Quantum electrodynamics of composite particles

Krzysztof Pachucki

University of Warsaw

PREN2023
June 29, 2023

Leading finite nuclear size

Atomic energy levels are shifted due to the finite nuclear size

- $E_{\mathrm{fs}}(Z \alpha)$ is a function of the nuclear charge Z
- expansion in α : $E_{\mathrm{fs}}=E_{\mathrm{fs}}^{(4)}+E_{\mathrm{fs}}^{(5)}+E_{\mathrm{fs}}^{(6)}+\ldots$, lepton/nuclear mass ratio dependence
- $E_{\mathrm{fs}}^{(4)}=\frac{2 \pi}{3} \phi^{2}(0) Z \alpha r_{C}^{2}$, it includes complete dependence on the nuclear mass through $\phi^{2}(0)=(\mu Z \alpha)^{3} /\left(\pi n^{3}\right) \delta_{l 0}$
- definition of the charge radius r_{C} depend on the nuclear spin
$\delta H=-Z e\left(\frac{r_{C}^{2}}{6}+\frac{\delta_{1}}{M^{2}}\right) \vec{\nabla} \cdot \vec{E}$, where $\delta_{0}=0, \delta_{1 / 2}=1 / 8, \delta_{1}=0 \ldots$
- there is no established definition of the nuclear charge radii for the spin $I>1$
- what is the values of the self-energy correction?, overlap of r_{C}^{2} with the so-called nuclear self-energy

Nuclear self-energy

How to define the nuclear charge radius in the presence of self-energy ?

- $\Delta T^{00}=\frac{q^{2} M}{p^{2}-M^{2}}\left(\frac{4 Z^{2} \alpha}{3 \pi M^{2}} \ln \frac{M^{2}}{M^{2}-p^{2}}+\frac{2}{3} r_{C}^{2}\right)+(q \rightarrow-q)$
- $E(n, I)=\frac{2}{3 n^{3}}(Z \alpha)^{4} \mu^{3} r_{C}^{2} \delta_{l 0}+\frac{4 Z(Z \alpha)^{5}}{3 \pi n^{3}} \frac{\mu^{3}}{M^{2}}\left[\ln \left(\frac{M}{\mu(Z \alpha)^{2}}\right) \delta_{l 0}-\ln k_{0}(n, l)\right]$

Elastic two-photon exchange with the nuclear size

- $E_{\mathrm{fs}}^{(5)}=-\frac{\pi}{3} \phi^{2}(0)(Z \alpha)^{2} m r_{F}^{3}$, where $r_{F}^{3}=\int d^{3} r_{1} \int d^{3} r_{2} \rho\left(r_{1}\right) \rho\left(r_{2}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right|$
- $E_{\mathrm{fs}}^{(5)}$ is (very) important for muonic atoms
- This result is valid in the nonrecoil limit, thus what are the nuclear recoil corrections?
- $E_{\text {recfs }}^{(5)}=-\frac{m}{M} \phi^{2}(0)(Z \alpha)^{2}\left[\frac{7}{6}-2 \gamma-2 \ln \left(m r_{L}\right)\right] r_{C}^{2}$, where
$\int d^{3} r_{1} \int d^{3} r_{2} \rho\left(\vec{r}_{1}\right) \rho\left(\vec{r}_{2}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right|^{2} \ln \left(m\left|\vec{r}_{1}-\vec{r}_{2}\right|\right)=2 r_{C}^{2} \ln \left(m r_{L}\right)$
- it is significantly enhanced r_{F}^{3} versus r_{C}^{2}
- higher order in mass ratio corrections depend on the nuclear spin
- inclusion of the (electron-nucleus) Breit interaction leads to spurious terms that are linear in r_{C}

Elastic three-photon exchange

In the infinite nuclear mass limit

$$
\begin{aligned}
E_{\mathrm{fns}}^{(6)}(n S)= & -(Z \alpha)^{6} m^{3} r_{C}^{2} \frac{2}{3 n^{3}}\left[\frac{9}{4 n^{2}}-3-\frac{1}{n}+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \left(m r_{C 2} Z \alpha\right)\right] \\
& +(Z \alpha)^{6} m^{5} r_{C}^{4} \frac{4}{9 n^{3}}\left[-\frac{1}{n}+2+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \left(m r_{C 1} Z \alpha\right)\right] \\
& +(Z \alpha)^{6} m^{5} r_{C C}^{4} \frac{1}{15 n^{5}}, \\
E_{\text {fns }}^{(6)}\left(n P_{1 / 2}\right)= & (Z \alpha)^{6} m\left(\frac{m^{2} r_{C}^{2}}{6}+\frac{m^{4} r_{C C}^{4}}{45}\right) \frac{1}{n^{3}}\left(1-\frac{1}{n^{2}}\right), \\
E_{\text {fns }}^{(6)}\left(n P_{3 / 2}\right)= & (Z \alpha)^{6} m^{5} r_{C C}^{4} \frac{1}{45 n^{3}}\left(1-\frac{1}{n^{2}}\right), \\
E_{\text {fns }}^{(6)}\left(n L_{J}\right)= & 0 \text { for } L>1,
\end{aligned}
$$

where $r_{C C}^{4}=\left\langle r^{4}\right\rangle$ and the effective nuclear charge radii $r_{C 1}$ and $r_{C 2}$ encode the high-momentum contributions and are expected to be of the order of r_{C}.
What are the finite nuclear size recoil corrections?

Nonperturbative nuclear recoil correction

Exact nonperturbative formula (a'la Shabaev) for pure recoil corrections:

$$
E_{\mathrm{rec}}=\frac{m^{2}}{M} \frac{i}{2 \pi} \int_{-\infty}^{\infty} d \omega\langle a|\left[p^{j}-D^{j}(\omega)\right] G\left(\omega+E_{a}\right)\left[p^{j}-D^{j}(\omega)\right]|a\rangle
$$

where

- $G(E)=\left[E-H_{D}(1-i \epsilon)\right]^{-1}$ is the Dirac-Coulomb Green function
- $D^{j}(\omega)=-4 \pi Z \alpha \alpha^{i} G_{C}^{i j}(\omega, \vec{r})$, and α^{i} are the Dirac matrices.
- Photon propagator in the modified Coulomb gauge

$$
\begin{aligned}
G_{C}^{i j}(\omega, \vec{r}) & =\delta^{i j} \mathcal{D}(\omega, r)+\frac{\nabla^{i} \nabla^{j}}{\omega^{2}}[\mathcal{D}(\omega, r)-\mathcal{D}(0, r)] \\
\mathcal{D}(\omega, r) & =\int \frac{d^{3} k}{(2 \pi)^{3}} e^{i \vec{k} \cdot \vec{r}} \frac{\rho\left(\vec{k}^{2}-\omega^{2}\right)}{\omega^{2}-\vec{k}^{2}}
\end{aligned}
$$

- The nuclear charge density is a function of an invariant $\rho\left(\vec{k}^{2}-\omega^{2}\right)$
- Radiative recoil corrections at $\alpha(Z \alpha)^{5}$ are not known !!!

Numerical results for the finite size recoil

where $\delta P=E_{\text {recfs }} /\left[\left(m^{2} / M\right)(Z \alpha)^{5} / \pi\right]$ and $E_{\text {recfs }}^{(6)} \approx-\frac{m^{3}}{M}(Z \alpha)^{6} r_{C}$ for electronic atoms

Point nucleus two-photon exchange $(Z \alpha)^{5}$

$$
\begin{align*}
E(n, l)= & \frac{\mu^{3}}{m M} \frac{(Z \alpha)^{5}}{\pi n^{3}}\left\{\frac{2}{3} \delta_{10} \ln \left(\frac{1}{Z \alpha}\right)-\frac{8}{3} \ln k_{0}(n, l)-\frac{1}{9} \delta_{l 0}-\frac{7}{3} a_{n}-2 \delta_{10} \ln \left(1+\frac{m}{M}\right)\right. \\
& \left.+\frac{m^{2}}{M^{2}-m^{2}} \ln \left(\frac{M}{m}\right) \delta_{l 0}[2+I(2 I-1)]\right\} \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
a_{n}=-2\left[\ln \left(\frac{2}{n}\right)+\left(1+\frac{1}{2}+\ldots+\frac{1}{n}\right)+1-\frac{1}{2 n}\right] \delta_{l 0}+\frac{1-\delta_{l 0}}{I(I+1)(2 I+1)} . \tag{2}
\end{equation*}
$$

- It depends on the nuclear spin I
- EVP correction to TPE is barely knowns and is quite difficult to calculate !!!
- It is unknown for $I>1$

TPE

$$
\begin{aligned}
E_{\mathrm{TPE}} & =E_{\mathrm{nucl} 1}+E_{\mathrm{nucl} 2}+E_{\mathrm{pol}}+\ldots, \\
E_{\mathrm{nucl} 1} & =-\frac{\pi}{3} m \alpha^{2} \phi^{2}(0)\left[Z \tilde{R}_{F}^{3}(p)+(A-Z) \tilde{R}_{F}^{3}(n)\right], \\
E_{\mathrm{nucl} 2} & =-\frac{\pi}{3} m \alpha^{2} \phi^{2}(0) \sum_{i, j=1}^{Z}\left\langle\phi_{N}\right|\left|\vec{r}_{i}-\vec{r}_{j}\right|^{3}\left|\phi_{N}\right\rangle \\
E_{\mathrm{pol}} & \left.=-\frac{4 \pi \alpha^{2}}{3} \phi^{2}(0) \int_{E_{T}} d E \sqrt{\frac{2 \mu}{E}}\left|\left\langle\phi_{N}\right| \vec{d}\right| E\right\rangle\left.\right|^{2},
\end{aligned}
$$

- Instead of the (nuclear) Zemach radius r_{Z} the TPE contribution involves effective Zemach radii of individual nucleons,
$R_{F}^{3}(p)=2.876(246) \mathrm{fm}^{3}, R_{F}^{3}(n)=0.712(223) \mathrm{fm}^{3}$,
the inter-proton $\left|\vec{r}_{i}-\vec{r}_{j}\right|^{3}$ and a kind of the electric dipole polarizability
- the difference between the elastic (Zemach) and the complete TPE is significant
- $E_{\text {TPE }}$ requires subtraction of the point nucleus $(Z \alpha)^{5}$ contribution to be consistent with the QED contribution

3PE

The total nuclear structure correction $E^{(6)}$ is represented as a sum of several parts: $E^{(6)}=E_{1}^{(6)}+E_{2}^{(6)}+E_{C}+E_{\text {np }}^{(6)}$, which have been calculated only for $\mu \mathrm{D}$,
$E_{\mathrm{np}}^{(6)}$ is the tree-photon exchange with individual nucleons,

$$
\begin{aligned}
E_{C}(n, l)= & -\frac{1}{3}\left\langle\frac{1}{r^{4}}\right\rangle\left\langle\phi_{N}\right| \vec{R} \frac{1}{H_{N}-E_{N}} \vec{R}\left|\phi_{N}\right\rangle \\
& -\frac{4 \pi}{3} \phi^{2}(0)\left\langle\phi_{N}\right| \vec{R} \frac{1}{H_{N}-E_{N}}\left[1+\ln \left(\frac{2 m \alpha^{2}}{H_{N}-E_{N}}\right)\right] \vec{R}\left|\phi_{N}\right\rangle \\
E_{2}^{(6)}(n S)= & -\alpha^{6} m^{3} \frac{2}{3 n^{3}}\left[r_{d}^{2}\left(\frac{9}{4 n^{2}}-3-\frac{1}{n}+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \alpha\right)\right. \\
& \left.+r_{s}^{2}\left(\frac{47}{12}-\frac{13}{2} \ln 2-\frac{5}{2} \ln \frac{\langle E\rangle_{2}}{m}-\gamma\right)+r_{p}^{2} \ln \left(r_{p 2} m\right)\right] \\
E_{1}^{(6)}(n S)= & \alpha^{6} m^{5} \frac{4}{9 n^{3}}\left[r_{d}^{4}\left(-\frac{1}{n}+\gamma-\ln \frac{n}{2}+\Psi(n)+\ln \alpha\right)+r_{d d}^{4} \frac{3}{20 n^{2}}\right. \\
& -r_{s s}^{4}\left(\frac{3}{5} \ln 2-\frac{9}{10}\right)+r_{s}^{4}\left(\frac{1}{3}-\frac{3}{2} \ln 2-\frac{1}{2} \ln \frac{\langle E\rangle_{1}}{m}+2 \beta\right) \\
& \left.+r_{p}^{4}\left(2+\gamma+\ln \left(r_{p 1} m\right)\right)+r_{s}^{2} r_{p}^{2}\left(\frac{10}{3}-5 \ln 2-\ln \frac{\langle E\rangle_{2}}{m}\right)\right] .
\end{aligned}
$$

Charge radif of light muonic atoms

Order	Correction	$\mu \mathrm{H}$	$\mu \mathrm{D}$	$\mu^{3} \mathrm{He}^{+}$	$\mu^{4} \mathrm{He}^{+}$
$(Z \alpha)^{5}$	TPE	$0.0292(25)$	$1.979(20)$	$16.38(31)$	$9.76(40)$
$\alpha^{2}(Z \alpha)^{4}$	Coulomb distortion	0.0	-0.261	-1.010	-0.536
$(Z \alpha)^{6}$	$3 P E$	$-0.0013(3)$	$0.0022(9)$	$-0.214(214)$	$-0.165(165)$
$\alpha(Z \alpha)^{5}$	$\mathrm{eVP}^{(1)}$ with TPE	$0.0006(1)$	$0.0275(4)$	$0.266(24)$	$0.158(12)$
$\alpha(Z \alpha)^{5}$	$\mu \mathrm{SE}^{(1)}+\mu \mathrm{VP}^{(1)}$ with TPE	0.0004	$0.0026(3)$	$0.077(8)$	$0.059(6)$
E_{QED}	point nucleus	$206.0344(3)$	$228.7740(3)$	$1644.348(8)$	$1668.491(7)$
\mathcal{C}_{C}^{2}	finite size	$-5.2259 r_{p}^{2}$	$-6.1074 r_{d}^{2}$	$-103.383 r_{h}^{2}$	$-106.209 r_{\alpha}^{2}$
E_{NS}	nuclear structure	$0.0289(25)$	$1.7503(200)$	$15.499(378)$	$9.276(433)$
$E_{L}(\exp)$	experiment 1				
r_{C}	this work				
r_{C}	previous $^{\mathrm{a}}$	$0.84060(39)$	$2.12758(78)$	$1.97007(94)$	$1.6786(12)$
		$0.84087(39)$	$2.12562(78)$	$1.97007(94)$	$1.67824(83)$

[^0]
Summary

Deuteron-proton charge radii diference: perfect agreement

$$
\begin{aligned}
r_{d}^{2}-\left.r_{p}^{2}\right|_{\text {muonic }} & =3.8200(7)_{\exp }(30)_{\mathrm{theo}} \mathrm{fm}^{2} \\
r_{d}^{2}-\left.r_{p}^{2}\right|_{\text {electronic }} & =3.8207(3) \mathrm{fm}^{2}
\end{aligned}
$$

Helion-alpha charge radii diference: 3.6σ disagreement

$$
\begin{aligned}
r_{h}^{2}-\left.r_{\alpha}^{2}\right|_{\text {muonic }} & =1.0636(6)_{\exp }(30)_{\text {theo }} \mathrm{fm}^{2} \\
r_{h}^{2}-\left.r_{\alpha}^{2}\right|_{\text {electronic }} & =1.0757(15) \mathrm{fm}^{2}
\end{aligned}
$$

Conclusions

- the nuclear mass effects has to be accounted for (beyond the Dirac equation)
- the finite nuclear size effects $\tilde{\rho}\left(\vec{q}^{2}-\omega^{2}\right)$ require inclusion of the exchange energy
- the main limitation comes from inelastic TPE and 3PE
- α^{6} (pure and radiative) recoil finite size correction are not yet known
- results for Li and Be ???

Nuclear structure effects in hyperfine splitting

- $\delta E_{\text {nucl }}=\delta^{(1)} E_{\text {nucl }}+\delta^{(2)} E_{\text {nucl }}+\ldots$ where
$\delta^{(1)} E_{\text {nucl }}$ is the two-photon exchange correction of order $(Z \alpha) E_{F}$,
$\delta^{(2)} E_{\text {nucl }}$ is the three-photon exchange correction of order $(Z \alpha)^{2} E_{F}$,
$E_{F}=-\frac{2}{3} \psi^{2}(0) \vec{\mu} \cdot \vec{\mu}_{e}$
- $\delta^{(1)} E_{\text {nucl }}=-2 m_{r} Z \alpha r_{Z} E_{F}$ where
r_{Z} is the Zemach radius defined by $r_{Z}=\int d^{3} r_{1} \int d^{3} r_{2} \rho_{M}\left(r_{1}\right) \rho_{E}\left(r_{2}\right)\left|\vec{r}_{1}-\vec{r}_{2}\right|$
- nuclear recoil correction

$$
\begin{aligned}
\delta^{(1)} E_{\text {fns, rec }}= & -E_{F} \frac{Z \alpha}{\pi} \frac{m}{M} \frac{3}{8}\left\{g\left[\gamma-\frac{7}{4}+\ln \left(m r_{M^{2}}\right)\right]\right. \\
& \left.-4\left[\gamma+\frac{9}{4}+\ln \left(m r_{E M}\right)\right]-\frac{12}{g}\left[\gamma-\frac{17}{12}+\ln \left(m r_{E^{2}}\right)\right]\right\}
\end{aligned}
$$

$O\left(\alpha^{2}\right)$ corrections to hfs

- $\delta^{(2)} E_{\text {fns }}=\frac{4}{3} E_{F}\left(m r_{p} Z \alpha\right)^{2}\left[-\frac{1}{n}+2 \gamma-\ln \frac{n}{2}+\Psi(n)+\ln \left(m r_{p p} Z \alpha\right)+\frac{r_{m}^{2}}{4 r_{p}^{r^{2}}}\right]$
- $O\left(\alpha^{2}\right)$ recoil corrections are unknown
- nonperturbative formula for the recoil correction to hfs has not yet been derived (ongoing project)
- the use elastic formfactors in description of hfs is very much approximate

More accurate picture

$$
\begin{aligned}
\delta^{(1)} E_{\mathrm{hfs}} & =E_{\mathrm{Low}}+E_{1 \text { nuc }}+E_{\mathrm{pol}} \\
E_{1 \text { nuc }} & =-\frac{8 \pi}{3} \alpha^{2} \frac{\psi^{2}(0)}{m_{p}+m} \vec{s} \cdot\left\langle\sum_{a} g_{a} \vec{s}_{a} r_{a Z}\right\rangle \\
E_{\mathrm{Low}} & =\frac{\alpha}{16} \psi^{2}(0) \vec{\sigma} \sum_{a \neq b} \frac{e_{a} e_{b}}{m_{b}}\left\langle 4 r_{a b} \vec{r}_{a b} \times \vec{p}_{b}+\frac{g_{b}}{r_{a b}}\left[\vec{r}_{a b}\left(\vec{r}_{a b} \cdot \vec{\sigma}_{b}\right)-3 \vec{\sigma}_{b} r_{a b}^{2}\right]\right\rangle
\end{aligned}
$$

Let us consider the special case of a spherically symmetric nucleus and neglect the proton-neutron mass difference.

$$
E_{\text {Low }}=-\frac{8 \pi}{3} \alpha^{2} \frac{\psi^{2}(0)}{m_{n}} \sum_{a-\text { protons }} \sum_{b}\left\langle r_{a b} g_{b} \vec{s}_{b}\right\rangle \vec{s}
$$

Much better description for hfs in $\mu \mathrm{D}$

Discrepancies in $\mu \mathrm{D}$ hfs

- the "experimental value" of the nuclear-structure correction in $\mu \mathrm{D}(2 \mathrm{~S})$ hfs

$$
\delta E_{\mathrm{nucl}, \exp }=E_{\mathrm{hfs}}(\exp)-E_{\mathrm{hfs}}(\text { point })=0.0966(73) \mathrm{meV}
$$

- the numerical value of the Zemach correction with $r_{Z}=2.593(16) \mathrm{fm}$ is
$\delta E_{\text {Zem }}=-0.1177(33) \mathrm{meV}$, opposite sign !
- including the nuclear vector polarizability and
the inelastic three-photon exchange (10% effect)
$\delta E_{\text {nucl, theo }}=0.0283(86) \mathrm{meV}$
- the difference

$$
\delta E_{\text {nucl, theo }}-\delta E_{\text {nucl }, \text { exp }}=0.0583(113)
$$

- Nuclear structure effects in hfs are not yet well known

[^0]: ${ }^{1}$ Presented in Antognini et al (2013), Pohl et al (2016), Shuhmann et al (:2023), Krauth et al (2021)

