

PREN 2023 + μ ASTI 26th-30th June 2023

QED @ NNLO with MCMULE

Adrian Signer

Paul Scherrer Institut / Universität Zürich

 $28^{\ensuremath{\mathrm{TH}}}$ June 2023

A. Signer, 28.06.23 - p.1/25

QED and the mule

MCMULE

Monte Carlo for MUons and other LEptons

https://mule-tools.gitlab.io

P. Banerjee, A. Coutinho, T. Engel, A. Gurgone, F. Hagelstein, S. Kollatzsch, D. Moreno, L. Naterop, D. Radic, M. Rocco, N. Schalch, V. Sharkovska, A. Signer, Y. Ulrich

\Rightarrow a framework for fully-differential higher-order QED calculations of scattering processes

fixed-order NNLO QED corrections available/planned for

$\ell ightarrow \ell' u ar{ u}$	$\ell ightarrow \ell' u ar{ u} \gamma$	$\ell \to \ell' \nu \bar{\nu} (e^+ e^-)$
$e^{\pm}\mu \rightarrow e^{\pm}\mu$	$e^-e^- \to e^-e^-$	$e^+e^-\! ightarrow e^+e^-$
$e^+e^- \to \gamma^*$	$e^+e^- \to \gamma\gamma$	$\ell p \to \ell p$

- full NNLO!!, toying with N³LO, but no dirty protons and no parton shower/YFS (yet)
- fully differential Monte Carlo integrator ⇒ generator to follow [Ulrich]

A. Signer, 28.06.23 - p.2/25

- basics and challenges of massive NNLO calculations
 - (divergent) phase-space integration
 - dealing with masses
 - numerical stability (of real-virtual corrections)
- MUonE as motivation and validation
 - muon-electron scattering @ MUonE and $(g-2)_{\mu}$
 - validation of NNLO results
 - NNLO corrections are crucial (and insufficient)
- lepton-proton scattering for MUSE
 - a muon of mass 938.272 MeV
 - pointlike vs actual proton
- outlook

basics and challenges of massive NNLO calculations

physical $(2 \rightarrow 2)$ cross section (e.g. Møller)

challenges

- fully differential phase-space integration
- $\Rightarrow FKS^{\ell}$
- virtual amplitudes with massive particles
- \Rightarrow one-loop: OpenLoops
- \Rightarrow two-loop: massification
 - numerical instabilities due to pseudo-singularities
- \Rightarrow next-to-soft stabilisation

no approximations (a tiny cheat), no restriction on additional real photons

only soft singularities

$$\begin{split} \mathcal{M}_{n+1}^{(\ell)} &= \mathcal{E} \, \mathcal{M}_n^{(\ell)} \ + \ \mathcal{O}(E_{\gamma}^{-1}) \\ \text{eikonal } \mathcal{E} &= \sum_{i,j} \frac{p_i \cdot p_j}{(p_{\gamma} \cdot p_i) \ (p_{\gamma} \cdot p_j)} \sim \mathcal{O}(E_{\gamma}^{-2}) \end{split}$$

 \Rightarrow subtraction scheme (FKS^{ℓ})

subtraction scheme

we do not write $\sigma_n^{(1)} = \sigma_n^{(v)}(\lambda) + \sigma_n^{(s)}(\lambda, \omega) + \sigma_n^{(h)}(\omega)$ photon mass λ , resolution ω we do write $\sigma_{n}^{(1)} = \sigma_{n}^{(1)}(\xi_{c}) + \sigma_{n+1}^{(1)}(\xi_{c})$ at NLO $\sigma_{\pi}^{(2)} = \sigma_{\pi}^{(2)}(\xi_c) + \sigma_{\pi+1}^{(2)}(\xi_c) + \sigma_{\pi+2}^{(2)}(\xi_c)$ at NNLO $\sigma_n^{(1)}(\xi_c) = \int d\Phi_n^{d=4} \left(\underbrace{\mathcal{M}_n^{(1)}}_{n} + \underbrace{\hat{\mathcal{E}}(\xi_c)}_{n} \mathcal{M}_n^{(0)} \right) = \int d\Phi_n^{d=4} \underbrace{\mathcal{M}_n^{(1)f}(\xi_c)}_{n}$ $\sigma_{n+1}^{(1)}(\xi_c) = \int d\Phi_{n+1}^{d=4} \left(\frac{1}{\xi_1}\right) \left(\xi_1 \,\mathcal{M}_{n+1}^{(0)f}\right)$

the ξ_c dependence cancels between the two terms (implementation/stability check)

A. Signer, 28.06.23 - p.7/25

- ready for a full (e.g. Møller) NNLO calculation photonic and fermionic contributions
- compute double-real amplitudes
- use OpenLoops [Buccioni, Pozzorini, Zoller] for real-virtual amplitudes, numerical stability \rightarrow (3)
- (3) \rightarrow apply next-to-soft stabilisation
- massive two-loop integrals not all known ightarrow (2)
- ② → massify massless two-loop amplitudes [Bern,Dixon,Ghinculov] (and one-loop squared)
- use FKS² (open e^+e^- production not yet included)
- let the mule trot [McMule, 2107.12311]

2 loops with masses

- scales (e.g. masses) are the enemy of loop-integral calculators
- for one-loop amplitudes we use OpenLoops, remarkable numerical stability
- but massive two-loop integrals for $2 \rightarrow 2$ are not all known

[here should go a list of an army of loop-calculating theoreticians ... sorry]

(2) loops with masses

simple loop integrals, one scale $z \Rightarrow$ polylogs: $\operatorname{Li}_n(z) = \int_0^z \frac{\mathrm{d}t}{t} \operatorname{Li}_{n-1}(z)$

more complicated loop integrals, many scales $a_1 \dots a_n, z \Rightarrow$ multiple polylogs $G(a_1 \dots a_n; z) = \int_0^z \frac{\mathrm{d}t}{t - a_1} G(a_2 \dots a_n; z)$

for $a_i \in \{-1, 0, 1\}$ HPL [Remiddi, Vermaseren]; generic a_i GPL [Goncharov] sadly, this is not the end \Rightarrow elliptic integrals ..., ouch collinear factorization \Rightarrow tiny cheat massification [Penin; Becher, Melnikov; Engel, Gnendiger, AS, Ulrich]

 $\mathcal{A}(m) = \mathcal{S} \times Z \times Z \times \mathcal{A}(0) + \mathcal{O}(m^2/Q^2)$

3 next-to-soft stabilisation

real-virtual corrections trivial in principle, extremely delicate numerically

extend LBK theorem [Low 1958; Burnett, Kroll 1968] to one [Engel, AS, Ulrich, 2112.07570] any [Engel, 2304.11689] loop

• soft limit (of collinear emission)

 $E_{\gamma} \rightarrow 0$

Bhabha scattering (as example)

[McMule, 2106.07469]

- M_{exact} Mathematica expression
- full M vs next-to-soft limit
- stability problem solved

+ $\mathcal{O}(E_{\gamma}^0)$

MUonE as motivation and validation

McMuone: A.Broggio, T.Engel, A.Ferroglia, M.Mandal, P.Mastrolia, M.Rocco, J.Ronca, AS, W.Torres Bobadilla, Y.Ulrich, M.Zoller

$\mu\,e$ scattering and $e^+\,e^- \rightarrow \,{\rm had}$

Abbiendi et al:1609.08987

A. Signer, 28.06.23 - p.13/25

• new proposal [Abbiendi et al.]: elastic scattering $\mu e \rightarrow \mu e \Rightarrow$ independent determination of HVP

MUonE

- 'signal' $\sim 10^{-3}$, want $\sim 1\%$ measurement
- need $\sim 10~\rm{ppm}$ determination of shape of differential cross section
- need NNLO QED and resummation of logs
- $E_{Ee=1GeV}$ signal region: high e energy, small angle
- \rightarrow "theory initiative" to provide necessary computations [2004.13663, Padua group, Pavia group, McMule ...]

NNLO corrections > signal?! (can play games to suppress radiation ...) ⇒ make no approximation in double-real radiation !!

[2212.06481], electronic corrections validated with MESMER

A. Signer, 28.06.23 - p.15/25

validation

validation of massification and next-to-soft stabilisation

validation of implementation through ξ_c (in)dependence

lepton-proton scattering for MUSE

McMuse: T.Engel, F.Hagelstein, M.Rocco, V.Sharkovska, AS, Y.Ulrich

A. Signer, 28.06.23 - p.18/25

 $e^{\pm}\mu \to e^{\pm}\mu \Rightarrow \ell^{\pm}p \to \ell^{\pm}p$ with 'nice' protons (pointlike or simple form factor)

not included

• want to assess importance of NNLO QED corrections w.r.t. 'TPE' (for MUSE)

- starting point NLO QED with pointlike protons
- error 1: pointlike \rightarrow proper TPE
- error 2: NLO \rightarrow NNLO QED
- ballpark estimate impact of TPE through naive dipole FF
- estimate variation of TPE through $0.60 \, {\rm GeV}^2 \leq \Lambda^2 \leq 0.86 \, {\rm GeV}^2$ in dipole
- this is not meant to be a good TPE implementation
- it is a toy TPE implementation vs. a heck of a QED implementation

A. Signer, 28.06.23 - p.20/25

MUSE, $p=210\,{
m MeV}$

$e^- p$: no cuts on γ

 $e^-\,p:$ cut on forward γ

MUSE, $p=210\,{ m MeV}$

 $e^- p$: no cuts on γ

A. Signer, 28.06.23 - p.22/25

MUSE, $p=210\,{
m MeV}$

 $\mu^- p$: no cut γ

A. Signer, 28.06.23 - p.23/25

outlook

outlook

make sure bulk standard QED does not foil your analysis

future steps of the mule

- get dirty (protons and pions)
- integrator ightarrow generator
- add electroweak / polarised leptons
- NNNLO contributions for $\ell^+\ell^- \to \gamma^*$
- go beyond fixed-order QED (with YFS)
- world dominance

