

The recoil-finite-size correction for the hyperfine splitting in µH and eH Yong-Hui Lin, HISKP, Universität Bonn

-- Aldo Antognini, YHL, Ulf-G. Meißner, Phys.Lett.B 835 (2022) 137575

1/16

The Hydrogen Spectrum

- Fine structure
 - Degeneracy respect to n and j.
- Lamb shift
 - ✓ Lifts levels with $l=j\pm 1/2$, contains proton finite size effect (LO ∝ r_p^2).
- Hyperfine structure
 - ✓ interaction with nucleus spin s_p , mixes states with same $F=j+s_p$ but different j.

The Hyperfine Splitting

HFS	eH(1S)	$\mu H(2S)$
Main (E_F)	1	1
nonrecoil QED $(\delta_{\text{QED}} E_F)$	0.0011360896(19)	0.0011752(1) + 0.0025432(1)(VP)
LO proton size $(-2(Z\alpha)mr_ZE_F)$	$-42.4(1.1) \times 10^{-6}$	-0.007410(80)
LO recoil $(\delta_{\text{recoil}} E_F)$	$5.22(1) \times 10^{-6}$	0.000931(7)
proton polarizability $(\delta_{\mathrm{pol}} E_F)$	$\leq 4 \times 10^{-6}$	0.0004(1)
: : :		
total	1420399.3(1.6) kHz	$22.8148(20)\mathrm{meV}$

I. Eides et al., Phys.Rept. 342 (2001) 63-261; O. Tomalak, Eur.Phys.J.C 77 (2017) 12, 858; A. Antognini et al., Annals Phys. 331 (2013) 127-145

The 1S-HFS of µH and eH

A. Antognini et al., Ann.Rev.Nucl.Part.Sci. 72 (2022) 389

- Δ_Z : the Zemach correction C. Zemach 1956
- Δ_{recoil} : the Recoil correction
- Δ_{pol} : the Proton polarizability correction
- <u>Coefficients</u> contain all relevant higher order corrections

The 1S-HFS of μH

Zemach (Δ_z) and Recoil (Δ_{recoil}) Corrections

A. Antognini et al., Ann.Rev.Nucl.Part.Sci. 72 (2022) 389

The 1S-HFS of µH and eH

A. Antognini et al., Ann.Rev.Nucl.Part.Sci. 72 (2022) 389

eН

 $E_{\rm HFS}^{\rm th}(\mathbf{H}) = 1418840.082(9) + 1613.024(3) + E_F^{\mathbf{H}} \left(\underline{1.01558(13)} \Delta_{\mathbf{Z}}^{\mathbf{H}} + \underline{0.99807(13)} \Delta_{\rm recoil}^{\mathbf{H}} + \underline{1.00002} \Delta_{\rm pol}^{\mathbf{H}} \right) \ [\rm kHz]$

The 1S-HFS of µH and eH

A. Antognini et al., Ann.Rev.Nucl.Part.Sci. 72 (2022) 389

Motivation

The EMFFs of the Proton

• Definition: Nucleon matrix elements of the EM vector current J_{μ}^{em}

$$\langle N(p')|J_{\mu}^{\rm em}|N(p)\rangle = \bar{u}(p') \left[F_1(t)\gamma_{\mu} + i \frac{F_2(t)}{2m} \sigma_{\mu\nu} q^{\nu} \right] u(p)$$

• $F_1 = \text{Dirac form factor}, F_2 = \text{Pauli form factor}$

- Normalization: $F_1^p(0) = 1, F_1^n(0) = 0, F_2^p(0) = \kappa_p, F_2^n(0) = \kappa_n$
- four-momentum transfer $t \equiv q^2 = (p' p)^2 \equiv -Q^2$
- isospin basis: $F_i^S = (F_i^p + F_i^n)/2$, $F_i^V = (F_i^p F_i^n)/2$, i = 1, 2
- Sachs form factors: $G_E = F_1 + t/(4m^2)F_2, G_M = F_1 + F_2$
- Nucleon radii: $F(t) = F(0)(1 + t \langle r^2 \rangle / 6 + \cdots)$
- Model-independent approach: Dispersion relation

Dispersion Relations

• Unsubtracted dispersion relations for $F_i(t)$ (i = 1, 2)

$$F_i(t) = \frac{1}{\pi} \int_{t_0}^{\infty} dt' \frac{\operatorname{Im} F_i(t')}{t' - t}$$

- convergence proven in perturbation theory[S. D. Drell et al. 1965]
- analyticity: the form factors have **cuts** ([t_i , ∞ [) and also **poles** (t_j) in the positive real-t axis.

Dispersion Relations

• Unsubtracted dispersion relations for $F_i(t)$ (i = 1, 2)

$$F_i(t) = \frac{1}{\pi} \int_{t_0}^{\infty} dt' \frac{\operatorname{Im} F_i(t')}{t' - t}$$

- convergence proven in perturbation theory[S. D. Drell et al. 1965]
- analyticity: the form factors have **cuts** ([t_i , ∞ [) and also **poles** (t_j) in the positive real-t axis.

- Connect data from small to large & positive to negative momentum transfer
- Encode perturbative (asymptotic behaviors) and non-perturbative (vector meson couplings) physics

Spectral Functions

- Below 1 GeV
 - I=0: $\rho\pi, K\bar{K}, \omega(a_i), \phi(b_i)$
 - *∽ I*=1: ππ
- Above 1 GeV
 - ✓ *I*=0: effective vector mesons w/o width $(m_{S_n}, \Gamma_{S_n}, a_{S_n}^i)$
 - I=1: effective vector mesons w/o width $(m_{V_n}, \Gamma_{V_n}, a_{V_n}^i)$

- $\pi\pi$ given by unitarity [Frazer and Fulco 1960]
- $\rho\pi$, $K\bar{K}$ also constrained [MMSO 1997, HRM 1999]

Experimental Inputs

Experimental data				Theoretical Constraints	
Region	Observables	Souce	$t \ { m GeV^2}$	number	
spacelike $t < 0$	$d\sigma/d\Omega$	MAMI	0.00384-0.977	1422	$F_1^p(0) = 1$
		PRad	0.000215-0.058	71	$F_1^n(0) = 0$ Normalizations
	$\mu_p G^p_E/G^p_M$	JLAP	1.18-8.49	16	$F_2^p(0) = \kappa_p$
	$\mu_n G_E^n/G_M^n$	world	1.58-3.41	4	$F_2^n(0) = \kappa_n$
	G_E^n	world	0.14-3.41	29	$\int_{t_0}^{\infty} \operatorname{Im} F_1(t) dt = 0$ Asymptotic behavior
	G_M^n	world	0.071-10.0	49	$\int_{t_0}^{\infty} \operatorname{Im} F_2(t) dt = 0$ from pQCD
timelike $t > 0$	$ G^p_{ m eff} $	world	3.52-20.25	153	$\int_{t_0}^{\infty} \operatorname{Im} F_2(t) t dt = 0$
	$ G_{ ext{eff}}^n $	world	3.52-9.49	32	
	$ G_E^p/G_M^p $	BaBar	3.52-9.0	6	$\langle r_n^2 \rangle = -0.105^{+0.005}_{-0.006} \text{ fm}^2$ Filin et al. 2020
	$d\sigma/d\Omega$	BESIII	3.52-3.8	10	

Fitted DR EMFFs of the Nucleon

YHL, HWH and UGM, PLB 2021, EPJA 2021, PRL 2022

#data=1792,

#fitpara.= $4+3\times(N_s+N_v)+4\times(N_s+N_v)+31+2-11$

Fitted DR EMFFs of the Nucleon

YHL, HWH and UGM, PLB 2021,EPJA 2021,PRL 2022
#data=1792,
#fitpara.=
$$4+3\times(N_s+N_v)+4\times(N_s+N_v)+31+2-11$$

The best fit: w,ϕ 3+5 o Γ 3+3 w Γ norm.

$$\chi^2$$
/dof=1.238

Fitted DR EMFFs of the Nucleon

Proton charge radius

$$r_E^p = 0.840^{+0.003}_{-0.002}_{-0.002}$$
 fm, $r_M^p = 0.849^{+0.003}_{-0.003}_{-0.004}$ fm

Improved Zemach (Δ_z) and Recoil (Δ_{recoil}) Corrections ^{15/16}

Recoil corrections

$\Delta_{ m recoil}$	$\mu H(\times 10^{-6})$	$eH(\times 10^{-8})$
This work	$837.6^{+2.8}_{-1.0}$	$526.9^{+1.7}_{-0.4}$
[O. Tomalak 2017]	844(7)	532.8(4.9)

- Dispersion theory provides a model-independent tool to analyze the nucleon EMFFs
- Simultaneous description of space- and time-like data
- Always a small proton charge radius (0.84 fm), agrees with recent experiments
- Improve the determinations of the Zemach (Δ_z) and recoil (Δ_{recoil}) corrections to HFS
 - \hookrightarrow Bridge the proton polarizability effects to the experimental HFS

- Dispersion theory provides a model-independent tool to analyze the nucleon EMFFs
- Simultaneous description of space- and time-like data
- Always a small proton charge radius (0.84 fm), agrees with recent experiments
- Improve the determinations of the Zemach (Δ_z) and recoil (Δ_{recoil}) corrections to HFS
 - \hookrightarrow Bridge the proton polarizability effects to the experimental HFS

Thanks for your attention!

Back up

Empty symbols not fitted

Back up

Back up

