

Laboratoire de Physique des 2 Infinis

Moments of the proton charge density

Mariam ATOUI

Université Paris Saclay, CNRS/IN2P3, IJCLab, Orsay, France

PREN2023, June 25-30, Mainz, Germany

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement Nº 824093

• New approach to extract the moments of a probability density function through integral

forms of its Fourier transform

M. Hoballah et al. Phys . Let. B 808 135669 (2020)

- Application to proton electric form factor data taking into account all sources of uncertainties
- Preliminary application to proton magnetic form factor data

M. Atoui, M.B. Barbaro, M. Hoballah, C. Keyrouz, M. Lassaut, D. Marchand, G. Quéméner, E. Voutier, R. Kunne, J. Van De Wiele

Powerful tool in probing the structure of nucleon and nuclei

Measurement of the e-p scattering cross section: Sachs Form factor

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{d\Omega} \Big|_{\text{Mott}} \times \left[\underbrace{G_E^2(k^2) + \tau G_M^2(k^2)}_{1+\tau} + 2 \tau \tan^2 \left(\frac{\theta}{2}\right) G_M^2(k^2) \right]$$

Normalized to static properties at $k^2 = 0$ limit: $G_{E,p}(0) = 1$, $G_{M,p}(0) = \mu_p$

One Photon exchange (Born approximation)

The proton charge radius is defined as

$$r_p = \sqrt{-6 \left. \frac{\partial G_E^2(k^2)}{\partial k^2} \right|_{k^2 = 0}}$$

Indirect measurement of the proton charge radius through **extrapolation of the form factor to zero squared four-momentum transfer** $(k^2 = 0)$

Issues faced when evaluating the radius:

- What functional form to use which best describes form factor data ?
- What is the best k^2 range to fit and extrapolate (down to $k^2 = 0$) electric form factor data?
 - > Sensitivity to variations of the electric form factor data at low k^2

Motivation: developing another method to evaluate the moments of the charge density from experimental data

Moments of the charge density: Refer to how charge is distributed inside the nucleon

$$\langle \boldsymbol{r}^{\lambda} \rangle = (r^{\lambda}, \rho_E) = \int d^3 \mathbf{r} \ r^{\lambda} \ \boldsymbol{\rho}_E(\boldsymbol{r})$$

Proton charge density defined, in a non relativistic approach, and in Breit Frame, as the inverse Fourier transform of the electric form factor G_E

$$\boldsymbol{\rho}_{\boldsymbol{E}}(\boldsymbol{r}) = \frac{1}{(2\pi)^3} \int_{R^3} d^3 \boldsymbol{k} \, e^{i\boldsymbol{k}\boldsymbol{r}} \, \boldsymbol{G}_{\boldsymbol{E}}(\boldsymbol{k})$$

- Moments beyond the second order : Complementary information on the charge distribution inside the nucleon.
- Negative orders:

Relevant for the **study of the high-momentum dependence** of the form factor Essential to understand **short range effects** near the nucleon's center

High positive order moments

Probe the **low-momentum behavior** of the form factor Essential to understand **long range effects**

The integral Method

$$(r^{m},\rho_{E}) = \frac{2}{\pi}(m+1)! \lim_{\epsilon \to 0^{+}} \epsilon^{m+2} \int_{0}^{\infty} dk \ \mathbf{G}_{E}(\mathbf{k}) \frac{k}{(k^{2}+\epsilon^{2})^{m+2}} \Phi_{m}\left(\frac{k}{\epsilon}\right) \quad \text{with} \quad \Phi_{m}\left(\frac{k}{\epsilon}\right) = \sum_{j=0}^{m+2} \sin\left(\frac{j\pi}{2}\right) \frac{(m+2)!}{j!(m+2-j)!} \ \left(\frac{k}{\epsilon}\right)^{m+2} \Phi_{m}\left(\frac{k}{\epsilon}\right) = \sum_{j=0}^{m+2} \left(\frac{j\pi}{2}\right) \frac{(m+2)!}{j!(m+2-j)!} = \sum_{j=0}^{m+2}$$

For even order moments : IM recovers formally the same quantities as the derivative

Experimental measurements of the Form Factor do not extend to infinite k^2 :

- But: Integrals are most likely to saturate at a squared four-momentum transfer value well below infinity.
- Hence: Cut-off *Q* replaces the infinite integral boundary : truncated moments.

- Select G_E from elastic electron scattering experiments
 - **Rosenbluth Separation** : Measure σ_R at a fixed k^2

for different values of beam energy and scattering angle

 \succ G_M contribution is strongly suppressed: at very low k^2

→ 21 data sets:

 $[2.15 \times 10^{-4} \text{GeV}^2]$ $5.51 \times 10^{-3} \le k^2 (\text{fm}^{-2}) \le 226 [8.8 \text{ GeV}^2]$

• Fit simultaneously the different datasets using the functional form

 $G_E(k) = \eta_i \frac{1 + a_1 k^2}{1 + b_1 k^2 + b_2 k^4 + b_3 k^6}$

- > The **same functional behavior** is assumed for each dataset
- > A separate normalization parameter η_i is considered for each dataset number i

Data			Number	k^2 -r	ange
Set	Year	Author	of	k_{min}^2	k_{max}^2
Number			data	(fm^{-2})	(fm^{-2})
1	1961	Bumiller et al.	11	4.00	25.0
2	1961	Littauer et al.	9	2.00	24.0
3	1962	Lehmann et al.	1	2.98	2.98
4	1963	Dudelzak et al.	4	0.30	2.00
5	1963	Berkelman et al.	3	25.0	35.0
6	1966	Frèrejacque et al.	4	0.98	1.76
7	1966	Chen et al.	2	30.0	45.0
8	1966	Janssens et al.	20	4.00	22.0
9	1971	Berger et al.	9	1.00	50.0
10	1973	Bartel et al.	8	17.2	77.0
11	1975	Borkowski et al.	10	0.35	3.15
12	1994	Walker et al.	4	25.7	77.0
13	1994	Andivahis et al.	8	44.9	226.
14	2004	Christy et al.	7	16.7	133.
15	2005	Qattan et al.	3	67.8	105.
16	2014	Bernauer et al.	77	0.39	14.2
17	2019	Xiong et al 1.1 GeV	33	5.51×10^{-3}	3.96×10 ⁻¹
18	2019	Xiong et al 2.1 GeV	38	1.79×10 ⁻²	1.49
19	2021	Mihovilovič et al 195 MeV	6	3.43×10^{-2}	6.99×10 ⁻²
20	2021	Mihovilovič et al 330 MeV	11	4.69×10^{-2}	2.00×10^{-1}
21	2021	Mihovilovič et al 495 MeV	8	1.57×10^{-1}	4.37×10^{-1}

Fit results

Fit parameters

Fit parameters of the Functional form:

$$G_E(k) = \eta_i \frac{1 + a_1 k^2}{1 + b_1 k^2 + b_2 k^4 + b_3 k^6}$$

	a_1 [10 ⁻¹ fm ²]	b_1 [10 ⁻¹ fm ²]	<i>b</i> ₂ [10 ⁻¹ fm ⁴]	b ₃ [10 ⁻³ fm ⁶]	
	8.8030	9.9402	1.0454	2.7020	
Statistical errors	0.0012	0.0025	0.0013	0.0153	
Systematic errors	0.0096	0.0019	0.0031	0.0317	

Normalization parameters η_i
Recent experiments (2010-2021)
Deviation from unity is smaller than 1%
Old Experiments
Deviations up to 15%

How systematic errors on parameters are evaluated?

- 1. The data are shifted with respect to their systematic errors (upwards or downwards): 2²¹ configurations
- 2. A fit is performed and parameters are extracted
- 3. Systematics are evaluated from the difference of the parameter value w.r.t the reference fit

• Evaluation of different values of Negative, positive

ot momonto	tor				
or moments for alues of order λ: ositive (even and odd)		Truncated moments evaluated for the cutoff $Q^2 = 52 \text{fm}^{-2}$	Moments evaluated in the limit $k^2 \rightarrow \infty$	Even moments from the derivative of G_E at $k^2 = 0$	
	λ	$ \begin{bmatrix} \langle r^{\lambda} \rangle_{Q} \\ [\text{fm}^{\lambda}] \end{bmatrix} $	$\langle r^{\lambda} \rangle$ [fm ^{λ}]	$\left. \left\langle r^{2p} \right\rangle_d \right \left. \left[\mathrm{fm}^{\lambda} \right] \right $	
	/-2	6.5826	8.9093		
	1	1.9752	2.1043	-	
Advantaga of		0.7186	0.7158	_	
the approach	2	0.6824	0.6824	0.6824	
with respect to	3	0.7966	0.7970	-	
the derivative		1.0208	1.0208	1.0208	
method	\backslash 5	0.9219	0.9217	_	
	6 / 6	-3.6823	-3.6823	-3.6823	
	7	-49.6804	-49.6802	_	

- **Evaluations are compatible** • for positive valued order moments
- Negative order moments • show discrepancy when a cutoff is taken into account (as predicted)

Positi	even				
order	mon	nents:			
As	can	be			
obtained fron					
derivative forms of					
the Form Factor					

Propagation of statistical errors to the evaluated moments using Monte Carlo methods

Take into account correlations between parameters to all orders

Procedure:

- Make replicas of parameters (50 000) following the assumption of each error source
- The moments are estimated from each replica
- A dedicated study of the variance of the replicas is performed from which the error sources are obtained

Larger statistical errors for high order positive moments (probing the large distance behavior of the charge density): lack of measurements at ultra low k^2

Sources of systematic errors:

- 1. Originating from the systematic error that is reported by each considered experiment on G_E
- 2. Discrepancy between truncated and exact moments
- 3. Bias that could be generated on the fit parameters from the fitting model itself
- Error coming from the choice of the fitting model (ex: Polynomial ratios, polynomials, Inverse polynomials, Constant Fraction (CF) expansion)

high positive order moments describe the tail of the charge distribution

Evaluation of $R_p = \sqrt{\langle r^2 \rangle}$ within different time periods:

- All evaluations are consistent once systematic errors are taken into account
- Up to 2014 the major source of systematic uncertainty: choice of the fitting model
- With data at low k² (Mainz A1, PRad and ISR): constraints on the fit model are reinforced, and this systematic is reduced

 $R_p = 0.8261 \pm 0.0012 \pm 0.0076$ fm

Consistent with CODATA 2018 recommended value ($R_p = 0.8414 \pm 0.0019$ fm)

This study suggests that the disagreement between Proton Radius values determined from elastic electron proton scattering data originates essentially from systematic uncertainties

- We have worked in the Breit Frame (non relativistic approach)
- To take into account the mixing of charge and magnetization currents (relativistic effects):
 - \blacktriangleright Replace G_E by the Dirac form factor

G. Miller PRC 99, 035202 (2019)

$$F_1(k^2) = \frac{\tau G_M(k^2) + G_E(k^2)}{1 + \tau}$$
 with $\tau = \frac{k^2}{4M_p^2}$

Simultaneous Fit of G_E and G_M data including polarization transfer data

Data Selection:

- > From elastic ep scattering experiments :
 - Available data sets of G_E and G_M extracted using Rosenbluth separation

 $(1 \pm a, k^2)$

• Low k^2 data of G_E (Prad and ISR) and high $k^2 G_M$ data sets up to 31 GeV² (Kirk 1973 and Sill 1993)

> Available Polarization transfer data of $\mu \frac{G_E(k^2)}{G_M(k^2)}$

Fit the data with:

$$G_{E}(k^{2}) = \eta_{i} \frac{(1+a_{1}k^{2})}{1+b_{1}k^{2}+b_{2}k^{4}+b_{3}k^{6}}$$

$$R = \frac{\mu G_{E}(k^{2})}{G_{M}(k^{2})}|_{Pol.} = \frac{(1+a_{2}k^{2})}{1+b_{4}k^{2}}$$

$$\frac{G_{M}(k^{2})}{\mu} = \frac{G_{E}(k^{2})}{R}$$

- Same functional form for G_E as before
- Same normalization parameters for G_E and G_M
- Constrain the fit by the **polarization transfer data**:

Simultaneous Fit of G_E and G_M : Fit results

• **Residuals:** Within $\pm 3 \sigma$ for G_E and G_M and $\mu G_E/G_M$

Application of the IM

Moments in D= 2 dimensional space:

In summary:

- · Novel method for the determination of the moments of the charge density via integral forms of the electric form factor.
- Reanalysis of some GE experimental data (Rosenbluth + low k^2) based on simultaneous fit
 - > Extraction of several moments of the charge density taking all error sources into consideration
 - > Discussion of the value for the proton radius over years
- Preliminary analysis of G_E , G_M and $\mu G_E/G_M$ data sets

Conclusions:

- The disagreement between the proton radius values extracted from elastic ep scattering data originates from systematic uncertainties
- Necessity to have experimental data at low k^2 for a better determination of high order positive moments (large-distance effects)
- Importance to have data at high k^2 necessary in the evaluation of negative order moments (short-distance effects)

M. Atoui et al., ArXiv:2304.1352 [nucl-ex]

In summary:

- · Novel method for the determination of the moments of the charge density via integral forms of the electric form factor.
- Reanalysis of some GE experimental data (Rosenbluth + low k^2) based on simultaneous fit
 - > Extraction of several moments of the charge density taking all error sources into consideration
 - > Discussion of the value for the proton radius over years
- Preliminary analysis of G_E , G_M and $\mu G_E/G_M$ data sets

Conclusions:

- The disagreement between the proton radius values extracted from elastic ep scattering data originates from systematic uncertainties
- Necessity to have experimental data at low k^2 for a better determination of high order positive moments (large-distance effects)
- Importance to have data at high k^2 necessary in the evaluation of negative order moments (short-distance effects)

Work in progress:

Evaluation of magnetic moments and Zemach moments

M. Atoui et al., ArXiv:2304.1352 [nucl-ex]

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement Nº 824093

Backup slides

Ν	ormaliz	ation	parame	eters η_i
	Data Set	η_i	$(\delta \eta_i)_{Sta.}$	$(\delta\eta_i)_{Sys.}$
	Number		$(\times 10^{-2})$	$(\times 10^{-2})$
Experiments	1	1.078	0.248	4.930
at large 10	2	1.144	0.516	1.144
at large k2:	3	0.993	0.612	9.929
deviations up	4	0.983	0.167	0.752
	5	2.389	5.495	11.946
to 15%	6	0.991	0.641	0.208
	~7	0.892	1.659	4.493
· · · · · · · · · · · · · · · · · · ·	8	1.003	1.120	0.802
	9	0.990	0.398	1.980
	10	1.000	1.277	1.051
	\setminus 11	0.981	0.132	1.766
	12	1.134	1.878	0.609
	13	0.931	0.813	6.660
	14	1.021	1.652	0.544
Recent	15	1.023	1.209	0.763
Recent	16	0.991	0.018	0.991
experiments:	17	1.000	0.005	0.215
Deviation from	18	0.998	0.004	0.119
	19	1.001	0.030	0.370
unity is smaller	- 20	1.000	0.026	0.365
than 1%	<u> </u>	0.998	0.018	0.435

Proton radius through the years

	Data set	R_p	$(\delta R_p)_{Sta.}$	$(\delta R_p)_{Sys.}$
Time period	range	[fm]	[fm]	[fm]
1961-1994	1 - 13	0.9812	0.0130	0.2726
1961-2005	1 - 15	0.9938	0.0126	0.2646
1961-2014	1 - 16	0.8870	0.0029	0.0572
1961-2019	1 - 18	0.8261	0.0014	0.0075
1961-2021	1 - 21	0.8261	0.0012	0.0076

Distributions of moments

50000 replicas Plot: (fitted-expected) value for each moment

PREN 2023

Systematic error from experimental data:

- Systematics of the fit parameter are propagated to the moments by shifting upwards or downwards each parameter value with its systematic error: 2⁴ combinations
- For each combination : Moment and difference with respect to the reference value are evaluated
- Error on moments: arithmetic average of the evaluations

Systematic error from the fit function:

- Generate pseudo-data according to a Gaussian($G_{E,f}(k^2)$, $\sigma =$ **statistical error of real data**): 50000 replicas
- Fit Pseudo-data with the chosen fit function, extract parameters and evaluate moments
- The mean values of the distributions of moments correspond to the fit function systematics

Systematic error from the choice of model function:

- Fit the data with several functional forms (Polynomial ratios, polynomials, Inverse polynomials, Constant Fraction (CF) expansion)
- Choose the one having a comparable χ^2 to the standard fit ($\chi^2 < 3.5$, that is 20% larger than the χ^2_r of the reference fit) : Inverse polynomial of order 2 and a CF (n=3)
- Evaluate the corresponding moments and errors

 r^{λ} for $-2 < \lambda < 2$ $\lambda_{i+1} = \lambda_i + 0.1$

 r^{λ} for $5<\lambda<6$

 r^{λ} for $-2 < \lambda < 7$

PREN 2023

• The inverse Fourier Transfom for a polynomial ratio function (Form Factor):

$$f_{K}(\mathbf{r}) \equiv f_{K}(r) = \frac{1}{2\pi^{2}} \frac{1}{r} \int_{0}^{\infty} dk \underbrace{k\tilde{f}_{K}(k) \sin(kr)}_{0} \cdot \frac{1}{r} \int_{0}^{\infty} dk \underbrace{k\tilde{f}_{K}(k) \sin(kr)}_{0}$$

• After integration:

$$f(r) = \frac{1}{2\pi r} \frac{1}{r} \sum_{j=1}^{n} e^{-k_{jl} r} \left[A_{jR} \cos(k_{jR} r) - A_{jl} \sin(k_{jR} r) \right]$$

With the values from our Functional form parametrization:

i	$k_{i,R}(\mathbf{fm}^{-1})$	$k_{i,l}(\mathrm{fm}^{-1})$	$A_{i,R}(\mathbf{fm}^{-2})$	$A_{i,I}(\mathrm{fm}^{-1})$
1	0	0.1067e+01	-0.1e-02	0
2	0	0.4899e+01	-0.155e+02	0
3	0	0.367996e+01	0.156e+02	0

Results of the Fit (including Berkelman, Littauer and Bumiller)

data sets (Bumiller 1961, Littauer 1961 and Berkelman 1963) reduce the value of $\chi^2 = 3.6$

Fit of GE and GM : Fit parameters

	a_1 [10 ⁻³ fm ²]	b_1 [10 ⁻¹ fm ²]	b₂ [10 ^{−3} fm⁴]	<i>b</i> ₃ [10 ⁻⁶ fm ⁶]	a ₂ [10 ⁻³ fm²]	b_4 [10 ⁻⁴ fm ²]
	-3.72233	1.14052	2.35936	6.64386	-3.72038	9.22045
Statistical errors	2.59513e-03	3.15874e-03	2.54236e-02	2.28442e-01	3.96340e-04	5.69830e-01

Preliminary: without systematics

• Using the functional forms of G_E and G_M :

Dirac and Pauli Form Factors: $F_1(k^2)$

$$F_1(k^2) = \frac{\tau G_M(k^2) + G_E(k^2)}{1 + \tau}$$
 $F_2(k^2) =$

$$\frac{G_{2}}{1+\tau} = \frac{G_{M}(k^{2}) - G_{E}(k^{2})}{1+\tau}$$

