The Role of Precise Nuclear Radii in Precision Tests of SM with Nuclei

Misha Gorshteyn
Johannes Gutenberg-Universität Mainz

Based on:
Chien-Yeah Seng, MG
2208.03037
2304.03800
2212.02681
2211.10214

With
Chien-Yeah Seng
Petr Navratil
Michael Gennari
Mehdi Drissi
Michela Sestu
Giovanni Carotenuto
Nicola Cargioli
Matteo Cadeddu
Hubert Spiesberger

PREN 2023 \& μ ASTI workshop, Mainz, 26-30 June 2023

Outline

Precision tests of the Standard Model with β-decays
Precise $V_{u d}$ from superallowed decays
Status of isospin-symmetry breaking correction δ_{C}
Nuclear charge radii constrain δ_{C}
Summary, Caveats \& Outlook

Precision tests of the Standard Model with β-decays

Universality, Completeness \& CKM unitarity

Fermi constant from muon lifetime: $G_{F}=G_{\mu}=1.1663788(7) \times 10^{-5} \mathrm{GeV}^{-2}$

$$
\mathscr{L}_{e \mu}=-2 \sqrt{2} G_{\mu} \bar{e} \gamma_{\alpha} \nu_{e L} \cdot \bar{\nu}_{\mu L}^{-} \gamma^{\alpha} \mu+\mathrm{h} . \mathrm{c} .
$$

SM: same W-coupling to LH leptons and quarks, but strength shared between 3 generations

$$
\mathscr{L}_{e q}=-\sqrt{2} G_{\mu} \bar{e} \gamma_{\mu} \nu_{e L} \cdot \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) V_{i j} D_{j}+\mathrm{h.c} . \quad \begin{aligned}
& U_{i}=(u, c, t)^{T} \\
& D_{j}=(d, s, b)^{T}
\end{aligned}
$$

Universality + Completeness of SM (only 3 gen's) \rightarrow unitary CKM matrix $V^{\dagger} V=1$ Top-row unitarity condition: $\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2}=1$

At low energy accessible via β-decas of hadrons, e.g. $n \rightarrow p e \bar{\nu}$

$$
\mathscr{L}_{e \nu p n}=-\sqrt{2} G_{\mu} V_{u d} \bar{e} \gamma_{\mu} \nu_{L} \cdot \bar{p} \gamma^{\mu}\left(g_{V}^{p n}-g_{A}^{p n} \gamma_{5}\right) n+\text { h.c. }
$$

Conserved vector current: $g_{V}^{p n}=1+O\left(\left(m_{d}-m_{u}\right)^{2}\right)$ but $g_{A}^{u d}=1 \rightarrow g_{A}^{p n} \approx 1.276$

Precise measurements of $g_{V} \rightarrow>$ precision tests of EW sector of SM (currently 0.02\%) Get rid of $g_{A} \rightarrow$ superallowed nuclear decays between states $J^{P}=0^{+}$

Top-row CKM unitarity deficit

Inconsistencies between measurements of $V_{u d}$ and $V_{u s}$ and SM predictions Most precise $V_{u d}$ from superallowed nuclear decays

Status of $V_{u d}$

$0^{+-} 0^{+}$nuclear decays: long-standing champion

$$
\left|V_{u d}\right|^{2}=\frac{2984.43 s}{\mathscr{F} t\left(1+\Delta_{R}^{V}\right)} \quad\left|V_{u d}^{0^{+}-0^{+}}\right|=0.97370(1)_{\text {exp, nucl }}(3)_{N S}(1)_{R C}[3]_{\text {total }}
$$

Neutron decay: discrepancies in lifetime τ_{n} and axial charge g_{A}; competitive!

$$
\left|V_{u d}\right|^{2}=\frac{5024.7 \mathrm{~s}}{\tau_{n}\left(1+3 g_{A}^{2}\right)\left(1+\Delta_{R}\right)}
$$

Single best measurements only

$$
\begin{aligned}
& \left|V_{u d}^{\text {free } \mathrm{n}}\right|=0.9733(2)_{\tau_{n}}(3)_{g_{A}}(1)_{R C}[4]_{\text {total }} \\
& \text { PDG average } \\
& \left|V_{u d}^{\text {free } \mathrm{n}}\right|=0.9733(3)_{\tau_{n}}(8)_{g_{A}}(1)_{R C}[9]_{\text {total }}
\end{aligned}
$$

RC not a limiting factor: more precise experiments a-coming

Pion decay $\pi^{+} \rightarrow \pi^{0} e^{+} \nu_{e}$: theoretically cleanest, experimentally tough

$$
\left|V_{u d}\right|^{2}=\frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi \ell 3}}{0.3988(23) \mathrm{s}^{-1}}
$$

$$
\left|V_{u d}^{\pi \ell 3}\right|=0.9739(27)_{\text {exp }}(1)_{R C}
$$

Future exp: 1 o.o.m. (PIONEER)

Status of $\mathrm{V}_{\text {ud }}$

Major reduction of uncertainties in the past few years

Theory

Universal correction Δ_{R}^{V} to free and bound neutron decay Identified 40 years ago as the bottleneck for precision improvement Novel approach dispersion relations + experimental data + lattice QCD

C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804;
$\Delta_{R}^{V}=0.02467(22)$
Factor 2 improvement

C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001;
A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008

C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301;
K. Shiells, P. Blunden, W. Melnitchouk, Phys. Rev. D 104 (2021) 033003;
L. Hayen, Phys. Rev. D 103 (2021) 113001

RC to semileptonic pion decay

$$
\delta=0.0332(3)
$$

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng, Phys.Rev.Lett. 124 (2020) 19, 192002

Factor 3 improvement

Experiment

$$
g_{A}=-1.27641(56)
$$

Factor 4 improvement

$$
\begin{aligned}
& g_{A}=-1.2677(28) \\
& \tau_{n}=877.75(28)_{-12}^{+16}
\end{aligned}
$$

Factor 2-3 improvement
aSPECT M. Beck et al, Phys. Rev. C101 (2020) 5, 055506

UCN τ F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501

Precise $V_{u d}$ from superallowed nuclear decays and BSM searches

Precise $V_{u d}$ from superallowed decays

Superallowed $0^{+}-0^{+}$nuclear decays:

- only conserved vector current
- many decays
- all rates equal modulo phase space

Experiment: \mathbf{f} - phase space (Q value) and \mathbf{t} - partial half-life ($\mathrm{t}_{1 / 2}$, branching ratio)

- 8 cases with ft-values measured to <0.05\% precision; 6 more cases with $0.05-0.3 \%$ precision.
- ~220 individual measurements with compatible precision

ft values: same within ~2\% but not exactly! Reason: SU(2) slightly broken
a. RC (e.m. interaction does not conserve isospin)
b. Nuclear WF are not SU(2) symmetric (proton and neutron distribution not the same)

Precise $V_{u d}$ from superallowed decays

To obtain Vud —> absorb all decay-specific corrections into universal Ft

Average of 14 decays - 0.02\%

$$
\overline{\mathcal{F t}}=3072.1 \pm 0.7
$$

Hardy, Towner 1973-2020

Status of isospin-breaking correction δ_{C}

Isospin symmetry breaking in superallowed β-decay

Tree-level Fermi matrix element

$$
M_{F}=\langle f| \tau^{+}|i\rangle
$$

τ^{+}- Isospin operator
$|i\rangle,|f\rangle$ - members of $\mathrm{T}=1$ isotriplet
If isospin symmetry were exact, $M_{F} \rightarrow M_{0}=\sqrt{2}$
Isospin symmetry is broken in nuclear states (e.g. Coulomb, nucleon mass difference, ...)

In presence of isospin symmetry breaking (ISB):
$\left|M_{F}\right|^{2}=\left|M_{0}\right|^{2}\left(1-\delta_{C}\right)$
ISB correction is crucial for $V_{u d}$ extraction
HT : shell model with phenomenological Woods-Saxon potential locally adjusted to:

- Masses of the isotriplet T=1, 0^{+}(IMME)
- Neutron and proton separation energies
- Known charge radii of stable isotopes

TABLE X. Corrections $\delta_{R}^{\prime}, \delta_{\mathrm{NS}}$, and δ_{C} that are applied to experimental $f t$ values to obtain $\mathcal{F} t$ values.

Parent nucleus	$\begin{array}{r} \delta_{R}^{\prime} \\ (\%) \\ (\%) \end{array}$	$\begin{aligned} & \delta_{\mathrm{NS}} \\ & (\%) \end{aligned}$	$\begin{aligned} & \delta_{C 1} \\ & (\%) \end{aligned}$	$\begin{gathered} \delta_{C 2} \\ (\%) \end{gathered}$	$\begin{gathered} \delta_{C} \\ (\%) \end{gathered}$
$T_{z}=-1$					
${ }^{10} \mathrm{C}$	1.679	-0.345(35)	0.010(10)	0.165(15)	0.175(18)
${ }^{14} \mathrm{O}$	1.543	-0.245(50)	$0.055(20)$	0.275(15)	0.330(25)
${ }^{18} \mathrm{Ne}$	1.506	-0.290(35)	$0.155(30)$	0.405(25)	0.560(39)
${ }^{22} \mathrm{Mg}$	1.466	-0.225(20)	0.010(10)	0.370(20)	0.380(22)
${ }^{26} \mathrm{Si}$	1.439	-0.215(20)	0.030(10)	0.405(25)	0.435(27)
${ }^{30} \mathrm{~S}$	1.423	-0.185(15)	$0.155(20)$	0.700(20)	0.855(28)
${ }^{34} \mathrm{Ar}$	1.412	-0.180(15)	0.030(10)	0.665(55)	0.695(56)
${ }^{38} \mathrm{Ca}$	1.414	-0.175(15)	$0.020(10)$	$0.745(70)$	0.765(71)
${ }^{42} \mathrm{Ti}$	1.427	-0.235(20)	$0.105(20)$	0.835(75)	0.940(78)
$T_{z}=0$					
${ }^{26 m} \mathrm{Al}$	1.478	0.005(20)	0.030(10)	0.280(15)	0.310(18)
${ }^{34} \mathrm{Cl}$	1.443	-0.085(15)	$0.100(10)$	$0.550(45)$	0.650(46)
${ }^{38 m} \mathrm{~K}$	1.440	-0.100(15)	$0.105(20)$	$0.565(50)$	0.670(54)
${ }^{42} \mathrm{Sc}$	1.453	0.035(20)	0.020 (10)	0.645(55)	0.665(56)
${ }^{46} \mathrm{~V}$	1.445	-0.035(10)	0.075(30)	0.545(55)	0.620(63)
${ }^{50} \mathrm{Mn}$	1.444	-0.040(10)	$0.035(20)$	0.610(50)	0.645(54)
${ }^{54} \mathrm{Co}$	1.443	-0.035(10)	0.050(30)	0.720(60)	0.770(67)
${ }^{62} \mathrm{Ga}$	1.459	-0.045(20)	0.275 (55)	1.20(20)	1.48(21)
${ }^{66} \mathrm{As}$	1.468	-0.060(20)	$0.195(45)$	1.35(40)	1.55(40)
${ }^{70} \mathrm{Br}$	1.486	-0.085(25)	$0.445(40)$	1.25(25)	1.70(25)
${ }^{74} \mathrm{Rb}$	1.499	-0.075(30)	$0.115(60)$	1.50(26)	1.62(27)

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

$$
\delta_{C} \sim 0.17 \%-1.6 \%!
$$

ISB or scalar BSM interactions?

Once all corrections are included:
CVC \rightarrow Ft constant
δ_{C} particularly important for alignment!

Fit to 14 transitions:
Ft constant within 0.02\% if using SM-WS

If BSM scalar currents present: "Fierz interference" b_{F}

$$
\mathscr{F t}{ }^{S M} \rightarrow \mathscr{F} t^{S M}\left(1+b_{F} \frac{m_{e}}{\left\langle E_{e}\right\rangle}\right)
$$

$Q_{E C} \uparrow$ with Z \rightarrow effect of $b_{F} \downarrow$ with Z Introduces nonlinearity in the Ft plot $b_{F}=-0.0028(26) \sim$ consistent with 0

Nuclear model comparison for δ_{C}

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

$\mathrm{HT}: \chi^{2}$ as criterion to prefer SM-WS; V_{ud} and limits on BSM strongly depend on nuclear model
Nuclear community embarked on ab-initio δ_{C} calculations (NCSM, GFMC, CC, IMSRG) Especially interesting for light nuclei accessible to different techniques!

Precise nuclear EW radii constrain δ_{C}

Phenomenological constraints on δ_{C} ?

Idea: δ_{C} dominated by Coulomb repulsion between protons (hence C)
Coulomb interaction generates both δ_{C} and ISB combinations of nuclear radii
Miller, Schwenk 0805.0603; 0910.2790; Auerbach 0811.4742; 2101.06199;
Seng, MG 2208.03037; 2304.03800; 2212.02681

Nuclear Hamiltonian: $H=H_{0}+V_{\text {ISB }} \approx H_{0}+V_{C}$

Coulomb potential for uniformly charged sphere $\quad V_{C} \approx-\frac{Z e^{2}}{4 \pi R_{C}^{3}} \sum_{i=1}^{A}\left(\frac{1}{2} r_{i}^{2}-\frac{3}{2} R_{C}^{2}\right)\left(\frac{1}{2}-\hat{T}_{z}(i)\right)$
ISB due to IV monopole, $V_{\text {ISB }} \approx \frac{Z e^{2}}{8 \pi R^{3}} \sum_{i} r_{i}^{2} \hat{T}_{z}(i)=\frac{Z e^{2}}{8 \pi R^{3}} \hat{M}_{0}^{(1)}$

Same operator generates nuclear radii

$$
R_{p / n, \phi}=\sqrt{\frac{1}{X}\langle\phi| \sum_{i=1}^{A} r_{i}^{2}\left(\frac{1}{2} \mp \hat{T}_{z}(i)\right)|\phi\rangle}
$$

Phenomenological constraints on δ_{C} ?

$$
\xrightarrow{0^{+}, T=1, T_{z}=-1} \xrightarrow{0^{+}, T=1, T_{z}=0} \xrightarrow{\text { E.g. }{ }_{22}^{42} \mathrm{Ti} \rightarrow{ }_{21}^{42} \mathrm{Sc} \rightarrow{ }_{20}^{42} \mathrm{Ca}, T_{z}=1}
$$

ISB-sensitive combinations of radii: Wigner-Eckart theorem

$$
\Delta M_{A}^{(1)} \equiv\langle f| M_{+1}^{(1)}|i\rangle+\langle f| M_{0}^{(1)}|f\rangle
$$

$$
\Delta M_{B}^{(1)} \equiv \frac{1}{2}\left(Z_{1} R_{p, 1}^{2}+Z_{-1} R_{p,-1}^{2}\right)-Z_{0} R_{p, 0}^{2}
$$

Charge radif from atomic spectra

 and electron scattering

$$
F_{C h}\left(Q^{2}\right)=1-R_{C h}^{2} Q^{2} / 6+\ldots
$$

Since $\mathrm{N} \neq \mathrm{Z}$ for $T_{z}= \pm 1$ factors $Z_{ \pm 1,0}$ remove the symmetry energy to isolate ISB (Usually PVES \rightarrow neutron skins \rightarrow symmetry energy \rightarrow > nuclear EOS \rightarrow nuclear astrophysics)

Electroweak radii constrain ISB in superallowed β-decay

Employ the correct isospin formalism by Schwenk, Miller 0805.0603; 0910.2790
δ_{C} and radii expressed via the same set of matrix elements

$$
\begin{aligned}
\delta_{\mathrm{C}}= & \frac{1}{3} \sum_{a} \frac{|\langle a ; 0\|V\| g ; 1\rangle|^{2}}{\left(E_{a, 0}-E_{g, 1}\right)^{2}}+\frac{1}{2} \sum_{a \neq g} \frac{|\langle a ; 1|| V| | g ; 1\rangle\left.\right|^{2}}{\left(E_{a, 1}-E_{g, 1}\right)^{2}}-\frac{5}{6} \sum_{a} \frac{|\langle a ; 2\|V\| g ; 1\rangle|^{2}}{\left(E_{a, 2}-E_{g, 1}\right)^{2}}+\mathcal{O}\left(V^{3}\right) \\
& \Delta M_{A}^{(1)}=\frac{1}{3} \Gamma_{0}+\frac{1}{2} \Gamma_{1}+\frac{7}{6} \Gamma_{2} \quad \Gamma_{T}=-\sum_{a} \frac{|\langle a ; T\|V\| g ; 1\rangle|^{2}}{E_{a, T}-E_{g, 1}} \\
& \Delta M_{B}^{(1)}=\frac{2}{3} \Gamma_{0}-\Gamma_{1}+\frac{1}{3} \Gamma_{2}
\end{aligned}
$$

Different scaling with ISB: $\delta_{C} \sim \mathrm{ISB}^{2}, \Delta M_{A}^{(1)} \sim \mathrm{ISB}^{1}, \Delta M_{B}^{(1)} \sim \mathrm{ISB}^{3}$

Compare to IMME (masses across an isomultiplet)

$$
\begin{aligned}
& E\left(a, T, T_{z}\right)=\mathrm{a}(a, T)+\mathrm{b}(a, T) T_{z}+\mathrm{c}(a, T) T_{z}^{2} \\
& \mathrm{~b} \sim\left\langle a ; T, T_{z}\right| V^{(1)}\left|a ; T, T_{z}\right\rangle, \quad \mathrm{c} \sim\left\langle a ; T, T_{z}\right| V^{(2)}\left|a ; T, T_{z}\right\rangle
\end{aligned}
$$

Unlike $\delta_{C}, \Delta M_{A, B}^{(1)}$ - IMME only depends on diagonal m.e. - indirect constraint

Electroweak radii constrain ISB in superallowed β-decay

For numerical analysis: lowest isovector monopole resonance dominates One ISB matrix element, one energy splitting

Model for $\delta_{C} \rightarrow$ prediction for $\Delta M_{A, B}^{(1)}$

Transitions	$\delta_{\text {C }}(\%)$					$\Delta M_{A}^{(1)}\left(\mathrm{fm}^{2}\right)$					$\Delta M_{B}^{(1)}\left(\mathrm{fm}^{2}\right)$				
	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro
${ }^{26 m} \mathrm{Al} \rightarrow{ }^{26} \mathrm{Mg}$	0.310	0.329	0.30	0.139	0.08	-2.2	-2.3	-2.1	-1.0	-0.6	-0.12	-0.12	-0.11	-0.05	-0.03
${ }^{34} \mathrm{Cl} \rightarrow{ }^{34} \mathrm{~S}$	0.613	0.75	0.57	0.234	0.13	-5.0	-6.1	-4.6	-1.9	-1.0	-0.17	-0.21	-0.16	-0.06	-0.04
${ }^{38 m} \mathrm{~K} \rightarrow{ }^{38} \mathrm{Ar}$	0.628	1.7	0.59	0.278	0.15	-5.4	-14.6	-5.1	-2.4	-1.3	-0.15	-0.42	-0.15	-0.07	-0.04
${ }^{42} \mathrm{Sc} \rightarrow{ }^{42} \mathrm{Ca}$	0.690	0.77	0.42	0.333	0.18	-6.2	-6.9	-3.8	-3.0	-1.6	-0.15	-0.17	-0.09	-0.07	-0.04
${ }^{46} \mathrm{~V} \rightarrow{ }^{46} \mathrm{Ti}$	0.620	0.563	0.38	1	0.21	-5.8	-5.3	-3.6	1	-2.0	-0.12	-0.11	-0.08	1	-0.04
${ }^{50} \mathrm{Mn} \rightarrow{ }^{50} \mathrm{Cr}$	0.660	0.476	0.35	1	0.24	-6.4	-4.6	-3.4	1	-2.4	-0.12	-0.09	-0.06	1	-0.04
${ }^{54} \mathrm{Co} \rightarrow{ }^{54} \mathrm{Fe}$	0.770	0.586	0.44	0.319	0.28	-7.8	-5.9	-4.4	-3.2	-2.8	-0.13	-0.10	-0.07	-0.05	-0.05

Can discriminate models if independent information on nuclear radii is available ΔM_{A} from measured radii $\longrightarrow>$ test models for δ_{C}

Charge radii across superallowed isotriplets?
Some are known (but difficult - unstable isotopes, some g.s. are not 0^{+})
Typically, precision is not enough to make a quantitative statement - need to improve!

Precise nuclear radii beyond δ_{C}

Impact of atomic spectra and nuclear radii?

We said that ft-values are experimental - but not quite!
A few theory ingredients are absorbed: Coulomb distortions, nuclear form factors, atomic screening...
Statistical rate function: $f \approx m_{e}^{-5} \int_{m_{e}}^{E_{0}(Z)}\left|\vec{p}_{e}\right| E_{e}\left(E_{0}-E_{e}\right)^{2} F\left(Z, E_{e}\right) S\left(Z, E_{e}\right) C\left(Z, E_{e}\right) \ldots d E_{e}$

- Fermi Function $F\left(Z, E_{e}\right)$: point Coulomb, finite size, ... (pointlike CC transition!)
- Weak CC form factor effect $C\left(Z, E_{e}\right)$: integrating over the neutrino momentum (tree-level)
- Shape factor $S\left(Z, E_{e}\right)$: overlap of CC and charge FF

Fermi function: analytical point-Coulomb $F_{0}\left(Z, E_{e}\right)$ - regularized at the nuclear radius (def.!)
\rightarrow Uniform sphere of radius $R=\sqrt{5 / 3} R_{C h}$, can evaluate at origin, finite at origin
\rightarrow Correct for the finite surface thickness: employ e.g. 2pF charge density
\rightarrow Open question: how important further correcting the charge density (sum of Gaussians?)
Work ongoing with
Chien Yeah Seng (INT/FRIB), Giovanni Carotenuto, Michela Sestu, Matteo Cadeddu, Nicola Cargioli (INFN Cagliari)

Charge radii + isospin symmetry $->$ CC weak radius

Integrating over neutrino momenta $=$ integrating over q^{2}

$$
f t \equiv f t\left(q^{2}=0\right) \int_{\min }^{\max } \frac{F_{C W}\left(q^{2}\right) d q^{2}}{q_{\max }^{2}-q_{\min }^{2}}
$$

Usual approach (Behrens \& Bühring): assume $F_{C W} \approx F_{C h}^{\text {daughter }} \rightarrow R_{C W}=R_{C h, 1}$

But $R_{C W}$ can be expressed via charge radii assuming approximate isospin symmetry

$$
R_{\mathrm{CW}}^{2}=R_{\mathrm{Ch}, 1}^{2}+Z_{0}\left(R_{\mathrm{Ch}, 0}^{2}-R_{\mathrm{Ch}, 1}^{2}\right)=R_{\mathrm{Ch}, 1}^{2}+\frac{Z_{-1}}{2}\left(R_{\mathrm{Ch},-1}^{2}-R_{\mathrm{Ch}, 1}^{2}\right)
$$

Charge radii + isospin symmetry $->$ CC weak radius

A	$R_{\text {Ch,-1 }}(\mathrm{fm})$	$R_{\text {Ch, } 0}(\mathrm{fm})$	$R_{\text {Ch, } 1}(\mathrm{fm})$	$R_{\text {Ch, } 1}^{2}\left(\mathrm{fm}^{2}\right)$	$R_{\text {CW }}^{2}\left(\mathrm{fm}^{2}\right)$
10	${ }_{6}^{10} \mathrm{C}$	${ }_{5}^{10} \mathrm{~B}(\mathrm{ex})$	${ }_{4}^{10} \mathrm{Be}: 2.3550(170){ }^{\text {a }}$	5.546 (80)	N/A
14	${ }_{8}^{14} \mathrm{O}$	${ }_{7}^{14} \mathrm{~N}(\mathrm{ex})$	${ }_{6}^{14} \mathrm{C}: 2.5025(87)^{\text {a }}$	6.263(44)	N/A
18	${ }_{10}^{18} \mathrm{Ne}: 2.9714(76)^{\mathrm{a}}$	${ }_{9}^{18} \mathrm{~F}$ (ex)	${ }_{8}^{18} \mathrm{O}: 2.7726(56)^{\text {a }}$	7.687(31)	13.40(53)
22	${ }_{12}^{22} \mathrm{Mg}: 3.0691(89){ }^{\text {b }}$	${ }_{11}^{22} \mathrm{Na}(\mathrm{ex})$	${ }_{10}^{22} \mathrm{Ne}: 2.9525(40)^{\text {a }}$	8.717(24)	12.93(71)
26	${ }_{14}^{26} \mathrm{Si}$	${ }_{13}^{26 m} \mathrm{Al}$	${ }_{12}^{26} \mathrm{Mg}: 3.0337(18)^{\text {a }}$	$9.203(11)$	N/A
30	${ }_{16}^{30} \mathrm{~S}$	${ }_{15}^{30} \mathrm{P}(\mathrm{ex})$	${ }_{14}^{30}$ Si: $3.1336(40)^{\text {a }}$	9.819(25)	N/A
34	${ }_{18}^{34}$ Ar: $3.3654(40)^{\text {a }}$	${ }_{17}^{34} \mathrm{Cl}$	${ }_{16}^{34} \mathrm{~S}: 3.2847(21)^{\mathrm{a}}$	10.789(14)	15.62(54)
38	${ }_{20}^{38} \mathrm{Ca}: 3.467(1)^{\text {c }}$	${ }_{19}^{38 m} \mathrm{~K}: 3.437(4)^{\text {d }}$	${ }_{18}^{38}$ Ar: $3.4028(19)^{\text {a }}$	11.579(13)	15.99(28)
42	${ }_{22}^{42} \mathrm{Ti}$	${ }_{21}^{42} \mathrm{Sc}$ c $3.5702(238){ }^{\text {a }}$	${ }_{20}^{42} \mathrm{Ca}: 3.5081(21)^{\text {a }}$	12.307(15)	21.5(3.6)
46	${ }_{24}^{46} \mathrm{Cr}$	${ }_{23}^{46} \mathrm{~V}$	${ }_{22}^{46}$ Ti: $3.6070(22)^{\text {a }}$	13.010(16)	N/A
50	${ }_{26}^{50} \mathrm{Fe}$	${ }_{25}^{50} \mathrm{Mn}: 3.7120(196){ }^{\text {a }}$	${ }_{24}^{50} \mathrm{Cr}: 3.6588(65)^{\text {a }}$	13.387(48)	23.2(3.8)
54	${ }_{28}^{54} \mathrm{Ni}: 3.738(4)^{\text {e }}$	${ }_{27}^{54} \mathrm{Co}$	${ }_{26}^{54} \mathrm{Fe}: 3.6933(19)^{\text {a }}$	13.640(14)	18.29(92)
62	${ }_{32}^{62} \mathrm{Ge}$	${ }_{31}^{62} \mathrm{Ga}$	${ }_{30}^{62} \mathrm{Zn}: 3.9031(69)^{\text {b }}$	15.234(54)	N/A
66	${ }_{34}^{66} \mathrm{Se}$	${ }_{33}^{66} \mathrm{As}$	${ }_{32}^{66} \mathrm{Ge}$	N/A	N/A
70	${ }_{36}^{70} \mathrm{Kr}$	${ }_{35}^{70} \mathrm{Br}$	${ }_{34}^{70} \mathrm{Se}$	N/A	N/A
74	${ }_{38}^{74} \mathrm{Sr}$	${ }_{37}^{74} \mathrm{Rb}: 4.1935(172)^{\text {b }}$	${ }_{36}^{74} \mathrm{Kr}: 4.1870(41)^{\text {a }}$	17.531(34)	$19.5(5.5)$

Effect of large CW radii on ft and $V_{u d}$

Total decay rate $\sim f t\left|V_{u d}\right|^{2} \sim\left|V_{u d}\right|^{2} \int_{0}^{Q_{E C}^{2}} d Q^{2} F_{C W}\left(Q^{2}\right)$

Only total rate measured - if radius underestimated, $V_{u d}$ will come out smaller

Systematic shift by up to 0.1% to some ft values —> may resolve CKM deficit? Estimated from isospin symmetry - but isospin symmetry broken, how credible? Theory strategy: compute all radii AND δ_{C} - check pattern, compare to available data, motivate exp.

Shape factor: ~ Friar radius for beta decay

Solution to Dirac equation with nuclear charge/weak densities
Bulk result due to charge and charged-weak radii (and beyond)
TPE approximation won't do - full Dirac eq. solution

$C(Z, W)=\sum_{k_{e}, k_{\nu}, K} \lambda_{k_{e}}\left\{M_{K}^{2}\left(k_{e}, k_{\nu}\right)+m_{K}^{2}\left(k_{e}, k_{\nu}\right)-\frac{2 \mu_{k_{e}} \gamma_{k_{e}}}{k_{e} W} M_{K}\left(k_{e}, k_{\nu}\right) m_{K}\left(k_{e}, k_{\nu}\right)\right\}$

Dirac Coulomb radial functions

$$
\lambda_{k_{e}}=\frac{\alpha_{-k_{e}}^{2}+\alpha_{+k_{e}}^{2}}{\alpha_{-1}^{2}+\alpha_{+1}^{2}} \quad \mu_{k_{e}}=\frac{\alpha_{-k_{e}}^{2}-\alpha_{+k_{e}}^{2}}{\alpha_{-k_{e}}^{2}+\alpha_{+k_{e}}^{2}} \frac{k_{e} W}{\gamma_{k_{e}}}
$$

$\mathrm{M}, \mathrm{m} \rightarrow>$ convolutions of electron radial fn with nuclear FF
Work ongoing with
Chien Yeah Seng (INT/FRIB), Giovanni Carotenuto, Michela Sestu, Matteo Cadeddu, Nicola Cargioli (INFN Cagliari)

Plan: update the ft-values tables - uncertainties!! (nuclear charge radii, FF shape)

Summary, Caveats \& Outlook

Summary, Caveats and Outlook

With improved Δ_{R}^{V} : for precise $V_{u d}<-$ precise $\mathscr{F} t<-$ precise ft + precise $\delta_{C}, \delta_{N S}$
Precise nuclear radii are crucial ingredients in ft-values and δ_{C}
For a T=1 triplet with $T_{z}=(-1,0,1)$: complete set of 8 radii $R_{C h}^{(-1,0,1)}, R_{N W}^{(-1,0,1)}, R_{C W}^{(-1,0),(0,1)}$
All 8 radii $+\delta_{C}$ are accessible for theory calculation!
For robust uncertainty: motivate experiment $-R_{C h}^{(-1,0,1)}$ and $R_{N W}^{(1)}$ for stable daughters
Most precise charge radii from μ-atoms; radii of unstable isotopes from isotope shifts
NC radius - PV electron scattering from stable daughter (e.g. Ca-42 at MESA: Ca-48 planned)
Feasibility study for PVES on C-12: sub-\% measurement of weak charge and radius
O. Koschii et al, Phys.Rev.C 102 (2020) 2, 022501

Work ongoing with
Nicola Cargioli, Matteo Cadeddu, Hubert Spiesberger, Jorge Piekarewicz, Xavi Roca-Maza

Summary, Caveats and Outlook

For all this: precise charge radii are a prerequisite!
Where do we take the charge radii from? - Usually from some tables, e.g. Angeli-Marinova or Fricke-Heilig

A\&M do not give much ingredients but have the smallest uncertainties (??)
F\&H do give ingredients in detail but credibility of nuclear polarizability??
Example: Ne-20 - NPol = 19(2)eV - from Rinker \& Späth (1970's)

Isotope	$\begin{gathered} \boldsymbol{E}_{\text {exp. }} . \\ {[\mathrm{keV}]} \end{gathered}$	$E_{\text {theo }}$ [keV]	NPol [keV]	$\begin{gathered} \mathrm{c} \\ {[\mathrm{fm}]} \end{gathered}$	$\begin{gathered} \left\langle r^{2}\right\rangle_{\text {modet }}^{1 / 2} \\ {[\mathrm{fm}]} \end{gathered}$	$\begin{gathered} \alpha \\ {[1 / \mathrm{fm}]} \end{gathered}$	k	$\begin{gathered} C_{x} \\ {[\mathrm{am} / \mathrm{eV}]} \end{gathered}$	$\begin{aligned} & \boldsymbol{R}_{\boldsymbol{h \alpha}}^{\mu} \\ & {[\mathrm{fm}]} \end{aligned}$	Ref.
${ }^{20} \mathrm{Ne}$	$\begin{array}{r} 207.282 \\ 5 \end{array}$	207.282	0.019	$\begin{array}{r} 2.9589 \\ 24 \end{array}$	3.006	0.0329	2.0445	-0.516	$\begin{aligned} & 3.8656 \\ & (26 ; 33) \end{aligned}$	[Fr92]

Can I reproduce F\&H result for NPol? Can I improve it?

1. Estimate with photonuclear sum rules (Berman-Fultz, RMP 47 (1975) 713) + nuclear size: $\mathrm{NPol}(1 \mathrm{~S})=20 \mathrm{eV}(\mathrm{Z} / 10)^{\wedge} 3(\mathrm{~A} / 20)^{\wedge}(4 / 3)-\mathrm{OK}(?)$ accuracy????????? 50-100\% - FH claim 10%
2. In light μ-atoms nucleon pol not negligible: rescale the known $\mu \mathrm{H}$ result $\mathrm{nPol}(2 \mathrm{~S} \mu \mathrm{H})=13 \mu \mathrm{eV} \rightarrow \mathrm{nPol}(1 \mathrm{~S} \mu \mathrm{Ne}-20)=13 \mu \mathrm{eV} \times 2^{3} \times 10^{3} \times 20 \times\left(\mu_{N e} / \mu_{H}\right)^{4} \sim 3 \mathrm{eV}$

Importantly: what NPol is included in e-scattering? How is it calculated? Guess: not at all

Summary, Caveats and Outlook

NPol (μ-atoms) $-\delta_{N S}$ (beta decays) - nuclear γZ-box (neutron skin): same physics
Coulomb corrections extremely important (exact shape of charge distribution)
Nuclear radii extracted from μ atoms and from e-scattering - compatible?
Corrections applied to scattering data: Coulomb corrections, NPol, RC, ... - compatible?
Vertex corrections: for FF often discussed away in "FF definition" bulked with SE,...
But for beta decays are crucial to cancel UV div of γW-box Sirlin Rev.Mod.Phys. 50 (1978) 905

Recently: vertex correction to gA w.r.t. gV may be ~1-2\% (usually expected 0.01\%) Cirigliano et al, Phys.Rev.Lett. 129 (2022) 12, 121801

Another example of large vertex correction: anapole moment
Renormalizes the axial FF: major problem for P2@MESA; NC axial FF \neq CC axial FF
Long-time object of desire in APV (nuclear AM $\sim Z^{3}$ - Bouchiats)

Thank you!

