The PRad Experiments at Jefferson Lab

(PRad, PRad-II, DRad, and more)

A. Gasparian NC A&T State University, NC USA

for the PRad collaboration

Outline

- the PRad approach for new ep-experiments
- PRad experiment and the results
- new approved experiment, PRad-II
- new proposal, DRad
- Summary and outlook

Proton Charge Radius

One of the most fundamental quantities in physics:

- atomic physics:
 - precision atomic spectroscopy (QED, Lamb shifts, Rydberg constant R_∞);
 - r_p is strongly correlated to R_∞
- nuclear physics:
 - QCD, test of nuclear/particle models
- connects atomic and subatomic physics.

Methods to measure the Proton rms charge radius (r_p):

- Hydrogen spectroscopy (lepton-proton bound state, Atomic Physics):
 - ordinary hydrogen
 - muonic hydrogen
- Lepton-proton elastic scattering (Nuclear Physics):
 - ep- scattering (like MAMI, PRad, ULQ2, ...)
 - μp- scattering (like MUSE, AMBER, ...)

Proton Radius from $ep \rightarrow ep$ Scattering Experiments

 In the limit of first Born approximation the elastic *ep* scattering (one photon exchange):

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left(\frac{E'}{E}\right) \frac{1}{1+\tau} \left(G_E^{p\,2}(Q^2) + \frac{\tau}{\varepsilon} G_M^{p\,2}(Q^2)\right)$$

$$Q^2 = 4EE'\sin^2\frac{\theta}{2} \qquad \tau = \frac{Q^2}{4M_p^2} \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

• Structureless proton:

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} = \frac{\alpha^2 \left[1 - \beta^2 \sin^2 \frac{\theta}{2}\right]}{4k^2 \sin^4 \frac{\theta}{2}}$$

- G_E and G_M can be extracted using Rosenbluth separation
- for extremely low Q², the cross section is dominated by G_E
- Taylor expansion of G_E at low Q²

$$G_{E}^{p}(Q^{2}) = 1 - \frac{Q^{2}}{6} \langle r^{2} \rangle + \frac{Q^{4}}{120} \langle r^{4} \rangle + \dots$$

definition of the proton rms charge radius

p scattering

$$\frac{1}{q^2(Q^2))}$$

$$1+\tau)\tan^2\frac{\theta}{2}^{-1}$$
aration
d by G_E
derivative at Q² = 0:
$$e^{-} e^{-}$$

$$e^{-}$$

A. Gasparian

pren2023

 $\langle r^2 \rangle$

First Measurement of the Proton Radius

- Robert Hofstadter, experiments in 1955-1956
 - ep-elastic scattering
 - E_e = 188 MeV electron beam at Stanford University
- Nobel prize in 1961:

"for his pioneering studies of electron scattering in atomic nuclei and for his consequent discoveries concerning the *structure of nucleons*"

"proton has a diameter of 0.74 \mp 0.24 x 10⁻¹³ cm"

 $r_p = 0.74 \text{ fm}$ with a 32% uncertainty

Hofstadter, McAllister, Phys. Rev. 98, 217 (1955). Hofstadter, McAllister, Phys. Rev. 102, 851 (1956)

- Over 60 years of experimentation!
 - ✓ started from 0.74 fm in 1956
 - raised to 0.895 fm by 2010.
 - ended to 0.8414 fm in 2018

The Proton Radius Puzzle before the PRad Experiment (2016)

Possible Resolutions to the Proton Radius Puzzle

- Some initial open questions about QED calculations:
 - additional corrections to muonic-hydrogen.
 - missing contributions to electronic-hydrogen.
 - higher moments in electric form factor;
 - ۰...
- Is the ep-interaction the same as µp-interaction (the lepton universality principle)?
- New Physics (forces) beyond the Standard Model?
 - many models, discussions, suggestions ...
- Potential solutions:
 - need new high precision, high accuracy experiments:
 - ✓ ep-scattering experiments:
 - > reaching extremely low Q^2 range (10⁻⁴ Gev/c²)
 - possibly with new independent methods

PRad at JLab

- measure absolute cross sections in ONE experimental setting!
- > MUSE at PSI, ISR at Mainz, ULQ² in Japan, AMBER at CERN ...
- ✓ ordinary hydrogen spectroscopy experiments:
 - > York University in Canada, LKB in Paris, France, CREMA in Germany ...

Not found Not found Not significant

Not found yet

Planning a New ep→ep Scattering Experiment

- Practically all ep-scattering experiments were performed with magnetic spectrometers and LH₂ targets!
 - high resolutions but, very SMALL angular and momentum acceptances:
 - > need many different settings of angle (Θ_e) , energies (E_e, E'_e) to cover a reasonable Q² fitting interval
 - normalization of each Q² bin
 - > their systematic uncertainties
 - ✓ limitation on minimum Q²: 10⁻³ GeV/C²
 - > min. scattering angle: $\theta_e \approx 5^0$
 - \succ typical beam energies (E_e ~ 1 GeV)
 - ✓ limits on accuracy of cross sections (d σ /d Ω): ~ 2 ÷ 3%
 - statistics is not a problem (<0.2%)</p>
 - control of systematic uncertainties???
 - ✤ beam flux, target thickness, windows,
 - ✤ acceptances, detection efficiencies,

۰...

Three spectrometer facility of the A1 collaboration:

The PRad Experimental Approach

- 1) Use large acceptance, high resolution electromagnetic calorimeter (together with a GEM coordinate detector):
 - ✓ measure all angles in one experimental setting ($\vartheta_e = 0.6^0 7.0^0$) (Q² = 2x10⁻⁴ ÷ 6x10⁻²) GeV/c²;
 - ✓ access to smaller angles ($\vartheta_e \approx 0.6^0$)
 - ✓ calibrate with a well-known QED process: azimuthal symmetry of the calorimeter, simultaneous detection of ee → ee Moller scattering (best known control of systematics).
- 2) Use windowless H₂ gas flow target:
 - minimize experimental background.
- Use two beam energies only: E₀ = 1.1 GeV and 2.2 GeV to check the consistency of experimental data.

The PRad Experimental Approach

- 1) Use large acceptance, high resolution electromagnetic calorimeter (together with a GEM coordinate detector):
 - ✓ measure all angles in one experimental setting ($\vartheta_e = 0.6^0 7.0^0$) (Q² = 2x10⁻⁴ ÷ 6x10⁻²) GeV/c²;
 - ✓ access to smaller angles ($\vartheta_e \approx 0.6^0$)
 - ✓ calibrate with a well-known QED process: azimuthal symmetry of the calorimeter, simultaneous detection of ee → ee Moller scattering (best known control of systematics).
- 2) Use windowless H₂ gas flow target:
 - minimize experimental background.
- Use two beam energies only: E₀ = 1.1 GeV and 2.2 GeV to check the consistency of experimental data.

PRad Experiment Timeline

 Initial proposal development: 	2011-12
 Approved by JLab PAC39: 	2012
 Funding proposal for windowless H₂ gas flow target (NSF MRI #PHY-1229153) 	2012
 Development, construction of the target: 	2012 – 15
 Funding proposals for the GEM detectors: (DOE awards) 	2013
 Development, construction of the GEM detectors: 	2013-15
 Beam line installation, commissioning, data taking in Hall B at JLab: 	January /June 2016
 Data analysis 	2016 – 2019
 ✓ Preliminary results released ✓ Publication in Nature, 575, 145–150 (2019) 	Summer 2018 (Mainz workshop) November, 2019

PRad Experiment Performed in Hall B at Jefferson Lab

PRad was performed in Hall B at JLab in January – June of 2016

PRad Experimental Setup in Hall B at JLab (schematics)

- Main detector elements:
 - > windowless H_2 gas flow target
 - > PrimEx HyCal calorimeter
 - > vacuum box with one thin window at HyCal end
 - > X,Y GEM detectors on front of HyCal

- Beam line equipment:
 - standard beam line elements (0.1 50 nA)
 - photon tagger for HyCal calibration
 - collimator box (6.4 mm collimator for photon beam, 12.7 mm for e⁻ beam halo "cleanup")
 - Harp 2H00 I

Windowless Hydrogen Gas Flow Target

pren2023

cell vs. chamber pressures: 200:1

PRad Experimental Apparatus: HyCal El. Mag. Calorimeter

PRad Setup (Side View)

- hybrid EM calorimeter (HyCal)
 ✓ inner 1156 PbWO₄
 - modules.
 - ✓ outer 576 lead glass modules.
- 5.8 m from the target.
- scattering angle coverage: ~
 0.6° to 7.5°
- full azimuthal angle coverage
- high resolution and efficiency
 - 2.5% at 1 GeV for crystal part
 - ✓ 6.1% at 1 GeV for lead glass part
- energy calibration done with tagged photons

A. Gasparian

Data Analysis: ep-inelastic Contribution

- Using Christy 2018 empirical fit* to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO₄ region (<3.5°)
- Less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the Lead glass region

* M. E. Christy and P. E. Bosted, PRC 81, 055213 (2010)

Extracted $ep \rightarrow ep$ Elastic Differential Cross Sections

- Extracted differential cross sections vs. Q², with 1.1 and 2.2 GeV data.
- Statistical uncertainty: ~0.2% for 1.1 GeV and ~0.15% for 2.2 GeV per point.
- Systematic uncertainties: 0.3% 0.5% for 1.1 GeV and 0.3 1.1% for 2.2 GeV per point.

Extracted Charge Form Factor (fit to extract the Proton Radius)

PRad fit shown as $f(Q^2)$

 $r_p = 0.831 + -0.007 \text{ (stat.)} + -0.012 \text{ (syst.) fm}$

PRad final result: $R_p = 0.831 \pm 0.007$ (stat.) ± 0.012 (syst.) fm

A. Gasparian

The Proton Radius Puzzle before the PRad Publication

The PRad Final Result on the Radius

What is Next? Or the Current Open Questions

- The "Puzzle" is still not fully resolved!
- There is certain discrepancy between the very recent FF measurements.

figure: J. Bernauer

Data Analysis: ep-inelastic Contribution

- Using Christy 2018 empirical fit* to study inelastic ep contribution
- Good agreement between data and simulation
- Negligible for the PbWO₄ region (<3.5°)
- Less than 0.2%(2.0%) for 1.1GeV(2.2GeV) in the Lead glass region

* M. E. Christy and P. E. Bosted, PRC 81, 055213 (2010)

Planed New Experiment: PRad-II at JLab (E12-20-004)

- PRad-II is planning to improve the PRad accuracy by a factor of 3.8 (to $\pm 0.43\%$ on r_p) by:
 - Significantly improved statistics (4 times less uncertainties);
 - Hardware upgrades (systematics):
 - > adding full tracking capability (second plane of GEM/ μ Rwell detectors).
 - small-size scintillator detectors just downstream the target to veto Moller electrons to reach the 10⁻⁵ GeV² Q² range.
 - > adding new "beam halo blacker" just before the Tagger.
 - > upgrade DAQ/electronics to fADC based electronics:
 - > possible HyCal upgrade to all PbWO₄ crystals, essential for the ep-inelastic background suppression at relatively higher Q² range ($\approx 10^{-2}$ GeV²) and uniformity over full acceptance.

PRad-II Experimental Setup (Side View)

PRad-II: Projected Result

- Approved by JLab's PAC-48 in August, 2020
- Projected total uncertainty on radius: 0.43%

PRad-II: Current Status

- Approved by JLab's PAC48 in August, 2020, (E12-20-004)
- Order for new electronics and DAQ (fADC based) is in progress at JLab.
- Funding for new GEMs (second plane) is released by JLab, parts ordering is in progress.
- NSF funding proposal is submitted in February 2023 for HyCal upgrade:
 - ✓ Major Research Instrumentation (MRI) Track-2 development type proposal, ~\$4M total for:
 - > HyCal partial upgrade to PbWO₄ crystals
 - second plane of GEM detectors
 - > scintillator detectors to veto the Moller electrons at very small Q² range ($\approx 10^{-5}$ GeV²)
 - NSF decision is expecting in July 2023
- For the calorimeter upgrade, we are also looking for possible collaborations with experimental groups and institutions willing to provide PbWO₄ part of the HyCal calorimeter.
- Current optimistic prediction for the run is Summer of 2025

DRad: New Proposal for Deuteron Charge Radius (PR12-23-011)

- Use (PRad-II setup) + (cylindrical recoil detector) for the control of reaction elasticity
- Electron beam energy: 1.1 GeV and 2.2 GeV
- Q² range: 2x10⁻⁴ 5x10⁻² GeV²
- Simultaneous detection of scattered elastic and Moller electrons (control of systematics)

The Deuteron Radius Puzzle (spectroscopy results)

• $\sim 6 \sigma$ discrepancy between R_d from ordinary and muonic spectroscopy results.

Expected Results

- Submitted to JLab PAC51 for July 2023 meeting
- Expected total uncertainty on Rd: 0.21%

Search for Hidden Sector New Particles in the 3 - 60 MeV Mass Range (JLab Experiment E12-21-003)

- The experiment has two experimental objectives:
 - 1) Validate existence or establish an experimental upper limit on the electroproduction of the hypothetical X17 particle claimed in two ATOMKI low-energy proton-nucleus experiments.
 - 2) Search for "hidden sector" intermediate particles (or fields) in [3 60] MeV mass range produced in electron-nucleus collisions and detected in e^+e^- (or $\gamma\gamma$) channels.
 - The method:
 - "bump hunting" in the invariant mass spectrum over the beam background.
 - ✓ direct detection of all final state particles (e', e⁺e⁻ and/or $\gamma\gamma$) → full control of kinematics
- Electroproduction on heavy nucleus in forward directions:

 $e^- + Ta \rightarrow e' + \gamma^* + Ta \rightarrow e' + X + Ta$, with $X \rightarrow e^+e^-$ (with tracking)

and $X \rightarrow \gamma \gamma$ (without tracking)

in mass range of: [3 - 60] MeV, target: Tantalum, ($_{73}$ Ta¹⁸¹), 1 μ m (2.4x10⁻⁴ r.l.) thick foil.

- All 3 final state particles will be detected in this experiment:
 - scattered electrons, e', with 2 GEMs and PbWO₄ calorimeter;
 - decay e+ and e- particles, with 2 GEMs and PbWO₄ calorimeter;
 - \checkmark or decay $\gamma\gamma$ pairs, with PbWO₄ calorimeter (and GEMs for veto).
- Expected run: Summer 2025

Summary and outlook

- PRad was uniquely designed and performed in 2016 to address the "*Puzzle*":
 - ✓ data in a large Q² range have been recorded with the same experimental setting, $[2x10^{-4} \div 6x10^{-2}]$ GeV/C².
 - ✓ lowest Q² data set (~10⁻⁴ GeV/C²) has been collected for the first time in ep-scattering experiments;
 - simultaneous measurement of the Moller and Mott scattering processes is the best control of systematic uncertainties.
- PRad final result supports small proton charge radius (Nature 575, 145–150 (2019)):
 - \checkmark R_p = 0.831 ± 0.007 (stat.) ± 0.012 (syst.) fm (±1.67% total)
 - significant input in changing the CODATA recommendation on radius.
- PRad-II will improve the radius measurement by a factor of 4
 - > will address the differences between PRad and all modern ep-experiments;
 - will reach the Q²~10⁻⁵ Gev² range, for the first time in ep-experiments, helping radius extraction more robust.
 - > optimistic run period: summer, 2025
- New proposal has been developed for JLab PAC51 to measure the R_d with 0.21% precision

Thank you!

PRad Systematic Uncertainties

Item	r_p uncertainty [fm]	n_1 uncertainty	n_2 uncertainty
Event selection	0.0070	0.0002	0.0006
Radiative correction	0.0069	0.0010	0.0011
Detector efficiency	0.0042	0.0000	0.0001
Beam background	0.0039	0.0017	0.0003
HyCal response	0.0029	0.0001	0.0001
Acceptance	0.0026	0.0001	0.0001
Beam energy	0.0022	0.0001	0.0002
Inelastic ep	0.0009	0.0000	0.0000
G_M^p parameterization	0.0006	0.0000	0.0000
Total	0.0115	0.0020	0.0013

Radiative Tail Measurement from Moller

Data from PRad-I experiment ($E_e = 2.2 \text{ GeV}$)

- PID by GEMs and HyCal
- Event selection:
 - two e- and one or more γ (dominated by one \checkmark only)
 - \checkmark $\Sigma E_{\text{clusters}} = E_{\text{beam}} \mp 4 \sigma$
 - ✓ One e- is in the Moller ring
 - ✓ $E_{e_{-}} \in \frac{1}{2} E_{beam} \mp 4 \sigma$
 - \checkmark E_v > 20 MeV
- Theory simulations in progress

Data Analysis: Beam Background Subtraction

- ep background rate ~ 10% at forward angles (<1.3⁰, dominated by upstream "collimator"), less than 2% otherwise.
- ee background rate ~ 0.8% at all angles .

Extracted Proton Electric Form Factor, G_E vs. Q²

 G'_{E} as normalized electric Form factor:

$$n_1 f(Q^2)$$
, for 1GeV data
 $n_2 f(Q^2)$, for 2GeV data
 G_E/n_1 , for 1GeV data
 G_E/n_2 , for 2GeV data

Using rational (1,1)
$$f(Q^2) = \frac{1 + p_1 Q^2}{1 + p_2 Q^2}$$

 $n_1 = 1.0002 + -0.0002(\text{stat.}) + -0.0020 (\text{syst.}),$ $n_2 = -0.0020 (\text{syst.}),$

 $n_2 = 0.9983 + - 0.0002(\text{stat.}) + - 0.0013 (\text{syst.})$

Recent Developments in Fitting Procedures

- The input form factors (with known r_p) are used to generate pseudo data using PRad kinematic range and uncertainties.
- All combinations of input functions and fit functions can then be tested repeatedly against regenerated pseudo data.
- Since the input radius is known, this allowed to find fitting functions that are robust for proton radius extractions in an objective fashion.

> The following fitters:

- two-parameter rational function
- two-parameter continued fraction
- ✓ second-order polynomial expansion of z

are identified as robust fitters with small uncertainties

RMSE = sqrt(bias² + σ^2)

X. Yan, et al.

"Robust extraction of the proton charge radius from electron-proton scattering data", PRC 98, 2, 025204, 2018

PRad Experimental Apparatus: Vacuum Chamber

PRad Setup (Side View)

PRad Experimental Apparatus: Vacuum Chamber and Window

2-stage vacuum box in Hall B beam line

1.7 m diameter, 2 mm Al vacuum window

PRad Experimental Apparatus: GEM Coordinate Detectors

PRad Setup (Side View)

- Two large area GEM
- Small overlap region in
- Excellent position resolution (72 µm)
- Improve position resolution of the setup by > 20 times
- Large improvements in Q² determination

Data Analysis: Empty Target Runs for Background Subtraction

- ep background rate ~ 10% at forward angle (<1.1 deg, dominated by upstream beam halo blocker), less than 2% otherwise
- ee background rate ~ 0.8% at all angles

Residual hydrogen gas: hydrogen gas filled during background runs

Data Analysis: Event Selection

- Experimental data was taken with two beam energies:
 - ✓ 1.1 GeV (604 M events)
 - 2.2 GeV (756 M events)
- For all events, require hit matching between GEMs and HyCal
- For *ep* and *ee* events, apply angle dependent energy cut based on kinematics:
 - > cut size depend on local detector resolution
- For ee, if requiring double-arm events, apply additional cuts:
 - elasticity
 - co-planarity
 - vertex z (kinematics)

What is Next? Or the Current Open Questions

- The "Puzzle" is still not fully resolved
- There is certain discrepancy between the very recent FF measurements

Radiative Corrections for DRad

- The complete elastic e-d NLO cross section including the lowest order radiative corrections beyond the ultrarelativistic limit has been calculated
- Based on the ansatz in the PRad RC calculation and used the Bardin-Shumeiko infrared divergence cancellation method (I. Akushevich et al. Eur. Phys. J. A 51.1(2015), p. 1. DOI: 10.1140/epja/i2015-15001-8)
- A generator is developed and the total correction to the elastic e-d Born cross section in the DRad kinematics is calculated
- The uncertainty of the NLO calculation is estimated, taking into account higher-order contributions, calculation assumptions, and differences between various recipes
- The paper is to be submitted to arXiv and European Physical Journal A

A. Gasparian

PRad Collaboration

A part of the PRad collaboration in December, 2019 at JLab

Currently 14 collaborating universities and institutions:

Jefferson Laboratory, NC A&T State University, Duke University, Idaho State University, Mississippi State University, Norfolk State University, University of Virginia, Argonne National Laboratory, University of North Carolina at Wilmington, Hampton University, College of William & Mary, Tsinghua University, China, Old Dominion University, ITEP Moscow, Russia. Graduate students:
 Chao Peng (Duke), Weizhi Xiong (Duke),
 Xinzhan Bai (UVa), Li Ye (MSU)

Postdocs:

Chao Gu (Duke), Xuefei Yan (Duke), Mehdi Meziane (Duke), Zhihong Ye (Duke), Tyler Hague (NC A&T SU), Maxime Lavilain (NC A&T), Krishna Adhikari (MSU), Latif-ul Kabir (MSU), Chandra Akondi (NC A&T)