,	finite	at	origin	
—>	Correct	for	the	finite	surface	thickness:	employ	e.g.	2pF	charge	density	
—>	Open	ques0on:	how	important	further	correc0ng	the	charge	density	(sum	of	Gaussians?)

F0(Z, Ee)
R = 5/3RCh
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where ψ ¼ ðd; uÞT is the light quark doublet field (here we
adopt the nuclear theory convention of isospin, Tz;u ¼
−1=2). Rank-1 irreducible tensors in the isospin space can
be constructed as Mð1Þ

0 ¼ Mð1Þ
z , Mð1Þ

$1 ¼∓ ðMð1Þ
x $ iMð1Þ

y Þ=ffiffiffi
2

p
. Finally, we may take fþð0Þ →

ffiffiffi
2

p
in Eq. (11) because

ISB on top of a recoil correction is negligible. Therefore,
we obtain

R2
CW ¼ −hϕfjM

ð1Þ
þ1jϕii: ð13Þ

We want to relate R2
CW to the MS charge radius of a

nucleus ϕ, defined as

R2
Ch;ϕ ¼ 1

Zϕ
hϕj

Z
d3xr2ρChðrÞjϕi

¼ 1

Zϕ
hϕj

Z
d3xr2

"
1

6
ψ†ψ −

1

3
s†s − ψ† τ

3

2
ψ

#
jϕi;

ð14Þ

with Zϕ the atomic number of ϕ. For simplicity, we will
label Z; RCh of an isotriplet nuclear state j1; Tzi as ZTz

,
RCh;Tz

, respectively. The rhs of the second line in Eq. (14)
consists of two isoscalar terms and an isovector term; the
last is just the nuclear matrix element of Mð1Þ

0 . By con-
structing the difference between ZϕR2

Ch;ϕ of two nuclei

within the same isotriplet, the isosinglet pieces drop out and
the remaining isovector term can then be related to Eq. (13)
in the isospin-symmetric limit through the Wigner-Eckart
theorem:

h1; TzbjM
ð1Þ
m j1; Tzai ¼ C1;1;1;Tzb

1;Tza;1;m
h1jjMð1Þjj1i; ð15Þ

with C1;1;1;Tzb
1;Tza;1;m

the Clebsch-Gordan coefficient and

h1jjMð1Þjj1i the reduced matrix element. With this we
finally obtain

R2
CW ¼ R2

Ch;1 þ Z0ðR2
Ch;0 − R2

Ch;1Þ

¼ R2
Ch;1 þ

Z−1
2

ðR2
Ch;−1 − R2

Ch;1Þ; ð16Þ

where we have used Z1 ¼ Z0 − 1 ¼ Z−1 − 2.
Equation (16) is the central result of this work: it says

that R2
CW can be determined model independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the rhs of Eq. (16); the first term is
the MS charge radius of the most stable Tz ¼ þ1 nucleus,
while the second term involves a difference R2

Ch;a − R2
Ch;b.

Nevertheless, this term is numerically comparable to the
first term because it is multiplied to a large factor Z; in fact,
it is also the main source of error because the experimental

TABLE I. Determinations of R2
CW based on available data of nuclear charge radii for isotriplets in measured superallowed decays.

Superscripts denote the source of data: Ref. [31]a, Ref. [32]b, Ref. [33]c, Ref. [34]d, and Ref. [35]e.

A RCh;−1 (fm) RCh;0 (fm) RCh;1 (fm) R2
Ch;1 (fm2) R2

CW (fm2)

10 10
6 C

10
5 BðexÞ 10

4 Be: 2.3550(170)
a 5.546(80) N=A

14 14
8 O

14
7 NðexÞ 14

6 C: 2.50 25(87)
a 6.263(44) N=A

18 18
10Ne: 2.9714(76)

a 18
9 FðexÞ 18

8 O: 2.77 26(56)
a 7.687(31) 13.40(53)

22 22
12Mg: 3.0691(89)b 22

11NaðexÞ 22
10Ne: 2.9525(40)

a 8.717(24) 12.93(71)

26 26
14Si

26m
13 Al 26

12Mg: 3.0337(18)a 9.203(11) N=A

30 30
16S

30
15PðexÞ 30

14Si: 3.1336(40)
a 9.819(25) N=A

34 34
18Ar: 3.3654(40)

a 34
17Cl

34
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where ψ ¼ ðd; uÞT is the light quark doublet field (here we
adopt the nuclear theory convention of isospin, Tz;u ¼
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in Eq. (11) because
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we obtain
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with Zϕ the atomic number of ϕ. For simplicity, we will
label Z; RCh of an isotriplet nuclear state j1; Tzi as ZTz

,
RCh;Tz

, respectively. The rhs of the second line in Eq. (14)
consists of two isoscalar terms and an isovector term; the
last is just the nuclear matrix element of Mð1Þ

0 . By con-
structing the difference between ZϕR2

Ch;ϕ of two nuclei

within the same isotriplet, the isosinglet pieces drop out and
the remaining isovector term can then be related to Eq. (13)
in the isospin-symmetric limit through the Wigner-Eckart
theorem:
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where we have used Z1 ¼ Z0 − 1 ¼ Z−1 − 2.
Equation (16) is the central result of this work: it says

that R2
CW can be determined model independently, modulo

negligible ISB corrections, if the charge radius of at least
two nuclei within the isotriplet are known experimentally.
There are two terms at the rhs of Eq. (16); the first term is
the MS charge radius of the most stable Tz ¼ þ1 nucleus,
while the second term involves a difference R2

Ch;a − R2
Ch;b.

Nevertheless, this term is numerically comparable to the
first term because it is multiplied to a large factor Z; in fact,
it is also the main source of error because the experimental

TABLE I. Determinations of R2
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Mother Daughter	recoils

Positron	detected

Neutrino	integrated	over
q2 = (Pf − Pi)2 Momentum	transfer

Integra0ng	over	neutrino	momenta	=	integra0ng	over	q2

ft ≡ ft(q2 = 0)∫
max

min

FCW(q2) dq2

q2
max − q2

min

Usual	approach	(Behrens	&	Bühring):	assume	 	—>	FCW ≈ Fdaughter
Ch RCW = RCh, 1

But	 	can	be	expressed	via	charge	radii	assuming	approximate	isospin	symmetryRCW



Charge radii + isospin symmetry —> CC weak radius
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Effect of large CW radii on ft and Vud
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Systema0c	shi`	by	up	to	0.1%	to	some	`	values	—>	may	resolve	CKM	deficit?	
Es0mated	from	isospin	symmetry	—	but	isospin	symmetry	broken,	how	credible?	
Theory	strategy:	compute	all	radii	AND	 	—	check	paxern,	compare	to	available	data,	mo0vate	exp.δC

Total	decay	rate	 ∼ ft |Vud |2 ∼ |Vud |2 ∫
Q2

EC

0
dQ2FCW(Q2)

50 100 150 200 250 300

0.002

0.004

0.006

0.008

0.010

RCW ↑: Vud ↑

RCW ↓: Vud ↓

Only	total	rate	measured	—	if	radius	underes0mated,	 	will	come	out	smallerVud



Shape factor: ~ Friar radius for beta decay

Solu0on	to	Dirac	equa0on	with	nuclear	charge/weak	densi0es	

Bulk	result	due	to	charge	and	charged-weak	radii	(and	beyond)	

TPE	approxima0on	won’t	do	—	full	Dirac	eq.	solu0on

25

Work	ongoing	with		
Chien	Yeah	Seng	(INT/FRIB),	Giovanni	Carotenuto,	Michela	Sestu,	MaDeo	Cadeddu,	Nicola	Cargioli	(INFN	Cagliari)

FCW FCh

CðZ;WÞ ¼
X

ke;kν;K

λke

!
M2

Kðke; kνÞ þm2
Kðke; kνÞ

−
2μkeγke
keW

MKðke; kνÞmKðke; kνÞ
"
; ð96Þ

where

λke ¼
α2−ke þ α2þke

α2−1 þ α2þ1

; ð97Þ

μke ¼
α2−ke − α2þke

α2−ke þ α2þke

keW
γke

; ð98Þ

are Coulomb functions depending on αk [see Eq. (13)], while
MKðke; kνÞ andmKðke; kνÞ contain the convolution of leptonic
wave functions and nuclear structure information encoded as
form factors, discussed in the previous section. The integers ke
and kν are defined as jκe;νj, where κe;ν is related to the angular
momenta in the usual way.16 It is a well-known fact that the
solution to the Dirac equation does not contain a definite
parity, such that we consider the outgoing leptonic wave
functions as spherical waves. The integerK corresponds to the
multipolarity of the transition and must form a vector triangle
with je and jν as well as with the nuclear spins Ji and Jf. For
allowed transitions we have then jJi − Jfj ≤ K ≤ Ji þ Jf
from the nuclear vector triangle.
In this coupled approach all leptonic information is still

contained within MK and mK . Even though the nuclear
decompositions are completely equivalent in both the HS
and BB formalisms, the treatment of the leptonic current is
not. In the latter, a rigorous expansion of the radial wave
functions is made in r2, ðmeRÞa; ðWRÞb, and ðαZÞc thereby
introducing a function Iðke; m; n; ρ; rÞ that is sensitive to
nuclear shape information.17 This function is tabulated both
in the general case and for a uniformly charged sphere in
Tables 4.2 and 4.3 in Behrens and Bühring (1982), respec-
tively. As it also includes nuclear structure information, this is
typically combined with the original form factors FðnÞ

KLs and is

written as18 FðnÞ
KLsðke; m; n; ρÞ.

This now allows to better understand the structure of
CðZ;WÞ and continue with its analytical formulation. In
the notation by Behrens and Bühring, capital letters are used
for large components, while lower case terms represent small
components. Developing MK and mK in terms of WR we can
after a tedious but straightforward calculation write a general
shape factor (Behrens et al., 1978; Behrens and Bühring,

1982). In the approach by BB, all constant factors are divided
out and one arrives at

CðZ;WÞ ¼ 1þ aW þ b
μ1γ
W

þ cW2; ð99Þ

where a, b, and c are given by Eqs. (14.117)–(14.119) in
Behrens and Bühring (1982). We will, however, divide
out only the main matrix elements VFð0Þ

000 ≡ gVMF and
AFð0Þ

101≡ ∓ gAMGT and adjust our shape factor accordingly.
This leaves us with a series of other, often more compli-

cated, nuclear matrix elements which require evaluation
somehow. Assuming isospin invariance and CVC, however,
we can link these matrix elements to electromagnetic matrix
elements. This entails that instead of using initial and final
state nuclear wave functions, one can use the full charge
distribution as discussed in Sec. VI.C. This corresponds to
using F1111 ¼ 27=35, F1221 ¼ 57=70, F1222 ¼ 233=210,
and F1211 ¼ −3=70. This approach can be improved
when using a more realistic charge distribution. Several of
these possible replacements have been discussed in the
electrostatic finite size corrections in Sec. IV, specifically
when discussing the U correction factor. This is elaborated
upon in Appendix A.

1. Superallowed 0+ → 0+ Fermi decay

In the case of superallowed Fermi decay, only terms with
K ¼ 0 contribute. We deal then only with different form factor
coefficients of the form VF1

000ð1; m; n; ρÞ. We use the expan-
sion of M0ð1; 1Þ and m0ð1; 1Þ valid to orders ðαZÞ2, R2, αZR
to calculate CðZ;WÞ from Eq. (96). Here the Coulomb
function μ1 can be safely assumed to correspond to unity
to our current order of precision (Behrens and Jänecke, 1969).
After extraction of VF0

000 we can write the shape factor
CðZ;WÞ in the following expansion:

VCðZ;WÞ0 ≃ 1þ VC0 þ VC1Wþ VC−1=W þ VC2W2; ð100Þ

where

VC0 ¼ −
233

630
ðαZÞ2 − 1

5
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VC−1 ¼
2

15
W0R2 % 1

70
αZR; ð101cÞ

VC2 ¼ −
4

15
R2: ð101dÞ

2. Pure Gamow-Teller decay

In pure Gamow-Teller decay the situation becomes more
complicated, and we now have contributions from K ≥ 1
terms. For notational convenience and clarity we first intro-
duce the Holstein variables and the translation used between
Holstein’s and the Behrens-Bühring formalism in which the
calculations were performed. We have used

16Here κ is the eigenvalue of the operator K ¼ βðσ ⋅ Lþ 1Þ, such
that k ¼ jκj ¼ jþ 1=2; κ ¼ −l − 1 if l ¼ jþ 1=2, and κ ¼ l if
l ¼ j − 1=2.

17Here m ¼ aþ bþ c represents the total power of mR;WR, and
αZ, n ¼ bþ c is the total power of WR and αZ, and ρ ¼ c is the
power of αZ.

18This is presented in Eqs. (6.159)–(6.166) in Behrens and
Bühring (1982). As Iðke; m; n; 0Þ ¼ 1, we have FðnÞ

KLsðke; m; n; 0Þ ¼
FðnÞ
KLs.
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18This is presented in Eqs. (6.159)–(6.166) in Behrens and
Bühring (1982). As Iðke; m; n; 0Þ ¼ 1, we have FðnÞ

KLsðke; m; n; 0Þ ¼
FðnÞ
KLs.
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where
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are Coulomb functions depending on αk [see Eq. (13)], while
MKðke; kνÞ andmKðke; kνÞ contain the convolution of leptonic
wave functions and nuclear structure information encoded as
form factors, discussed in the previous section. The integers ke
and kν are defined as jκe;νj, where κe;ν is related to the angular
momenta in the usual way.16 It is a well-known fact that the
solution to the Dirac equation does not contain a definite
parity, such that we consider the outgoing leptonic wave
functions as spherical waves. The integerK corresponds to the
multipolarity of the transition and must form a vector triangle
with je and jν as well as with the nuclear spins Ji and Jf. For
allowed transitions we have then jJi − Jfj ≤ K ≤ Ji þ Jf
from the nuclear vector triangle.
In this coupled approach all leptonic information is still

contained within MK and mK . Even though the nuclear
decompositions are completely equivalent in both the HS
and BB formalisms, the treatment of the leptonic current is
not. In the latter, a rigorous expansion of the radial wave
functions is made in r2, ðmeRÞa; ðWRÞb, and ðαZÞc thereby
introducing a function Iðke; m; n; ρ; rÞ that is sensitive to
nuclear shape information.17 This function is tabulated both
in the general case and for a uniformly charged sphere in
Tables 4.2 and 4.3 in Behrens and Bühring (1982), respec-
tively. As it also includes nuclear structure information, this is
typically combined with the original form factors FðnÞ

KLs and is

written as18 FðnÞ
KLsðke; m; n; ρÞ.

This now allows to better understand the structure of
CðZ;WÞ and continue with its analytical formulation. In
the notation by Behrens and Bühring, capital letters are used
for large components, while lower case terms represent small
components. Developing MK and mK in terms of WR we can
after a tedious but straightforward calculation write a general
shape factor (Behrens et al., 1978; Behrens and Bühring,

1982). In the approach by BB, all constant factors are divided
out and one arrives at

CðZ;WÞ ¼ 1þ aW þ b
μ1γ
W

þ cW2; ð99Þ

where a, b, and c are given by Eqs. (14.117)–(14.119) in
Behrens and Bühring (1982). We will, however, divide
out only the main matrix elements VFð0Þ

000 ≡ gVMF and
AFð0Þ

101≡ ∓ gAMGT and adjust our shape factor accordingly.
This leaves us with a series of other, often more compli-

cated, nuclear matrix elements which require evaluation
somehow. Assuming isospin invariance and CVC, however,
we can link these matrix elements to electromagnetic matrix
elements. This entails that instead of using initial and final
state nuclear wave functions, one can use the full charge
distribution as discussed in Sec. VI.C. This corresponds to
using F1111 ¼ 27=35, F1221 ¼ 57=70, F1222 ¼ 233=210,
and F1211 ¼ −3=70. This approach can be improved
when using a more realistic charge distribution. Several of
these possible replacements have been discussed in the
electrostatic finite size corrections in Sec. IV, specifically
when discussing the U correction factor. This is elaborated
upon in Appendix A.

1. Superallowed 0+ → 0+ Fermi decay

In the case of superallowed Fermi decay, only terms with
K ¼ 0 contribute. We deal then only with different form factor
coefficients of the form VF1

000ð1; m; n; ρÞ. We use the expan-
sion of M0ð1; 1Þ and m0ð1; 1Þ valid to orders ðαZÞ2, R2, αZR
to calculate CðZ;WÞ from Eq. (96). Here the Coulomb
function μ1 can be safely assumed to correspond to unity
to our current order of precision (Behrens and Jänecke, 1969).
After extraction of VF0

000 we can write the shape factor
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2. Pure Gamow-Teller decay

In pure Gamow-Teller decay the situation becomes more
complicated, and we now have contributions from K ≥ 1
terms. For notational convenience and clarity we first intro-
duce the Holstein variables and the translation used between
Holstein’s and the Behrens-Bühring formalism in which the
calculations were performed. We have used
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Dirac	Coulomb	radial	func0ons

M,	m	—>	convolu0ons	of	electron	radial	fn	with	nuclear	FF

Plan:	update	the	A-values	tables	—	uncertainGes!!	(nuclear	charge	radii,	FF	shape)
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With	improved	 :	for	precise	 	<—	precise	 	<—	precise	`	+	precise	 	

Precise	nuclear	radii	are	crucial	ingredients	in	`-values	and	 	

For	a	T=1	triplet	with	 :	complete	set	of	8	radii	 ,	 ,	 	

All	8	radii	+	 	are	accessible	for	theory	calcula0on!	

For	robust	uncertainty:	mo0vate	experiment	—	 	and	 	for	stable	daughters		

Most	precise	charge	radii	from	µ-atoms;	radii	of	unstable	isotopes	from	isotope	shi`s	

NC	radius	—	PV	electron	scaxering	from	stable	daughter	(e.g.	Ca-42	at	MESA:	Ca-48	planned)	

Feasibility	study	for	PVES	on	C-12:	sub-%	measurement	of	weak	charge	and	radius	

ΔV
R Vud ℱt δC, δNS

δC

Tz = (−1,0,1) R(−1,0,1)
Ch R(−1,0,1)

NW R(−1,0),(0,1)
CW

δC

R(−1,0,1)
Ch R(1)

NW

O.	Koschii	et	al,	Phys.Rev.C	102	(2020)	2,	022501
Work	ongoing	with		

Nicola	Cargioli,	MaDeo	Cadeddu,	Hubert	Spiesberger,	Jorge	Piekarewicz,	Xavi	Roca-Maza
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For	all	this:	precise	charge	radii	are	a	prerequisite!	

Where	do	we	take	the	charge	radii	from?	—	Usually	from	some	tables,	
e.g.	Angeli-Marinova	or	Fricke-Heilig	

A&M	do	not	give	much	ingredients	but	have	the	smallest	uncertain0es	(??)	
F&H	do	give	ingredients	in	detail	but	credibility	of	nuclear	polarizability??	
Example:	Ne-20	—	NPol	=	19(2)eV	—	from	Rinker	&	Späth	(1970’s)

Can	I	reproduce	F&H	result	for	NPol?	Can	I	improve	it?	

1.	Es0mate	with	photonuclear	sum	rules	(Berman-Fultz,	RMP	47	(1975)	713)	+	nuclear	size:		
				NPol(1S)	=	20	eV	(Z/10)^3	(A/20)^(4/3)	—	OK(?)	accuracy?????????	50-100%	—	FH	claim	10%	

2.	In	light	µ-atoms	nucleon	pol	not	negligible:	rescale	the	known	µH	result	
				nPol(2S	µH)	=	13	µeV	—>	nPol(1S	µNe-20)	=	13	µeV	 	~	3	eV	

Importantly:	what	NPol	is	included	in	e-scaxering?	How	is	it	calculated?	Guess:	not	at	all

× 23 × 103 × 20 × (μNe/μH)4
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NPol	(µ-atoms)	—	 	(beta	decays)	—	nuclear	 -box	(neutron	skin):	same	physics	

Coulomb	correc0ons	extremely	important	(exact	shape	of	charge	distribu0on)	

Nuclear	radii	extracted	from	µ	atoms	and	from	e-scaxering	—	compa0ble?		
Correc0ons	applied	to	scaxering	data:	Coulomb	correc0ons,	NPol,	RC,	…	—	compa0ble?	

Vertex	correc0ons:	for	FF	o`en	discussed	away	in	“FF	defini0on”	bulked	with	SE,…	
But	for	beta	decays	are	crucial	to	cancel	UV	div	of	 -box	Sirlin	Rev.Mod.Phys.	50	(1978)	905	
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The only piece that depends on physics at hadronic scale is the V*A term in the WJ�box 
diagram:

Its contribution to Rec (“m.d”: model-dependent) is:

where the forward Compton amplitude is defined as:

q q

Radiative Corrections: Modern Treatment
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Contributions of these diagrams are either exactly known (by CA) or depend only on UV 
physics which can be computed perturbatively
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Radiative Corrections: Modern Treatment

Recently:	vertex	correc0on	to	gA	w.r.t.	gV	may	be	~1-2%	(usually	expected	0.01%)	
Cirigliano	et	al,	Phys.Rev.LeD.	129	(2022)	12,	121801	

Another	example	of	large	vertex	correc0on:	anapole	moment	

Renormalizes	the	axial	FF:	major	problem	for	P2@MESA;	
NC	axial	FF	 	CC	axial	FF	
Long-0me	object	of	desire	in	APV	(nuclear	AM	~	 	-	Bouchiats)

≠
Z3
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