







# The Role of Precise Nuclear Radii in Precision Tests of SM with Nuclei

### Misha Gorshteyn

Johannes Gutenberg-Universität Mainz

Based on: Chien-Yeah Seng, MG 2208.03037 2304.03800 2212.02681 2211.10214

## With Chien-Yeah Seng

Petr Navratil Michael Gennari Mehdi Drissi Michela Sestu Giovanni Carotenuto Nicola Cargioli Matteo Cadeddu Hubert Spiesberger

PREN 2023 & µASTI workshop, Mainz, 26-30 June 2023

### Outline

Precision tests of the Standard Model with eta-decays

Precise  $V_{ud}$  from superallowed decays

Status of isospin-symmetry breaking correction  $\delta_C$ 

Nuclear charge radii constrain  $\delta_C$ 

Summary, Caveats & Outlook

# Precision tests of the Standard Model with $\beta$ -decays

### Universality, Completeness & CKM unitarity

Fermi constant from muon lifetime:  $G_F = G_\mu = 1.1663788(7) \times 10^{-5} GeV^{-2}$ 

$$\mathscr{L}_{e\mu} = -2\sqrt{2}G_{\mu}\bar{e}\gamma_{\alpha}\nu_{eL}\cdot\nu_{\mu L}\gamma^{\alpha}\mu + \mathrm{h.c.}$$

SM: same W-coupling to LH leptons and quarks, but strength shared between 3 generations

$$\mathscr{L}_{eq} = -\sqrt{2}G_{\mu}\bar{e}\gamma_{\mu}\nu_{eL}\cdot\bar{U}_{i}\gamma^{\mu}(1-\gamma_{5})V_{ij}D_{j} + h.c. \qquad U_{i} = (u,c,t)^{T}$$
$$D_{j} = (d,s,b)^{T}$$

Universality + Completeness of SM (only 3 gen's) —> unitary CKM matrix  $V^{\dagger}V = 1$ Top-row unitarity condition:  $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$ 

At low energy accessible via  $\beta$ -decas of hadrons, e.g.  $n \rightarrow p e \bar{\nu}$ 

$$\mathscr{L}_{e\nu pn} = -\sqrt{2}G_{\mu}V_{ud}\bar{e}\gamma_{\mu}\nu_{L}\cdot\bar{p}\gamma^{\mu}(g_{V}^{pn} - g_{A}^{pn}\gamma_{5})n + \text{h.c.}$$

Conserved vector current:  $g_V^{pn} = 1 + O((m_d - m_u)^2)$  but  $g_A^{ud} = 1 \rightarrow g_A^{pn} \approx 1.276$ 

Precise measurements of  $g_V \rightarrow$  precision tests of EW sector of SM (currently 0.02%) Get rid of  $g_A \rightarrow$  superallowed nuclear decays between states  $J^P = 0^+$ 





Inconsistencies between measurements of  $V_{ud}$  and  $V_{us}$  and SM predictions Most precise  $V_{ud}$  from superallowed nuclear decays

#### Status of $V_{ud} \label{eq:Vud}$

0+-0+ nuclear decays: long-standing champion

$$|V_{ud}|^{2} = \frac{2984.43s}{\mathscr{F}t(1+\Delta_{R}^{V})} \qquad |V_{ud}^{0^{+}-0^{+}}| = 0.97370(1)_{exp, nucl}(3)_{NS}(1)_{RC}[3]_{total}$$
  
Nuclear uncertainty x 3

Neutron decay: discrepancies in lifetime  $\tau_n$  and axial charge  $g_A$ ; competitive!

$$|V_{ud}|^2 = \frac{5024.7 \text{ s}}{\tau_n (1 + 3g_A^2)(1 + \Delta_R)}$$

Single best measurements only  

$$|V_{ud}^{\text{free n}}| = 0.9733 (2)_{\tau_n} (3)_{g_A} (1)_{RC} [4]_{total}$$
PDG average  

$$|V_{ud}^{\text{free n}}| = 0.9733 (3)_{\tau_n} (8)_{g_A} (1)_{RC} [9]_{total}$$

RC not a limiting factor: more precise experiments a-coming

Pion decay  $\pi^+ \rightarrow \pi^0 e^+ \nu_e$ : theoretically cleanest, experimentally tough

$$|V_{ud}|^2 = \frac{0.9799}{(1+\delta)} \frac{\Gamma_{\pi\ell3}}{0.3988(23) \,\mathrm{s}^{-1}} \qquad \qquad |V_{ud}^{\pi\ell3}| = 0.9739 \,(27)_{exp} \,(1)_{RC}$$
  
Future exp: 1 o.o.m. (PIONE)

#### Status of $V_{\mathsf{ud}}$

Major reduction of uncertainties in the past few years

#### Theory

Universal correction  $\Delta_R^V$  to free and bound neutron decay Identified 40 years ago as the bottleneck for precision improvement Novel approach dispersion relations + experimental data + lattice QCD

$$\Delta_{R}^{V} = 0.02467(22)$$
  
Factor 2 improvement

RC to semileptonic pion decay

 $\delta = 0.0332(3)$ Factor 3 improvement

#### Experiment

 $g_A = -1.27641(56)$ Factor 4 improvement

 $g_A = -1.2677(28)$ 

 $\tau_n = 877.75(28)^{+16}_{-12}$ Factor 2-3 improvement C-Y Seng et al., Phys.Rev.Lett. 121 (2018) 24, 241804; C-Y Seng, MG, M.J. Ramsey-Musolf, Phys.Rev. D 100 (2019) 1, 013001; A. Czarnecki, B. Marciano, A. Sirlin, Phys.Rev. D 100 (2019) 7, 073008 C-Y Seng, X. Feng, MG, L-C Jin, Phys.Rev. D 101 (2020) 11, 111301; K. Shiells, P. Blunden, W. Melnitchouk, Phys. Rev. D 104 (2021) 033003; L. Hayen, Phys. Rev. D 103 (2021) 113001

X. Feng, MG, L-C Jin, P-X Ma, C-Y Seng, Phys.Rev.Lett. 124 (2020) 19, 192002

PERKEO-III B. Märkisch et al, Phys.Rev.Lett. 122 (2019) 24, 242501

**aSPECT** M. Beck et al, Phys. Rev. C101 (2020) 5, 055506

UCNT F. M. Gonzalez et al. Phys. Rev. Lett. 127 (2021) 162501

# Precise $V_{ud}$ from superallowed nuclear decays and BSM searches

## Precise $V_{ud}$ from superallowed decays

Superallowed 0+-0+ nuclear decays:

- only conserved vector current
- many decays
- all rates equal modulo phase space

Experiment: **f** - phase space (Q value) and **t** - partial half-life ( $t_{1/2}$ , branching ratio)

• 8 cases with *ft*-values measured to <0.05% precision; 6 more cases with 0.05-0.3% precision.

 ~220 individual measurements with compatible precision





ft values: same within ~2% but not exactly! Reason: SU(2) slightly broken

- a. RC (e.m. interaction does not conserve isospin)
- b. Nuclear WF are not SU(2) symmetric(proton and neutron distribution not the same)

## Precise $V_{ud}$ from superallowed decays

To obtain Vud —> absorb all decay-specific corrections into universal Ft



 $\overline{\mathcal{F}t} = 3072.1 \pm 0.7$ 

Hardy, Towner 1973 - 2020

## Status of isospin-breaking correction $\delta_C$

#### Isospin symmetry breaking in superallowed $\beta$ -decay

Tree-level Fermi matrix element

 $M_F = \langle f \, | \, \tau^+ \, | \, i \rangle$ 

 $\tau^+$  — Isospin operator  $|i\rangle$ ,  $|f\rangle$  — members of T=1 isotriplet

If isospin symmetry were exact,  $M_F \rightarrow M_0 = \sqrt{2}$ 

Isospin symmetry is broken in nuclear states (e.g. Coulomb, nucleon mass difference, ...)

In presence of isospin symmetry breaking (ISB):  $|M_F|^2 = |M_0|^2(1 - \delta_C)$ 

ISB correction is crucial for  $V_{ud}$  extraction

HT: shell model with *phenomenological* Woods-Saxon potential locally adjusted to:

- Masses of the isotriplet T=1, 0<sup>+</sup> (IMME)
- Neutron and proton separation energies
- Known charge radii of stable isotopes

TABLE X. Corrections  $\delta'_R$ ,  $\delta_{NS}$ , and  $\delta_C$  that are applied to experimental ft values to obtain  $\mathcal{F}t$  values.

| Parent           | $\delta_R'$ | $\delta_{ m NS}$ | $\delta_{C1}$ | $\delta_{C2}$ | $\delta_C$ |
|------------------|-------------|------------------|---------------|---------------|------------|
| nucleus          | (%)         | (%)              | (%)           | (%)           | (%)        |
| $T_{z} = -1$     |             |                  |               |               |            |
| ${}^{10}C$       | 1.679       | -0.345(35)       | 0.010(10)     | 0.165(15)     | 0.175(18)  |
| <sup>14</sup> O  | 1.543       | -0.245(50)       | 0.055(20)     | 0.275(15)     | 0.330(25)  |
| <sup>18</sup> Ne | 1.506       | -0.290(35)       | 0.155(30)     | 0.405(25)     | 0.560(39)  |
| $^{22}Mg$        | 1.466       | -0.225(20)       | 0.010(10)     | 0.370(20)     | 0.380(22)  |
| <sup>26</sup> Si | 1.439       | -0.215(20)       | 0.030(10)     | 0.405(25)     | 0.435(27)  |
| <sup>30</sup> S  | 1.423       | -0.185(15)       | 0.155(20)     | 0.700(20)     | 0.855(28)  |
| <sup>34</sup> Ar | 1.412       | -0.180(15)       | 0.030(10)     | 0.665(55)     | 0.695(56)  |
| <sup>38</sup> Ca | 1.414       | -0.175(15)       | 0.020(10)     | 0.745(70)     | 0.765(71)  |
| <sup>42</sup> Ti | 1.427       | -0.235(20)       | 0.105(20)     | 0.835(75)     | 0.940(78)  |
| $T_z = 0$        |             |                  |               |               |            |
| $^{26m}$ Al      | 1.478       | 0.005(20)        | 0.030(10)     | 0.280(15)     | 0.310(18)  |
| <sup>34</sup> Cl | 1.443       | -0.085(15)       | 0.100(10)     | 0.550(45)     | 0.650(46)  |
| <sup>38m</sup> K | 1.440       | -0.100(15)       | 0.105(20)     | 0.565(50)     | 0.670(54)  |
| <sup>42</sup> Sc | 1.453       | 0.035(20)        | 0.020(10)     | 0.645(55)     | 0.665(56)  |
| <sup>46</sup> V  | 1.445       | -0.035(10)       | 0.075(30)     | 0.545(55)     | 0.620(63)  |
| <sup>50</sup> Mn | 1.444       | -0.040(10)       | 0.035(20)     | 0.610(50)     | 0.645(54)  |
| <sup>54</sup> Co | 1.443       | -0.035(10)       | 0.050(30)     | 0.720(60)     | 0.770(67)  |
| <sup>62</sup> Ga | 1.459       | -0.045(20)       | 0.275(55)     | 1.20(20)      | 1.48(21)   |
| <sup>66</sup> As | 1.468       | -0.060(20)       | 0.195(45)     | 1.35(40)      | 1.55(40)   |
| $^{70}$ Br       | 1.486       | -0.085(25)       | 0.445(40)     | 1.25(25)      | 1.70(25)   |
| <sup>74</sup> Rb | 1.499       | -0.075(30)       | 0.115(60)     | 1.50(26)      | 1.62(27)   |

J. Hardy, I. Towner, Phys. Rev. C 91 (2014), 025501

 $\delta_C \sim 0.17\% - 1.6\%!$ 

#### ISB or scalar BSM interactions?



Once all corrections are included: CVC —> Ft constant

 $\delta_C$  particularly important for alignment!

Fit to 14 transitions: Ft constant within 0.02% if using SM-WS

If BSM scalar currents present: "Fierz interference"  $b_F$ 



$$\mathcal{F}t^{SM} \to \mathcal{F}t^{SM} \left( 1 + b_F \frac{m_e}{\langle E_e \rangle} \right)$$

 $Q_{EC}$   $\uparrow$  with Z —> effect of  $b_F \downarrow$  with Z Introduces nonlinearity in the Ft plot  $b_F = -0.0028(26) \sim \text{consistent with 0}$ 

13

#### Nuclear model comparison for $\delta_C$

J. Hardy, I. Towner, Phys.Rev. C 91 (2014), 025501

|                       |       |       |       | RPA    |       |                   |                  |
|-----------------------|-------|-------|-------|--------|-------|-------------------|------------------|
|                       | SM-WS | SM-HF | PKO1  | DD-ME2 | PC-F1 | IVMR <sup>a</sup> | DFT              |
| $\overline{T_z = -1}$ |       |       |       |        |       |                   |                  |
| $^{10}C$              | 0.175 | 0.225 | 0.082 | 0.150  | 0.109 | 0.147             | 0.650            |
| $^{14}O$              | 0.330 | 0.310 | 0.114 | 0.197  | 0.150 |                   | 0.303            |
| <sup>22</sup> Mg      | 0.380 | 0.260 |       |        |       |                   | 0.301            |
| <sup>34</sup> Ar      | 0.695 | 0.540 | 0.268 | 0.376  | 0.379 |                   |                  |
| <sup>38</sup> Ca      | 0.765 | 0.620 | 0.313 | 0.441  | 0.347 |                   |                  |
| $T_z = 0$             |       |       |       |        |       |                   |                  |
| $^{26m}$ Al           | 0.310 | 0.440 | 0.139 | 0.198  | 0.159 |                   | 0.370            |
| <sup>34</sup> Cl      | 0.650 | 0.695 | 0.234 | 0.307  | 0.316 |                   |                  |
| <sup>38m</sup> K      | 0.670 | 0.745 | 0.278 | 0.371  | 0.294 | 0.434             |                  |
| <sup>42</sup> Sc      | 0.665 | 0.640 | 0.333 | 0.448  | 0.345 |                   | 0.770            |
| $^{46}V$              | 0.620 | 0.600 |       |        |       |                   | 0.580            |
| <sup>50</sup> Mn      | 0.645 | 0.610 |       |        |       |                   | 0.550            |
| <sup>54</sup> Co      | 0.770 | 0.685 | 0.319 | 0.393  | 0.339 |                   | 0.638            |
| <sup>62</sup> Ga      | 1.475 | 1.205 |       |        |       |                   | 0.882            |
| <sup>74</sup> Rb      | 1.615 | 1.405 | 1.088 | 1.258  | 0.668 |                   | 1.770            |
| $\chi^2/\nu$          | 1.4   | 6.4   | 4.9   | 3.7    | 6.1   |                   | 4.3 <sup>b</sup> |

HT:  $\chi^2$  as criterion to prefer SM-WS; V<sub>ud</sub> and limits on BSM strongly depend on nuclear model

Nuclear community embarked on ab-initio  $\delta_C$  calculations (NCSM, GFMC, CC, IMSRG) Especially interesting for light nuclei accessible to different techniques!

## Precise nuclear EW radii constrain $\delta_C$

#### Phenomenological constraints on $\delta_C$ ?

Idea:  $\delta_C$  dominated by Coulomb repulsion between protons (hence C)

Coulomb interaction generates both  $\delta_{C}$  and ISB combinations of nuclear radii

Miller, Schwenk 0805.0603; 0910.2790; Auerbach 0811.4742; 2101.06199; Seng, MG 2208.03037; 2304.03800; 2212.02681

Nuclear Hamiltonian:  $H = H_0 + V_{\text{ISB}} \approx H_0 + V_C$ 

Coulomb potential for uniformly charged sphere

$$V_C \approx -\frac{Ze^2}{4\pi R_C^3} \sum_{i=1}^A \left(\frac{1}{2}r_i^2 - \frac{3}{2}R_C^2\right) \left(\frac{1}{2} - \hat{T}_z(i)\right)$$

ISB due to IV monopole, 
$$V_{\text{ISB}} \approx \frac{Ze^2}{8\pi R^3} \sum_i r_i^2 \hat{T}_z(i) = \frac{Ze^2}{8\pi R^3} \hat{M}_0^{(1)}$$

Same operator generates nuclear radii

$$R_{p/n,\phi} = \sqrt{\frac{1}{X}} \langle \phi | \sum_{i=1}^{A} r_i^2 \left(\frac{1}{2} \mp \hat{T}_z(i)\right) | \phi \rangle$$

Phenomenological constraints on 
$$\delta_C$$
?  
 $0^+, T = 1, T_z = -1$   
 $0^+, T = 1, T_z = 0$   
 $0^+, T = 1, T_z = 0$   
 $0^+, T = 1, T_z = 0$   
 $0^+, T = 1, T_z = 1$   
 $0^+, T = 1, T_z = 1$ 

ISB-sensitive combinations of radii: Wigner-Eckart theorem

$$\Delta M_A^{(1)} \equiv \langle f | M_{\pm 1}^{(1)} | i \rangle + \langle f | M_0^{(1)} | f \rangle \qquad \Delta M_B^{(1)} \equiv \frac{1}{2} \left( Z_1 R_{p,1}^2 + Z_{-1} R_{p,-1}^2 \right) - Z_0 R_{p,0}^2$$
Transition radius  
From  $\beta$  spectrum  

$$M^- \underbrace{e^+}_{A_f} \qquad \vec{e}^- \underbrace{Z_1^* \gamma}_{A_f} \qquad \vec{e}^-$$

$$A_f \qquad A_f \qquad A_f \qquad A_f \qquad A_f^{PV} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \frac{Q_W}{Z} \frac{F_{NW}(Q^2)}{F_{Ch}(Q^2)} \qquad F_{Ch}(Q^2) = 1 - R_{Ch}^2 Q^2/6 + \dots$$

Since N  $\neq$  Z for  $T_z = \pm 1$  factors  $Z_{\pm 1,0}$  remove the symmetry energy to isolate ISB (Usually PVES —> neutron skins —> symmetry energy —> nuclear EOS —> nuclear astrophysics)

#### Electroweak radii constrain ISB in superallowed $\beta$ -decay

Employ the correct isospin formalism by Schwenk, Miller 0805.0603; 0910.2790  $\delta_C$  and radii expressed via the same set of matrix elements

$$\delta_{C} = \frac{1}{3} \sum_{a} \frac{|\langle a; 0||V||g; 1\rangle|^{2}}{(E_{a,0} - E_{g,1})^{2}} + \frac{1}{2} \sum_{a \neq g} \frac{|\langle a; 1||V||g; 1\rangle|^{2}}{(E_{a,1} - E_{g,1})^{2}} - \frac{5}{6} \sum_{a} \frac{|\langle a; 2||V||g; 1\rangle|^{2}}{(E_{a,2} - E_{g,1})^{2}} + \mathcal{O}(V^{3})$$

$$\Delta M_{A}^{(1)} = \frac{1}{3} \Gamma_{0} + \frac{1}{2} \Gamma_{1} + \frac{7}{6} \Gamma_{2}$$

$$\Delta M_{B}^{(1)} = \frac{2}{3} \Gamma_{0} - \Gamma_{1} + \frac{1}{3} \Gamma_{2}$$

$$\Gamma_{T} = -\sum_{a} \frac{|\langle a; T||V||g; 1\rangle|^{2}}{E_{a,T} - E_{g,1}}$$

Different scaling with ISB:  $\delta_C \sim ISB^2$ ,  $\Delta M_A^{(1)} \sim ISB^1$ ,  $\Delta M_B^{(1)} \sim ISB^3$ 

Compare to IMME (masses across an isomultiplet)

$$E(a,T,T_z) = \mathbf{a}(a,T) + \mathbf{b}(a,T)T_z + \mathbf{c}(a,T)T_z^2$$

$$\mathbf{b} \sim \langle a; T, T_z | V^{(1)} | a; T, T_z \rangle , \ \mathbf{c} \sim \langle a; T, T_z | V^{(2)} | a; T, T_z \rangle$$

Unlike  $\delta_C$ ,  $\Delta M^{(1)}_{A,B}$  — IMME only depends on diagonal m.e. — indirect constraint

#### Electroweak radii constrain ISB in superallowed $\beta$ -decay

For numerical analysis: lowest isovector monopole resonance dominates One ISB matrix element, one energy splitting

| Model for $\delta_C \rightarrow$ | prediction for | $\Delta M^{(1)}_{A,B}$ |
|----------------------------------|----------------|------------------------|
|----------------------------------|----------------|------------------------|

| Transitions                                     | δ <sub>C</sub> (%) |       |      |       |       |      | $\Delta M_A^{(1)} \; (\mathrm{fm}^2)$ |      |      |       |       | $\Delta M_B^{(1)} \ (\mathrm{fm}^2)$ |       |       |       |
|-------------------------------------------------|--------------------|-------|------|-------|-------|------|---------------------------------------|------|------|-------|-------|--------------------------------------|-------|-------|-------|
|                                                 | WS                 | DFT   | HF   | RPA   | Micro | WS   | DFT                                   | HF   | RPA  | Micro | WS    | DFT                                  | HF    | RPA   | Micro |
| $^{26m}$ Al $\rightarrow$ $^{26}$ Mg            | 0.310              | 0.329 | 0.30 | 0.139 | 0.08  | -2.2 | -2.3                                  | -2.1 | -1.0 | -0.6  | -0.12 | -0.12                                | -0.11 | -0.05 | -0.03 |
| $^{34}Cl \rightarrow ^{34}S$                    | 0.613              | 0.75  | 0.57 | 0.234 | 0.13  | -5.0 | -6.1                                  | -4.6 | -1.9 | -1.0  | -0.17 | -0.21                                | -0.16 | -0.06 | -0.04 |
| $^{38m}$ K $\rightarrow$ $^{38}$ Ar             | 0.628              | 1.7   | 0.59 | 0.278 | 0.15  | -5.4 | -14.6                                 | -5.1 | -2.4 | -1.3  | -0.15 | -0.42                                | -0.15 | -0.07 | -0.04 |
| $^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$ | 0.690              | 0.77  | 0.42 | 0.333 | 0.18  | -6.2 | -6.9                                  | -3.8 | -3.0 | -1.6  | -0.15 | -0.17                                | -0.09 | -0.07 | -0.04 |
| $^{46}V \rightarrow ^{46}Ti$                    | 0.620              | 0.563 | 0.38 | /     | 0.21  | -5.8 | -5.3                                  | -3.6 | /    | -2.0  | -0.12 | -0.11                                | -0.08 | /     | -0.04 |
| $^{50}$ Mn $\rightarrow$ $^{50}$ Cr             | 0.660              | 0.476 | 0.35 | /     | 0.24  | -6.4 | -4.6                                  | -3.4 |      | -2.4  | -0.12 | -0.09                                | -0.06 | /     | -0.04 |
| $^{54}$ Co $\rightarrow$ <sup>54</sup> Fe       | 0.770              | 0.586 | 0.44 | 0.319 | 0.28  | -7.8 | -5.9                                  | -4.4 | -3.2 | -2.8  | -0.13 | -0.10                                | -0.07 | -0.05 | -0.05 |

Can discriminate models if independent information on nuclear radii is available  $\Delta M_A$  from measured radii —> test models for  $\delta_C$ 

- Charge radii across superallowed isotriplets?
- Some are known (but difficult unstable isotopes, some g.s. are not  $0^+$ )
- Typically, precision is not enough to make a quantitative statement need to improve!

## Precise nuclear radii beyond $\delta_C$

#### Impact of atomic spectra and nuclear radii?

We said that ft-values are experimental — but not quite!

A few theory ingredients are absorbed: Coulomb distortions, nuclear form factors, atomic screening...

Statistical rate function: 
$$f \approx m_e^{-5} \int_{m_e}^{E_0(Z)} |\vec{p}_e| E_e(E_0 - E_e)^2 F(Z, E_e) S(Z, E_e) C(Z, E_e) \dots dE_e$$

- Fermi Function  $F(Z, E_e)$ : point Coulomb, finite size, ... (pointlike CC transition!)
- Weak CC form factor effect  $C(Z, E_e)$ : integrating over the neutrino momentum (tree-level)
- Shape factor  $S(Z, E_e)$ : overlap of CC and charge FF

Fermi function: analytical point-Coulomb  $F_0(Z, E_e)$  - regularized at the nuclear radius (def.!) —> Uniform sphere of radius  $R = \sqrt{5/3}R_{Ch}$ , can evaluate at origin, finite at origin

- $\sim$  Official sphere of factors  $K = \sqrt{3/3} K_{Ch}$ , call evaluate at origin, finite at one
- —> Correct for the finite surface thickness: employ e.g. 2pF charge density
- -> Open question: how important further correcting the charge density (sum of Gaussians?)

Work ongoing with

Chien Yeah Seng (INT/FRIB), Giovanni Carotenuto, Michela Sestu, Matteo Cadeddu, Nicola Cargioli (INFN Cagliari)

#### Charge radii + isospin symmetry -> CC weak radius



Integrating over neutrino momenta = integrating over  $q^2$ 

$$ft \equiv ft(q^2 = 0) \int_{\min}^{\max} \frac{F_{CW}(q^2) dq^2}{q_{\max}^2 - q_{\min}^2}$$

Usual approach (Behrens & Bühring): assume  $F_{CW} \approx F_{Ch}^{\text{daughter}} \longrightarrow R_{CW} = R_{Ch,1}$ 

But  $R_{CW}$  can be expressed via charge radii assuming approximate isospin symmetry

$$R_{\rm CW}^2 = R_{\rm Ch,1}^2 + Z_0 (R_{\rm Ch,0}^2 - R_{\rm Ch,1}^2) = R_{\rm Ch,1}^2 + \frac{Z_{-1}}{2} (R_{\rm Ch,-1}^2 - R_{\rm Ch,1}^2)$$
 Seng 2212.02681

#### Charge radii + isospin symmetry -> CC weak radius

| A  | $R_{\rm Ch,-1}$ (fm)                                    | $R_{\rm Ch,0}$ (fm)                                      | $R_{\mathrm{Ch},1}$ (fm)                                | $R_{\rm Ch,1}^2 ~({\rm fm}^2)$ | $R_{\rm CW}^2$ (fm <sup>2</sup> ) |
|----|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------|
| 10 | ${}^{10}_{6}$ C                                         | ${}_{5}^{10}B(ex)$                                       | ${}^{10}_{4}$ Be: 2.3550(170) <sup>a</sup>              | 5.546(80)                      | N/A                               |
| 14 | $^{14}_{8}$ O                                           | $^{14}_{7}N(ex)$                                         | ${}^{14}_{6}\text{C:}\ 2.50\ 25(87)^{a}$                | 6.263(44)                      | N/A                               |
| 18 | $^{18}_{10}$ Ne: 2.9714(76) <sup>a</sup>                | ${}_{9}^{18}F(ex)$                                       | ${}^{18}_{8}$ O: 2.77 26(56) <sup>a</sup>               | 7.687(31)                      | 13.40(53)                         |
| 22 | $^{22}_{12}$ Mg: 3.0691(89) <sup>b</sup>                | $^{22}_{11}$ Na(ex)                                      | $^{22}_{10}$ Ne: 2.9525(40) <sup>a</sup>                | 8.717(24)                      | 12.93(71)                         |
| 26 | $^{26}_{14}$ Si                                         | $^{26m}_{13}$ Al                                         | <sup>26</sup> <sub>12</sub> Mg: 3.0337(18) <sup>a</sup> | 9.203(11)                      | N/A                               |
| 30 | $^{30}_{16}$ S                                          | $^{30}_{15}P(ex)$                                        | $^{30}_{14}$ Si: 3.1336(40) <sup>a</sup>                | 9.819(25)                      | N/A                               |
| 34 | <sup>34</sup> <sub>18</sub> Ar: 3.3654(40) <sup>a</sup> | <sup>34</sup> <sub>17</sub> Cl                           | $^{34}_{16}$ S: 3.2847(21) <sup>a</sup>                 | 10.789(14)                     | 15.62(54)                         |
| 38 | $^{38}_{20}$ Ca: 3.467(1) <sup>c</sup>                  | $^{38m}_{19}$ K: 3.437(4) <sup>d</sup>                   | $^{38}_{18}$ Ar: 3.4028(19) <sup>a</sup>                | 11.579(13)                     | 15.99(28)                         |
| 42 | $^{42}_{22}$ Ti                                         | <sup>42</sup> <sub>21</sub> Sc: 3.5702(238) <sup>a</sup> | <sup>42</sup> <sub>20</sub> Ca: 3.5081(21) <sup>a</sup> | 12.307(15)                     | 21.5(3.6)                         |
| 46 | <sup>46</sup> <sub>24</sub> Cr                          | $^{46}_{23}$ V                                           | <sup>46</sup> <sub>22</sub> Ti: 3.6070(22) <sup>a</sup> | 13.010(16)                     | N/A                               |
| 50 | $^{50}_{26}$ Fe                                         | <sup>50</sup> <sub>25</sub> Mn: 3.7120(196) <sup>a</sup> | <sup>50</sup> <sub>24</sub> Cr: 3.6588(65) <sup>a</sup> | 13.387(48)                     | 23.2(3.8)                         |
| 54 | $^{54}_{28}$ Ni: 3.738(4) <sup>e</sup>                  | <sup>54</sup> 27Co                                       | <sup>54</sup> <sub>26</sub> Fe: 3.6933(19) <sup>a</sup> | 13.640(14)                     | 18.29(92)                         |
| 62 | $_{32}^{62}$ Ge                                         | $^{62}_{31}$ Ga                                          | $^{62}_{30}$ Zn: 3.9031(69) <sup>b</sup>                | 15.234(54)                     | N/A                               |
| 66 | <sup>66</sup> <sub>34</sub> Se                          | 66<br>33<br>As                                           | $^{66}_{32}$ Ge                                         | N/A                            | N/A                               |
| 70 | $_{36}^{70}$ Kr                                         | $^{70}_{35}{ m Br}$                                      | $_{34}^{70}$ Se                                         | N/A                            | N/A                               |
| 74 | <sup>74</sup> <sub>38</sub> Sr                          | $^{74}_{37}$ Rb: 4.1935(172) <sup>b</sup>                | $^{74}_{36}$ Kr: 4.1870(41) <sup>a</sup>                | 17.531(34)                     | 19.5(5.5)                         |

## Effect of large CW radii on ft and $V_{ud}$

Total decay rate  $\sim ft |V_{ud}|^2 \sim |V_{ud}|^2 \int_0^{Q_{EC}^2} dQ^2 F_{CW}(Q^2)$ 



Only total rate measured — if radius underestimated,  $V_{ud}$  will come out smaller

Systematic shift by up to 0.1% to some ft values —> may resolve CKM deficit? Estimated from isospin symmetry — but isospin symmetry broken, how credible? Theory strategy: compute all radii AND  $\delta_C$  — check pattern, compare to available data, motivate exp.

#### Shape factor: ~ Friar radius for beta decay

Solution to Dirac equation with nuclear charge/weak densities

Bulk result due to charge and charged-weak radii (and beyond)

TPE approximation won't do — full Dirac eq. solution



$$C(Z,W) = \sum_{k_e,k_\nu,K} \lambda_{k_e} \left\{ M_K^2(k_e,k_\nu) + m_K^2(k_e,k_\nu) - \frac{2\mu_{k_e}\gamma_{k_e}}{k_eW} M_K(k_e,k_\nu) m_K(k_e,k_\nu) \right\}$$

**Dirac Coulomb radial functions** 

$$\lambda_{k_e} = \frac{\alpha_{-k_e}^2 + \alpha_{+k_e}^2}{\alpha_{-1}^2 + \alpha_{+1}^2} \qquad \mu_{k_e} = \frac{\alpha_{-k_e}^2 - \alpha_{+k_e}^2}{\alpha_{-k_e}^2 + \alpha_{+k_e}^2} \frac{k_e W}{\gamma_{k_e}}$$

M, m —> convolutions of electron radial fn with nuclear FF

Work ongoing with

Chien Yeah Seng (INT/FRIB), Giovanni Carotenuto, Michela Sestu, Matteo Cadeddu, Nicola Cargioli (INFN Cagliari)

#### Plan: update the ft-values tables — uncertainties!! (nuclear charge radii, FF shape)

## Summary, Caveats & Outlook

#### Summary, Caveats and Outlook

With improved  $\Delta_R^V$ : for precise  $V_{ud} < -$  precise  $\mathcal{F}t < -$  precise ft + precise  $\delta_C$ ,  $\delta_{NS}$ 

Precise nuclear radii are crucial ingredients in ft-values and  $\delta_C$ 

For a T=1 triplet with  $T_z = (-1,0,1)$ : complete set of 8 radii  $R_{Ch}^{(-1,0,1)}$ ,  $R_{NW}^{(-1,0,1)}$ ,  $R_{CW}^{(-1,0),(0,1)}$ 

All 8 radii +  $\delta_C$  are accessible for theory calculation!

For robust uncertainty: motivate experiment —  $R_{Ch}^{(-1,0,1)}$  and  $R_{NW}^{(1)}$  for stable daughters

Most precise charge radii from µ-atoms; radii of unstable isotopes from isotope shifts

NC radius — PV electron scattering from stable daughter (e.g. Ca-42 at MESA: Ca-48 planned)

Feasibility study for PVES on C-12: sub-% measurement of weak charge and radius O. Koschii et al, Phys.Rev.C 102 (2020) 2, 022501 Work ongoing with Nicola Cargioli, Matteo Cadeddu, Hubert Spiesberger, Jorge Piekarewicz, Xavi Roca-Maza

#### Summary, Caveats and Outlook

For all this: precise charge radii are a prerequisite!

Where do we take the charge radii from? — Usually from some tables, e.g. Angeli-Marinova or Fricke-Heilig

A&M do not give much ingredients but have the smallest uncertainties (??) F&H do give ingredients in detail but credibility of nuclear polarizability?? Example: Ne-20 — NPol = 19(2)eV — from Rinker & Späth (1970's)

| Isotope          | E <sub>exp.</sub><br>[keV] | E <sub>theo.</sub><br>[keV] | NPol<br>[keV] | c<br>[fm]    | $\langle r^2  angle_{model}^{1/2}$ [fm] | α<br>[1/fm] | k      | $C_s$ [am/eV] | $R^{\mu}_{klpha}$<br>[fm] | Ref.   |
|------------------|----------------------------|-----------------------------|---------------|--------------|-----------------------------------------|-------------|--------|---------------|---------------------------|--------|
| <sup>20</sup> Ne | 207.282<br>5               | 207.282                     | 0.019         | 2.9589<br>24 | 3.006                                   | 0.0329      | 2.0445 | -0.516        | 3.8656<br>(26;33)         | [Fr92] |

Can I reproduce F&H result for NPol? Can I improve it?

- 1. Estimate with photonuclear sum rules (Berman-Fultz, RMP 47 (1975) 713) + nuclear size: NPol(1S) = 20 eV (Z/10)^3 (A/20)^(4/3) — OK(?) accuracy?????? 50-100% — FH claim 10%
- 2. In light µ-atoms nucleon pol not negligible: rescale the known µH result nPol(2S µH) = 13 µeV —> nPol(1S µNe-20) = 13 µeV  $\times 2^3 \times 10^3 \times 20 \times (\mu_{Ne}/\mu_H)^4 \sim 3 \text{ eV}$

Importantly: what NPol is included in e-scattering? How is it calculated? Guess: not at all

#### Summary, Caveats and Outlook

NPol ( $\mu$ -atoms) —  $\delta_{NS}$  (beta decays) — nuclear  $\gamma Z$ -box (neutron skin): same physics

Coulomb corrections extremely important (exact shape of charge distribution)

Nuclear radii extracted from  $\mu$  atoms and from e-scattering — compatible? Corrections applied to scattering data: Coulomb corrections, NPol, RC, ... — compatible?

Vertex corrections: for FF often discussed away in "FF definition" bulked with SE,... But for beta decays are crucial to cancel UV div of  $\gamma W$ -box *Sirlin Rev.Mod.Phys. 50 (1978) 905* 



## Thank you!