Measurement of Compton scattering at MAMI and extraction of nucleon polarizabilities

Vahe Sokhoyan for the A2 Collaboration

PREN + µASTI Meeting Mainz, 29.06.2023

THE LOW-ENERGY FRONTIER OF THE STANDARD MODEL

Contents

- Nucleon polarizabilities
- Crystal Ball/TAPS setup at MAMI
- Recent results for the proton polarizabilities from the A2 Collaboration
- Future plans for the measurement of neutron polarizabilities
- High pressure TPC as an active target for recoil detection
- Current status of the PRES experiment

Proton Electric Polarizability

- $\alpha_{_{\rm E1}}$: electric polarizability
- Proton between charged parallel plates: "stretchability"

Proton Magnetic Polarizability

- β_{M_1} : magnetic polarizability
- Proton between poles of a magnet: "alignability"

• Fundamental properties of the proton

Important to atomic physics (e.g. proton radius measurement in muonic hydrogen)
 Spin polarizability measurements etc

PDG (2012) values:

$$\alpha = (12.0 \pm 0.6) \times 10^{-4} \, \text{fm}^3$$

$$\beta = (1.9 \pm 0.5) \times 10^{-4} \, \text{fm}^3$$

New (2014-2018) PDG values: $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$

$$\beta = (2.5 \pm 0.4) \times 10^{-4} \, \text{fm}^3$$

Significant change between reviews without introducing new experimental data
Global database not entirely consistent

Goal: high-precision measurement of the scalar polarizabilities of the proton

- _New high-precision unpolarized cross-sections
- New high-quality data on the beam asymmetry Σ_{3}
- New single data set with small statistical and systematic errors

- These parameters describe the response of the proton spin to an applied electric or magnetic field
- Nucleon has 4 spin or vector polarizabilities: $\gamma_{_{E1E1}}$ $\gamma_{_{M1M1}}$ $\gamma_{_{M1E2}}$ $\gamma_{_{E1M2}}$
- Fundamental properties of the proton!
- Low sensitivity at low energies \rightarrow measurements at higher energies (\triangle region)
- 1. Beam: circular, Target: longitudinal

$$\Sigma_{2z} = \frac{\sigma_{+z}^R - \sigma_{+z}^L}{\sigma_{+z}^R + \sigma_{+z}^L} = \frac{\sigma_{+z}^R - \sigma_{-z}^R}{\sigma_{+z}^R + \sigma_{-z}^R}$$

2. Beam: circular, Target: transverse

$$\Sigma_{2x} = \frac{\sigma_{+x}^R - \sigma_{+x}^L}{\sigma_{+x}^R + \sigma_{+x}^L} = \frac{\sigma_{+x}^R - \sigma_{-x}^R}{\sigma_{+x}^R + \sigma_{-x}^R}$$

3. Beam: linear, parallel and perpendicular to scattering plane Target: unpolarized $\sigma^{\parallel} - \sigma^{\perp}$

$$\Sigma_3 = \frac{\sigma}{\sigma^{\parallel} + \sigma^{\perp}}$$

 \rightarrow Extractions of spin polarizabilities with small statistical, systematic, and model-dependent errors

Experiments with Crystal/Ball TAPS + TPC at MAMI

Crystal Ball/TAPS setup

Crystal Ball/TAPS setup

- High-Flux, Tagged, Bremsstrahlung Photon Beam:
 - Unpolarized, Linear, and Circular
 - Polarized and Unpolarized Targets
 - Development of active targets in progress

Crystal Ball/TAPS setup

Crystal Ball:

- 672 NaI Crystals
- 24 Particle Identification Detector Paddles
- 2 Multiwire Proportional Chambers

TAPS:

- 366 BaF_2 and 72 $PbWO_4$ Crystals
- 384 Veto Detectors

Data analysis:

- Selection of events with one photon at 85-140 MeV and 30° 150°
- Sampling and subtraction of the random background
- Subtraction of the empty target contribution
- Acceptance correction, flux normalization, estimates for the remaining background,...

E. Mornacchi et al. [A2 Collaboration] Phys. Rev. Lett. 128, 132503

Improvement in statistics (85 – 140 MeV):

1.2x10⁶ events: Highest statistics data set for Compton scattering below pion threshold

New measurement of the beam asymmetry Σ_3 at MAMI

Measured with linearly polarized photons and unpolarized target

$$\Sigma_3 = \frac{\sigma^{\parallel} - \sigma^{\perp}}{\sigma^{\parallel} + \sigma^{\perp}}$$

N. Krupina and V. Pascalutsa [PRL 110, 262001 (2013)]

Extraction of the scalar polarizabilites of the proton

 $\alpha_{\rm E1} = \rm 10.99 \pm 0.16 \pm 0.47 \pm 0.17 \pm 0.34$

 $\beta_{M1} = 3.14 \pm 0.21 \pm 0.24 \pm 0.20 \pm 0.35$ (stat) (syst) (spin pol.) (model dep.)

- Highest precision Compton scattering dataset below pion photoproduction threshold
- Most precise extraction of the proton scalar polarizabilities from a single dataset

	HDPV	$\mathrm{B}\chi\mathrm{PT}$	$\mathrm{HB}\chi\mathrm{PT}$
$lpha_{E1}$	$11.23 \pm 0.16 \pm 0.46 \pm 0.02$	$10.65 \pm 0.16 \pm 0.47 \pm 0.04$	$11.10 \pm 0.16 \pm 0.47 \pm 0.17$
β_{M1}	$2.79 \pm 0.20 \pm 0.23 \pm 0.11$	$3.28 \pm 0.21 \pm 0.24 \pm 0.09$	$3.36 \pm 0.21 \pm 0.24 \pm 0.20$

Spin polarizabilities

D. Paudyal, et al. [A2 Collaboration] Phys. Rev. C 102, 035205 (2020)

	$\Sigma_{2z}, \Sigma_{2x}, \text{ and } \Sigma_3^{LEGS} \text{ data fits}$						
	HDPV	$\mathrm{B}\chi\mathrm{PT}$	Weighted average				
γ_{E1E1}	$-3.18~\pm~0.52$	$-2.65~\pm~0.43$	-2.87 ± 0.52				
γ_{M1M1}	$2.98~\pm~0.43$	$2.43~\pm~0.42$	$2.70~\pm~0.43$				
γ_{E1M2}	$-0.44~\pm~0.67$	$-1.32\ \pm\ 0.72$	$-0.85~\pm~0.72$				
γ_{M1E2}	$1.58~\pm~0.43$	$2.47~\pm~0.42$	$2.04~\pm~0.43$				
χ^2/dof	1.14	1.36					

The data sets in the \triangle region suffer from the contamination with pion background: $\gamma + \mathbf{p} \rightarrow \mathbf{p} + \pi^0 \rightarrow (\mathbf{p} + \gamma) + \gamma$ \rightarrow Development of Machine Learning-based methods for the selection of Compton events

Input MC for model training: \rightarrow 295 - 305 MeV, γ + p events \rightarrow Notable overlap in 1D \rightarrow Complex shapes in 2D with opportunity of separation

Processing the data: \rightarrow Mix Compton and pion events \rightarrow Reshuffle the (labeled) data \rightarrow Split the data into training and validation data sets \rightarrow Train and evaluate the model

Blue: Compton MC Red: Pion MC

Separation of pion and Compton events in the \triangle region with AI (ML)

Predicted distributions for the validation data set agree well with the initial MC data set (predicted with 99% accuracy) →Application on experimental data

Blue: Compton MC Red: Pion MC

Separation of pion and Compton events in the \triangle region with AI (ML)

Initial and predicted MC agree (also in the overlap region)

Orange: Compton MC Blue: Pion MC

Application on the data

Neutron polarizabilities

Detection of low-energy recoil particles with high energy resolution in combination with the scattered photon

- Simultaneous detection of the scattered photon and recoil nucleus
- Measurement of neutron polarizabilities via elastic scattering on light nuclei $(\gamma + {}^{3}\text{He} \rightarrow \gamma + {}^{3}\text{He}, \gamma + {}^{4}\text{He} \rightarrow \gamma + {}^{4}\text{He}, \gamma + d \rightarrow \gamma + d)$
- Measurement of form factors via dilepton photoproduction, lepton universality test

TPC properties (to be constructed)

Segmented anode

Possible parameters (based on prototype TPC performance and MC):

- Small size (diameter = 200 mm) in A2
- Length of the active volume: ~20 cm
- Pressure up to 25 bar, mixture of helium and hydrogen (~10%), pure hydrogen, ...
- Energy resolution: 20-30 keV, resolution in polar angle: 2-3°, azimuthal angle measurement possible if the anode is segmented in phi
- Vertex reconstruction (Z with resolution better than 0.5 mm)

Separation of recoil fragments with TPC

Data taken with MAMI electron beam and a protype TPC at 10 bar
Contributions corresponding to different recoil fragments clearly visible!

Feasibility studies (Monte Carlo simulations) for the measurement of nucleon polarizabilities with TPC filled with ³He (20 bar) in combination with the A2 setup: \rightarrow Fitting done with theoretical framework for ³He from H. Grießhammer et al. \rightarrow Improvement in the uncertainties of the neutron polarizabilities by factor of 2

Measuring proton radius via dilepton photoproduction with TPC@A2

FIG. 4: Linear photon asymmetry A_{lU} of the $\gamma p \rightarrow (l^- l^+) p$ process. The dashed (blue) curve corresponds with e^-e^+ production; the dashed-dotted (red) curve corresponds with $\mu^-\mu^+$ production. The solid (black) curve is the asymmetry corresponding with the sum of the $e^-e^+ + \mu^-\mu^+$ channels according to Eq. (12).

V. Pauk and M. Vanderhaeghen Phys.Rev.Lett. 115, 221804 (2015)

- → Range in Q² for the recoil proton corresponds to the coverage of the (potential) TPC
- Measurements possible for the proton, deuteron, helium,...
- Systematic studies + MC required
- The feasibility of the lepton universality test to be studied

Proton radius measurement with a completely different systematics:

- Electron scattering with detection of both recoil proton and scattered electron
- Measurement of polarizabilities, dilepton photoproduction, (A2 + small TPC)

- Measurements a low Q^2 (0.001 GeV² $\leq Q^2 \leq$ 0.02 (0.04) GeV²)
- TPC and Forward Tracker constructed at PNPI
- Hydrogen, deuterium, helium gas filling possible
- Close synergy with PRM@AMBER (lepton universality, input from TPC@MAMI ...)
 The experiment is presently on hold ...

Summary

Measurement of nucleon polarizabilities with the A2 setup:

- High-statistics data set acquired: 1.2 10⁶ Compton scattering events at 85 140 MeV
- Determination of scalar polarizabilities of the proton with unprecedented high precision from a single data set!
- Extraction of spin polarizabilities using Compton scattering data in the Δ region (AIbased analysis methods under development)
- \rightarrow Measurement of neutron polarizabilities with TPC as an active target

Measurement of the proton radius in the A2 Hall:

 \rightarrow Measurement of the proton radius with PRES experiment presently on hold

 \rightarrow Measurement of the proton radius via dilepton photoproduction with the CB/TAPS + TPC possible (detailed feasibility studies required)

Summary

Measurement of nucleon polarizabilities with the A2 setup:

- High-statistics data set acquired: 1.2 10⁶ Compton scattering events at 85 140 MeV
- Determination of scalar polarizabilities of the proton with unprecedented high precision from a single data set!
- Extraction of spin polarizabilities using Compton scattering data in the Δ region (AIbased analysis methods under development)
- \rightarrow Measurement of neutron polarizabilities with TPC as an active target

Measurement of the proton radius in the A2 Hall:

 \rightarrow Measurement of the proton radius with PRES experiment presently on hold

 \rightarrow Measurement of the proton radius via dilepton photoproduction with the CB/TAPS + TPC possible (detailed feasibility studies required)

Thank you for your attention!

Backup

Proton: PDG status (2023)

p ELECTRIC POLARIZABILITY $lpha_p$ 0.00112 ± 0.00004 fm 3				~
p MAGNETIC POLARIZABILITY eta_p		(2.5 =	$\pm0.4) imes10^{-4}$ fm 3 (S = 1.2) 🗸
VALUE (10^{-4} fm ³)	DOCUMENT ID		TECN	COMMENT
$11.2 \pm 0.4 \qquad \text{OUR AVERAGE}$				
$10.65 \pm 0.35 \pm 0.36$	MCGOVERN	2013	RVUE	χ EFT + Compton scattering
$12.1 \pm 1.1 \pm 0.5$	¹ BEANE	2003		EFT + γp
$11.82 \pm 0.98 \stackrel{+0.52}{_{-0.98}}$	² BLANPIED	2001	LEGS	$p(ec{\gamma},\gamma),p(ec{\gamma},\pi^0),p(ec{\gamma},\pi^+)$
$11.9 \pm 0.5 \pm 1.3$	³ OLMOSDELEO	2001	CNTR	γp Compton scattering
$12.1 \pm 0.8 \pm 0.5$	⁴ MACGIBBON	1995	RVUE	global average
VALUE (10^{-4} fm 3)	DOCUMENT ID		TECN	COMMENT
$\textbf{2.5} \pm \textbf{0.4} \qquad \textbf{OUR AVERAGE Error includes scale}$	factor of 1.2.			
$3.15 \pm \! 0.35 \pm \! 0.36$	MCGOVERN	2013	RVUE	χ EFT + Compton scattering
$3.4 \pm 1.1 \pm 0.1$	¹ BEANE	2003		$EFT + \gamma p$
$1.43 \pm 0.98 \stackrel{+0.52}{_{-0.98}}$	² BLANPIED	2001	LEGS	$p(ec{\gamma},\gamma),p(ec{\gamma},\pi^0),p(ec{\gamma},\pi^+)$
$1.2 \pm 0.7 \pm 0.5$	³ OLMOSDELEO	2001	CNTR	γp Compton scattering
$2.1 \pm 0.8 \pm 0.5$	⁴ MACGIBBON	1995	RVUE	global average

Neutron: PDG status (2023)

n ELECTRIC POLARIZABILITY $lpha_n$	0.00118 ± 0.00011 fm 3
n magnetic polarizability eta_n	$(3.7\pm1.2) imes10^{-4}$ fm 3

VALUE (10^{-4} fm ³)	DOCUMENT ID	TECN	COMMENT
$11.8 \pm 1.1 \qquad \text{OUR AVERAGE}$			
$11.55 \ {\pm}1.25 \ {\pm}0.8$	MYERS	2014 CNTR	$\gamma \; d { o} \gamma d$
$12.5 \ \pm 1.8 \ _{-1.3}^{+1.6}$	¹ KOSSERT	2003 CNTR	$\gamma \; d o \gamma pn$
$12.0 \pm 1.5 \pm 2.0$	SCHMIEDMAY	1991 CNTR	$n \mathrm{Pb}$ transmission
$10.7 \ ^{+3.3}_{-10.7}$	ROSE	1990B CNTR	$\gamma \; d { o} \gamma np$
		1	6. h. e

VALUE (10^{-4} fm ³)	DOCUMENT ID		TECN	COMMENT
$\textbf{3.7} \pm \textbf{1.2} \qquad \textbf{OUR AVERAGE}$				
$3.65 \pm 1.25 \pm 0.8$	MYERS	2014	CNTR	$\gamma \; d { o} \gamma d$
$2.7 \pm 1.8 \ ^{+1.3}_{-1.6}$	¹ KOSSERT	2003	CNTR	$\gamma \; d { m ightarrow} \gamma pn$
$6.5 \pm 2.4 \pm 3.0$	² LUNDIN	2003	CNTR	$\gamma \; d { o} \gamma d$

Dilepton photoproduction

 $\frac{d\sigma^{BH}}{dt \, dM_{ll}^2} = \frac{\alpha^3}{(s - M^2)^2} \cdot \frac{4\beta}{t^2 (M_{ll}^2 - t)^4} \cdot \frac{1}{1 + \tau} \\ \times \left\{ C_E \, G_{Ep}^2 + C_M \, \tau \, G_{Mp}^2 \right\},$

with $\alpha \equiv e^2/4\pi \approx 1/137$, where $\beta \equiv \sqrt{1 - \frac{4m^2}{M_{ll}^2}}$ is the lepton velocity in the l^-l^+ c.m. frame, with m the lepton mass, and where the proton FFs G_{Ep} and G_{Mp} are functions of t. The weighting coefficients multiplying the FFs in Eq. (4) have the following general structure :

FIG. 1: Bethe-Heitler mechanism to the $\gamma p \rightarrow l^- l^+ p$ process, where the four-momenta of the external particles are: k for the photon, p(p') for initial (final) protons, and l_- , l_+ for the lepton pair.

V. Pauk and M. Vanderhaeghen Phys.Rev.Lett. 115, 221804 (2015)

New approach: Beam asymmetry measurement

At low energies, the measurement of the beam asymmetry, Σ_3 is an alternative way to extract β_{M_1} (N. Krupina and V. Pascalutsa [PRL 110, 262001 (2013)]) • Measurements with linearly polarized photons and liquid hydrogen target

New ideas and developments

Options:

- **•** Experiments with liquid helium target
- Active helium gas target (in prototyping phase)

- Acting as a target: access to the reaction: $\gamma + {}^{3/4}\text{He} \rightarrow \gamma + {}^{3/4}\text{He}$
- Detection of the recoil nuclei in the active target and scattered photon in the Crystal Ball/TAPS
- Higher cross section and greater sensitivity compared to deuteron
- First prototype under development
- J.R. M Annand (Glasgow), J. Hillebrand (Mainz)

New ideas and developments

Options:

- Experiments with liquid helium target
- Active helium gas target (in prototyping phase)

Initial design used at MAX-lab

- Acting as a target: access to the reaction: $\gamma + {}^{3/4}\text{He} \rightarrow \gamma + {}^{3/4}\text{He}$
- Detection of the recoil nuclei in the active target and scattered photon in the Crystal Ball/TAPS
- Higher cross section and greater sensitivity compared to deuteron
- Inhomogeneity in the detection of the scattered photon (!?)
- J.R. M Annand (Glasgow)

Options:

- Experiments with liquid helium target
- Active helium gas target (in prototyping phase)

- Acting as a target: access to the reaction: $\gamma + {}^{3/4}\text{He} \rightarrow \gamma + {}^{3/4}\text{He}$
- Detection of the recoil nuclei in the active target and scattered photon in the Crystal Ball/TAPS
 Higher cross section and greater sensitivity
- compared to deuteronFirst prototype under development
- J.R. M Annand (Glasgow), J. Hillebrand (Mainz)

Active polarized target

- Identification of the Compton scattering events using scattered photon in combination with a recoil proton candidate
- Suppression of the backgrounds and access to the low energy range
- First prototype tested, data under analysis

M. Biroth, et al. (Mainz)

Application of Machine Learning for Compton analysis

- \bullet Multiple (pre) analyzed data sets present for Compton scattering above pion threshold \rightarrow improved background identification
- Separation of π^{0} background is very challenging, in particular on an event-by event basis
- Presence of random timing background limits the accuracy of the measurements (as in most for most of the other analyses at A2 and tagged photon facilities in general)

 \rightarrow Separation of π^{0} background from Compton events with Machine Learning

 \rightarrow New method for time background handling without random subtraction \rightarrow Outlook for the analysis of Compton scattering data with Machine Learning

Machine Learning approach for handling random background

Handle timing background needed for ML-based data analysis
Limits precision of many experiments due to subtraction of the background in the classical method

Separation of the prompt (signal) events with Machine Learning:

 →Multidimensional clustering without labels (purely statistical approach)
 →MC-based approach using the simulation of the known reaction and measured background for training ML models (requires agreement between data and MC)

Event selection below pion theshold

Selection of $\gamma p \rightarrow \gamma p$:

- $E\gamma_{(beam)} = 79 139 \text{ MeV}$
- Selecting events with 1 γ
- Missing mass cut
- Subtraction of random timing background
- Subtraction of empty target contribution

Different orientation of the polarization plane: Parallel to the horizontal plane: PARA, perpedicular: PERP Black curve : Monte Carlo

<u>Pilot experiment:</u>

- More than 200,000 Compton scattering events (Ey = 79 139 MeV and Θ_{y} = 30°-155°)
- Low background contamination in all energy bins
- → Good agreement between PARA and PERP for the unpolarized component

Pilot experiment: Data quality

PARA and PERP, Asymmetry

Degree of linear polarization (averaged)

Improved systematics: Event by event determination of the degree of linear polarization

Pilot experiment: Beam asymmetry

Compton scattering on the proton: Existing data

Triangles: P.S. Baranov et al., Phys. Lett. B 52, 22 (1974); P.S. Baranov et al., Sov. J. Nucl. Phys. 21, 355 (1975) Open circles: F.J. Federspiel et al., Phys. Rev. Lett. 67, 1511 (1991) Squares B.E. MacGibbon et al., Phys. Rev. C 52, 2097 (1995) Curve: R.A. Arndt et al., Phys. Rev. C 53, 430 (1996)

Electric Dipole Polarizability

- Apply an electric field to a composite system
- Separation of Charge, or "Stretchability"
- Proportionality constant between electric dipole moment and electric field is the electric dipole polarizability, α_{E1}.

Provides information on force holding system together.

Scalar Polarizabilities – Conceptual

Magnetic Dipole Polarizability

- Apply a magnetic field to a composite system
- Alignment of dipoles or "Alignability"
- Proportionality constant between magnetic dipole moment and magnetic field is the magnetic dipole polarizability, β_{M1}.
- Two contributions, paramagnetic and diamagnetic, and they cancel partially, giving $\beta_{M1} < \alpha_{E1}$.

Provides information on force holding system together.

Real Compton Scattering – Hamiltonian

Expand the Hamiltonian in incident-photon energy.

0th order \longrightarrow charge, mass

1st order \longrightarrow magnetic moment

2nd order \longrightarrow scalar polarizabilities:

$$H_{\rm eff}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{E1} \vec{E}^2 + \frac{1}{2} \beta_{M1} \vec{H}^2 \right]$$

3rd order \rightarrow spin (or vector) polarizabilities:

$$H_{\text{eff}}^{(3)} = -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) - \gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right]$$

γ	γ	quantity	incident γ	scattered γ
The second secon		$lpha_{E1}$	<i>E</i> 1	<i>E</i> 1
E1, M1	1 = 1, M1, E2, M2	eta_{M1}	<i>M</i> 1	<i>M</i> 1
\leq	\geq	γ_{E1E1}	E 1	<i>E</i> 1
		γ_{M1M1}	<i>M</i> 1	<i>M</i> 1
		γ_{M1E2}	<i>M</i> 1	E 2
<u>IN</u>	<u>IN</u>	γ_{E1M2}	<i>E</i> 1	M2

Nucleon has $J^{\pi} = \frac{1}{2}^+$. Photons have parity given by

EL :
$$\pi = (-1)^{L}$$

ML : $\pi = (-1)^{L+1}$

The usual QM selection rules for angular momentum and parity apply.

The polarisabilities can be defined in terms of the angular momentum and parity of the incident and scattered photon.

A photon with total angular momentum L, is said to be electric (EL) or magnetic (ML) if its parity satisfies:

$$\pi_{EL} = (-1)^L \qquad \pi_{ML} = (-1)^{L+1}$$

The γ_{M1E2} polarisability, for example, can now be described in terms of the incoming and outgoing photon properties. In this case, the incoming and outgoing photons carry total angular momentum and parity given by 2⁺ and 1⁺ respectively.

Polarized Target

Dynamical Nucleon Polarization Target material is butanol, $C_4H_{10}O$ Dilution cryostat with bath of liquid ³He/⁴He, T < 30 mK $P_p \approx 90\%$ with a relaxation time of $\tau > 1000$ hours.

Frozen Spin Target

Polarizing protons through Dynamic Nuclear Polarization (DNP):

- Cool target to 0.2 Kelvin.
- Use 2.5 Tesla magnet to align electron spins.
- Pump ≈ 70 GHz microwaves (just above, or below, the Electron Spin Resonance frequency), causing spin-flips between the electrons and protons.
- Cool target to 0.025 Kelvin, 'freezing' proton spins in place.
- Remove polarizing magnet.
- Energize 0.6 Tesla 'holding' coil in the cryostat to maintain the polarization.
- Relaxation times > 1000 hours.
- Polarizations up to 90%.

Elimination of π^0 background

- Main background source for Compton scattering: $\gamma p \rightarrow p\pi^0$
- Background production mechanism: 1 γ lost
- Kinematics similar to Compton scattering
- Significantly (~100 times) higher cross-section

Low energy range:

- Can be removed at ~ 150 MeV (e.g. 145 – 150 MeV)

Elimination of π^0 background

- Main background source for Compton scattering: $\gamma p \rightarrow p\pi^0$
- Background production mechanism: 1 γ lost
- Kinematics similar to Compton scattering
- Significantly higher cross-section
- Higher energies: 1 γ can take the largest part of the π^0 energy

Up to ~ 250 MeV: 2D (E, θ) cut!

 $E_{\gamma} = 245-255 \text{ MeV}$

Spin polarizabilities

	Theory				Exporimont	
γ	<i>p</i> ⁴HB	$\epsilon^{3}SSE$	NNLO	DRs	Kmatrix	Lapenment
E1E1	-1.4	-5.4	-4.5	-4.3	-5.0	no data
M1M1	3.3	1.4	3.7	2.9	3.4	no data
<i>E</i> 1 <i>M</i> 2	0.2	1.0	-0.9	0.0	-1.8	no data
<i>M</i> 1 <i>E</i> 2	1.8	1.0	2.2	2.1	1.1	no data
0	-3.9	2.0	-0.7	-0.7	2.3	$-1.01 \pm 0.08 \pm 0.13$
π	6.3	6.8	11.3	9.3	11.3	8.0 ± 1.8

• Proton spin polarizability predictions and measurements in units of 10^{-4} fm⁴ • Note the large absolute error on γ_{π}

- Forward spin polarizability has been determined by a "GDH-type" of sum rule

 $\gamma_0 = -\gamma_{E1E1} - \gamma_{M1M1} - \gamma_{E1M2} - \gamma_{M1E2}$

 Backward spin polarizability has been determined from a dispersive analysis of backward-angle Compton scattering

 $\gamma_{\pi} = -\gamma_{E1E1} + \gamma_{M1M1} - \gamma_{E1M2} + \gamma_{M1E2}$

Backup

Maik Biroth, Institut für Kernphysik, Mainz, Germany

mbiroth@uni-mainz.de

Backup

Maik Biroth, Institut für Kernphysik, Mainz, Germany

mbiroth@uni-mainz.de

$$\Sigma_3 = \Sigma_3^{(B)} - \frac{4M\omega^2 \cos\theta \sin^2\theta}{\alpha_{em}(1+\cos^2\theta)^2} \beta_{M1} + O(\omega^4), \quad (6)$$

where $\Sigma_3^{(B)}$ is the pure Born contribution, while

$$\omega = \frac{s - M^2 + \frac{1}{2}t}{\sqrt{4M^2 - t}}, \quad \theta = \arccos\left(1 + \frac{t}{2\omega^2}\right) \quad (7)$$

are the photon energy and scattering angle in the Breit (brick-wall) reference frame. In fact, to this order in the LEX the formula is valid for ω and θ being the energy and angle in the lab or center-of-mass frame.

N. Krupina and V. Pascalutsa [PRL 110, 262001 (2013)]

Crystal Ball/TAPS (slide taken from M. Unverzagt)

<u>TAPS:</u> Up to 510 BaF ₂ crystals Polar acceptance: 4-20°	
$\Delta t = 0.5 \text{ ns FWHM}$ $\frac{\sigma}{E_{\gamma}} = \frac{0.79\%}{\sqrt{E_{\gamma}/GeV}} + 1.8\%$	

Σ_{2x} : Experimental challenges

- Small Compton scattering cross sections
- Large backgrounds
- Butanol target (C₁H₀OH): Coherent and incoherent reactions off C, O and He
- Proton tracks are required to suppress backgrounds, but energy losses e.g. in the target are considerable.

P. Martel (UMass, KPH Mainz)

Σ_{3} at higher energies: Preliminary results

 $Ey = 277.1 \pm 10.1 \text{ MeV}$

Cristina Collicott, et al. [A2 Collaboration]

Scalar polarizabilities

Proton Electric Polarizability

- α: electric polarizabilty
- Proton between charged parallel plates:
 "stretchability"

Proton Magnetic Polarizability

- β: magnetic polarizability
- Proton between poles of a magnet:
 "alignability"

First look in December 2012 data

Magnetic polarizability: proton between poles of a magnetic

Rory Miskimen (Bosen 2009)

Spin polarizabilites

 Recent data (MAMI) and older data (LEGS) are shown along with Dispersion Relation (HDPV) and ChPT (BχPT) predictions.

G. M. Huber, C. Collicott, arXiv:1508.07919 (2015)