RUB

Electromagnetic form factors of light nuclei in chiral EFT

In collaboration with: Arseniy Filin, Daniel Möller, Vadim Baru, Christopher Körber, Hermann Krebs, Andreas Nogga and Patrick Reinert

State of the art, limitations, ongoing work and future perspectives...

Theory in a nutshell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}

Theory in a nutshell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}
- Use 1N FFs to avoid reliance on $\chi E F T$ for $J_{1 \mathrm{~N}}^{\mu}$ (i.e., re-summations)

Theory in a nutishell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}
- Use 1N FFs to avoid reliance on $\chi E F T$ for $J_{1 \mathrm{~N}}^{\mu}$ (i.e., re-summations)
- Error analysis (statistical uncertainties of few-N LECs, πN LECs, EFT truncation, parametrizations of the 1 NFFs)

Theory in a nutishell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}
- Use 1N FFs to avoid reliance on χ EFT for $J_{1 \mathrm{~N}}^{\mu}$ (i.e., re-summations)
- Error analysis (statistical uncertainties of few-N LECs, πN LECs, EFT truncation, parametrizations of the 1 NFFs)

- Regularization and symmetries...

Theory in a nutshell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}
- Use 1N FFs to avoid reliance on $\chi E F T$ for $J_{1 \mathrm{~N}}^{\mu}$ (i.e., re-summations)
- Error analysis (statistical uncertainties of few-N LECs, πN LECs, EFT truncation, parametrizations of the 1 NFFs)

- Regularization and symmetries...
- Starting from N3LO (Q4), one has to worry about:
- relativistic corrections
- isospin breaking effects (including neutron-neutron interaction)
- electromagnetic interactions beyond Coulomb

Theory in a nutishell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}
- Use 1N FFs to avoid reliance on $\chi E F T$ for $J_{1 \mathrm{~N}}^{\mu}$ (i.e., re-summations)
- Error analysis (statistical uncertainties of few-N LECs, πN LECs, EFT truncation, parametrizations of the 1 NFFs)

- Regularization and symmetries...
- Starting from N3LO (Q4), one has to worry about:
- relativistic corrections
- isospin breaking effects (including neutron-neutron interaction)
- electromagnetic interactions beyond Coulomb
- Continuity equation \& EFT expansion: $\vec{k} \cdot \hat{\vec{J}}=[\hat{H}, \hat{\rho}]$ (Siegert-like approach?)

Theory in a nutshell

- Chiral EFT for the nuclear Hamiltonian H and J^{μ}
- Use 1N FFs to avoid reliance on $\chi E F T$ for $J_{1 \mathrm{~N}}^{\mu}$ (i.e., re-summations)
- Error analysis (statistical uncertainties of few-N LECs, πN LECs, EFT truncation, parametrizations of the 1 NFFs)

- Regularization and symmetries...
- Starting from N3LO (Q4), one has to worry about:
- relativistic corrections
- isospin breaking effects (including neutron-neutron interaction)
- electromagnetic interactions beyond Coulomb
- Continuity equation \& EFT expansion: $\vec{k} \cdot \hat{\vec{J}}=[\hat{H}, \hat{\rho}]$ (Siegert-like approach?)
- Computational limitations for $A>4$

The Hamiltionian

	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO (Q^{0})		-	-
NLO (Q^{2})		-	-
N2LO (Q3)		-6-1	-
$\mathrm{N}^{3} \mathrm{LO}\left(Q^{4}\right)$			
$\mathrm{N}^{4} \mathrm{LO}\left(\mathrm{Q}^{5}\right)$	$+\cdots+1 \times x_{1}^{+}+\cdots$		-

The newest Bochum NN interactions Reinert, Krebs, EE, EPJA 54 (2018) 86; PRL 126 (2021) 092501

$$
\begin{aligned}
V_{1 \pi}(q) & =\frac{\alpha}{\vec{q}^{2}+M_{\pi}^{2}} e^{-\frac{\vec{q}^{2}+M_{\pi}^{2}}{\Lambda^{2}}}+\text { subtraction, } \quad V_{2 \pi}(q)=\frac{2}{\pi} \int_{2 M_{\pi}}^{\infty} d \mu \mu \frac{\rho(\mu)}{\vec{q}^{2}+\mu^{2}} e^{-\frac{\vec{q}^{2}+\mu^{2}}{2 \Lambda^{2}}}+\text { subtractions } \\
& + \text { nonlocal (Gaussian) cutoff for contacts }
\end{aligned}
$$

SMS chiral NN interactions

Statistically perfect description of mutually consistent NN scattering data (own database of 2124 proton-proton +2935 neutron-proton data below $\mathrm{E}_{\mathrm{lab}}=290 \mathrm{MeV}$)

high-precision „realistic" potentials				Idaho χ EFT		Bochum SMS χ EFT	
Nijm I	Nijm II	Reid93	CD Bonn	$\mathrm{N}^{4} \mathrm{LO}_{450}^{+}$	$\mathrm{N}^{4} \mathrm{LO}_{500}^{+}$	$\mathrm{N}^{4} \mathrm{LO}_{450}^{+}$	$\mathrm{N}^{4} \mathrm{LO}_{500}^{+}$
1.061	1.070	1.078	1.042	2.019	1.203	1.013	1.015

Results for np total cross section and the error budget

Residual cutiofi dependence

Resummation of non-renormalizable interactions (e.g., $V_{1 \pi}(r) \sim 1 / r^{3}$) in the LS equation requires keeping \wedge finite, $\wedge \sim \wedge_{b}$ Lepage 97 ; EE, Gegelia '09; EE, Gasparyan, Gegelia, Meißner '18

Implicit renormalization (express bare LECs Ci((Λ) in terms of observable quantities)
Renormalizability in the EFT sense (\equiv all power-counting breaking terms absorbable into the available counter terms) has been proven to NLO Gasparyan, EE, PRC 105 (2022), PRC 107 (2023)

Residual cutoff dependence at a given finite order as a tool to check consistency

\Rightarrow The 2N interaction is in a good shape

Regularzation and symmetry

Nuclear potentials are derived using dim. reg. and supplied with an additional cutoff prior to solving the Schrödinger equation. Consistent?

Faddeev equation for 3N scattering:

Regularzation and symmetry

Nuclear potentials are derived using dim. reg. and supplied with an additional cutoff prior to solving the Schrödinger equation. Consistent?

Faddeev equation for 3 N scattering:

Regularzation and symmetry

Nuclear potentials are derived using dim. reg. and supplied with an additional cutoff prior to solving the Schrödinger equation. Consistent?

Faddeev equation for 3 N scattering:

If $V_{2 \pi}^{3 \mathrm{~N}}$ were calculated with a cutoff, the problematic divergence would cancel exactly. This issue affects all loop contributions beyond N2LO to 3NF and exchange currents. In contrast, NN forces are not affected (at a fixed M_{π}).

Gradlent flow regularzation

\Rightarrow Re-derive nuclear forces \& currents using SYMMETRY PRESERVING cutoff regularization
An attractive option is the gradient flow method:
— successfully applied to Yang-Mills theories (QCD) Martin Lüscher '14
— proposed as a regulator for chiral EFT in several talks by David Kaplan

Gradlent flow regularzation

\Rightarrow Re-derive nuclear forces \& currents using SYMMETRY PRESERVING cutoff regularization
An attractive option is the gradient flow method:
— successfully applied to Yang-Mills theories (QCD) Martin Lüscher '14
— proposed as a regulator for chiral EFT in several talks by David Kaplan

Idea: let pion fields evolve in the flow „time" τ by replacing the pion field U by the smoothened one $W(\tau), W(0)=U$, which fulfills the (covariant) gradient flow equation:

$$
\partial_{\tau} W=i w \operatorname{EOM}(\tau) w \text {, where } w=\sqrt{W} \text { and } \mathrm{EOM}=[\underbrace{D_{\mu}}_{\left.w_{\mu}\right|_{\tau=0}=u_{\mu}}]+\frac{i}{2} \chi_{i}-\frac{i}{4} \operatorname{Tr}\left(\chi_{-}\right)
$$

The flow „time" τ acts as a regulator (smearing), the choice $\tau=(2 \Lambda)^{-1}$ matches the employed regularization of the OPEP:

$$
V_{1 \pi}(q)=\frac{\alpha}{\vec{q}^{2}+M_{\pi}^{2}} e^{-\frac{\vec{q}^{2}+M_{\pi}^{2}}{\Lambda^{2}}}
$$

Gradlent flow regularkation

\Rightarrow Re-derive nuclear forces \& currents using SYMMETRY PRESERVING cutoff regularization
An attractive option is the gradient flow method:
— successfully applied to Yang-Mills theories (QCD) Martin Lüscher '14
— proposed as a regulator for chiral EFT in several talks by David Kaplan
Idea: let pion fields evolve in the flow „time" τ by replacing the pion field U by the smoothened one $W(\tau), W(0)=U$, which fulfills the (covariant) gradient flow equation:

$$
\partial_{\tau} W=i w \operatorname{EOM}(\tau) w \text {, where } w=\sqrt{W} \text { and } \operatorname{EOM}=[\underbrace{D_{\mu}}_{w_{\mu} L_{\tau=0}}, \underbrace{w_{\mu}}_{u_{\mu}}]+\frac{i}{2} \chi_{i}-\frac{i}{4} \operatorname{Tr}\left(\chi_{-}\right)
$$

The flow „time" τ acts as a regulator (smearing), the choice $\tau=(2 \Lambda)^{-1}$ matches the employed regularization of the OPEP:

$$
V_{1 \pi}(q)=\frac{\alpha}{\vec{q}^{2}+M_{\pi}^{2}} e^{-\frac{\vec{q}^{2}+M_{\pi}^{2}}{\Lambda^{2}}}
$$

Complication: the regularized Lagrangian involves arbitrary powers of time derivatives
\Rightarrow cannot use Hamiltonian-based methods (like MUT) to derive nuclear forces/currents \Rightarrow new path-integral method to derive nuclear interactions Hermann Krebs, EE, in preparation

Example: gradient flow reg. of the 4NF

Consider e.g. the contribution to the $4 N F$ at N3LO involving a 4π-vertex:

Unregularized expression:

EE, PLB 639 (2006) 456; EPJA 34 (2007) 197

$$
\begin{aligned}
V_{4 \mathrm{~N}} & =\frac{g_{A}^{4}}{2\left(2 F_{\pi}\right)^{6}} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{2} \vec{\sigma}_{3} \cdot \vec{q}_{3} \vec{\sigma}_{4} \cdot \vec{q}_{4}}{\left(\vec{q}_{1}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{2}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{3}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{4}^{2}+M_{\pi}^{2}\right)}\left[\left(\vec{q}_{1}+\vec{q}_{2}\right)^{2}+M_{\pi}^{2}\right] \\
& + \text { 3-pole terms }+ \text { all permutations }
\end{aligned}
$$

Example: gradient flow reg. of the 4 NF

Consider e.g. the contribution to the $4 N F$ at N3LO involving a 4π-vertex:

Unregularized expression:

EE, PLB 639 (2006) 456; EPJA 34 (2007) 197

$$
\begin{aligned}
V_{4 \mathrm{~N}} & =\frac{g_{A}^{4}}{2\left(2 F_{\pi}\right)^{6}} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{2} \vec{\sigma}_{3} \cdot \vec{q}_{3} \vec{\sigma}_{4} \cdot \vec{q}_{4}}{\left(\vec{q}_{1}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{2}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{3}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{4}^{2}+M_{\pi}^{2}\right)}\left[\left(\vec{q}_{1}+\vec{q}_{2}\right)^{2}+M_{\pi}^{2}\right] \\
& +3 \text {-pole terms }+ \text { all permutations }
\end{aligned}
$$

Applying the gradient flow regularization method consistent with the 2NF yields:
Hermann Krebs, EE, preliminary

$$
\begin{aligned}
V_{4 \mathrm{~N}} & =\frac{g_{A}^{4}}{2\left(2 F_{\pi}\right)^{6}} \frac{\vec{\sigma}_{1} \cdot \vec{q}_{1} \vec{\sigma}_{2} \cdot \vec{q}_{2} \vec{\sigma}_{3} \cdot \vec{q}_{3} \vec{\sigma}_{4} \cdot \vec{q}_{4}}{\left(M_{\pi}^{2}\right)\left(\vec{q}_{2}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{3}^{2}+M_{\pi}^{2}\right)\left(\vec{q}_{4}^{2}+M_{\pi}^{2}\right)}\left[\left(\vec{q}_{1}+\vec{q}_{2}\right)^{2}+M_{\pi}^{2}\right] \\
& \times\left(4 e^{-\frac{\vec{q}_{2}^{2}+M_{\pi}^{2}}{\Lambda^{2}}} e^{-\frac{\vec{q}_{3}^{2}+M_{\pi}^{2}}{\Lambda^{2}}} e^{-\frac{\vec{q}_{4}^{2}+M_{\pi}^{2}}{\Lambda^{2}}}-3 e^{-\frac{\vec{q}_{1}^{2}+M_{\pi}^{2}}{2 \Lambda^{2}}} e^{-\frac{\vec{q}_{2}^{2}+M_{\pi}^{2}}{2 \Lambda^{2}}} e^{-\frac{\vec{q}_{3}^{2}+M_{\pi}^{2}}{2 \Lambda^{2}}} e^{-\frac{\vec{q}_{4}^{2}+M_{\pi}^{2}}{2 \Lambda^{2}}}\right) \\
& + \text {-pole terms }+ \text { all permutations }
\end{aligned}
$$

Electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

Electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

Electromagnetic currents

Kölling, EE, Krebs, Meißner, PRC 80 (09) 045502; PRC 86 (12) 047001; Krebs, EE, Meißner, FBS 60 (2019) 31

The charge and quadrupole FFs of ${ }^{2 H}$

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, Phys. Rev. Lett. 124 (2020) 082501;

$$
\begin{aligned}
& \underbrace{\rho_{1 \mathrm{~N}}^{\mathrm{DF}}=-e \frac{\mathbf{k}^{2}}{8 m_{N}^{2}} G_{E}\left(\mathbf{k}^{2}\right)} \\
& G\left(Q^{2}\right)=G^{\mathrm{Main}}\left(Q^{2}\right)+G^{\mathrm{DF}}\left(Q^{2}\right)+G^{\mathrm{SO}}\left(Q^{2}\right)+G^{\mathrm{Boost}}\left(Q^{2}\right)+G^{1 \pi}\left(Q^{2}\right)+G^{\mathrm{Cont}}\left(Q^{2}\right)
\end{aligned}
$$

- Both the nuclear force and the 2 N charge density are available to $\mathrm{N}^{4} \mathrm{LO}$
- Simple numerics

The charge and quadrupole FFs of 2h

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

The charge and quadrupole frs of 2h
Arseniy Fillin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

The charge and quadrupole frs of 2h
Arseniy Fillin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

Charge radlus and quadrupole moment

Deuteron charge and structure radii: $r_{d}^{2}=r_{\mathrm{str}}^{2}+r_{p}^{2}+r_{n}^{2}+\frac{3}{4 m_{p}^{2}}$

EFT truncation, choice of fitting range, $\mathrm{NN}, \pi \mathrm{N}$ and $\gamma \mathrm{NN}$ LECs

Our results: $r_{\text {str }}=1.9729_{-0.0012}^{+0.0015} \mathrm{fm}, Q_{\mathrm{d}}=0.2854_{-0.0017}^{+0.0038} \mathrm{fm}^{2}$

$$
Q_{\mathrm{d}}^{\exp }=0.285699(15)(18) \mathrm{fm}^{2} \quad \text { Puchalski et al., PRL } 125 \text { (2020) }
$$

Error budget:

	central	truncation	$\rho_{\text {Cont }}^{\text {reg }}$	$\pi \mathrm{N}$ LECs RSA	2 N LECs and f_{i}^{2}	Q-range	total
$r_{\text {str }}^{2}\left[\mathrm{fm}^{2}\right]$	3.8925	± 0.0030	± 0.0024	± 0.0003	± 0.0025	${ }_{-0.003}^{+0.0035}$	${ }_{-0.005}^{+0.0058}$
$Q_{d}\left[\mathrm{fm}^{2}\right]$	0.2854	± 0.0005	± 0.0007	± 0.0003	± 0.0016	${ }_{-0.0046}^{+0.0035}$	${ }_{-0.0005}^{+0.0038}$

Charge radlus and quadrupole moment

Deuteron charge and structure radii: $r_{d}^{2}=r_{\text {str }}^{2}+r_{p}^{2}+r_{n}^{2}+\frac{3}{4 m_{p}^{2}}$

EFT truncation, choice of fitting range, $\mathrm{NN}, \pi \mathrm{N}$ and $\gamma \mathrm{NN}$ LECs

Our results: $r_{\text {str }}=1.9729_{-0.0012}^{+0.0015} \mathrm{fm}, Q_{\mathrm{d}}=0.2854_{-0.0017}^{+0.0038} \mathrm{fm}^{2}$

$$
Q_{\mathrm{d}}^{\exp }=0.285699(15)(18) \mathrm{fm}^{2} \quad \text { Puchalski et al., PRL } 125 \text { (2020) }
$$

Error budget:

	central	truncation	$\rho_{\text {Cont }}^{\text {reg }}$	$\pi \mathrm{N}$ LECs RSA	2 N LECs and f_{i}^{2}	Q-range	total
$r_{\text {str }}^{2}\left[\mathrm{fm}^{2}\right]$	3.8925	± 0.0030	± 0.0024	± 0.0003	± 0.0025	${ }_{-0.003}^{+0.0035}$	${ }_{-0}^{+0.0058}$
$Q_{d}\left[\mathrm{fm}^{2}\right]$	0.2854	± 0.0005	± 0.0007	± 0.0003	± 0.0016	${ }_{-0.0046}^{+0.0035}$	${ }_{-0.0005}^{+0.0038}$

Combining our result for $r_{\text {str }}^{2}$ with the ${ }^{1} \mathrm{H}-2 \mathrm{H}$ isotope shift datum $r_{d}^{2}-r_{p}^{2}=3.82007(65) \mathrm{fm}^{2}$ Jentschura et al., PRA 83 (2011) leads to the prediction for the neutron radius:

$$
r_{n}^{2}=-0.105_{-0.006}^{+0.005} \mathrm{fm}^{2}
$$

Charge radlus and quadrupole moment

Deuteron charge and structure radii: $r_{d}^{2}=r_{\mathrm{str}}^{2}+r_{p}^{2}+r_{n}^{2}+\frac{3}{4 m_{p}^{2}}$

EFT truncation, choice of fitting range, $\mathrm{NN}, \pi \mathrm{N}$ and $\gamma \mathrm{NN}$ LECs

Our results: $r_{\text {str }}=1.9729_{-0.0012}^{+0.0015} \mathrm{fm}, Q_{\mathrm{d}}=0.2854_{-0.0017}^{+0.0038} \mathrm{fm}^{2}$

$$
Q_{\mathrm{d}}^{\text {exp }}=0.285699(15)(18) \mathrm{fm}^{2} \quad \text { Puchalski et al., PRL } 125 \text { (2020) }
$$

Error budget:

	central	truncation	$\rho_{\text {Cont }}^{\text {reg }}$	πN LECs RSA	2 N LECs and f_{i}^{2}	Q-range	total
$r_{\text {str }}^{2}\left[\mathrm{fm}^{2}\right]$	3.8925	± 0.0030	± 0.0024	± 0.0003	± 0.0025	${ }_{-0.0005}^{+0.0035}$	${ }_{-0.0046}^{+0.0058}$
$Q_{d}\left[\mathrm{fm}^{2}\right]$	0.2854	± 0.0005	± 0.0007	± 0.0003	± 0.0016	${ }_{-0.0005}^{+0.0035}$	${ }_{-0.0005}^{+0.0038}$

Combining our result for $r_{\text {str }}^{2}$ with the ${ }^{1} \mathrm{H}-2 \mathrm{H}$ isotope shift datum $r_{d}^{2}-r_{p}^{2}=3.82007(65) \mathrm{fm}^{2}$ Jentschura et al., PRA 83 (2011) leads to the prediction for the neutron radius:

$$
r_{n}^{2}=-0.105_{-0.006}^{+0.005} \mathrm{fm}^{2}
$$

4ti moment of the charge distribution

The fourth-order moment $\left\langle r_{d}^{4}\right\rangle:=60 G_{C}^{\prime \prime}(0)$ is being measured in the ULQ2 exp toshimi Suda et al.

$$
\left\langle r_{d}^{4}\right\rangle=r_{\mathrm{str}}^{(4)}+\frac{10}{3} r_{\mathrm{str}}^{(2)}\left(r_{n}^{(2)}+r_{p}^{(2)}+\frac{3}{4 m^{2}}\right)+\left(r_{n}^{(4)}+\frac{5}{2 m^{2}} r_{n}^{(2)}\right)+\left(r_{p}^{(4)}+\frac{5}{2 m^{2}} r_{p}^{(2)}+\frac{45}{16 m^{4}}\right)
$$

4ib moment of the charge distirlbution

The fourth-order moment $\left\langle r_{d}^{4}\right\rangle:=60 G_{C}^{\prime \prime}(0)$ is being measured in the ULQ2 exp toshimi Suda et al.

$$
\left\langle r_{d}^{4}\right\rangle=r_{\mathrm{str}}^{(4)}+\frac{10}{3} r_{\mathrm{str}}^{(2)}\left(r_{n}^{(2)}+r_{p}^{(2)}+\frac{3}{4 m^{2}}\right)+\left(r_{n}^{(4)}+\frac{5}{2 m^{2}} r_{n}^{(2)}\right)+\left(r_{p}^{(4)}+\frac{5}{2 m^{2}} r_{p}^{(2)}+\frac{45}{16 m^{4}}\right)
$$

$\begin{aligned} & \text { Results for } \Lambda=500 \mathrm{MeV}: \\ & \text { (very preliminary, likely to change) }\end{aligned} r_{\text {str }}^{(4)}=\underbrace{r_{\text {matter }}^{(4)}}_{55.442}+\underbrace{r_{\text {boost }}^{(4)}}_{0.215}+\underbrace{r_{\text {SO }}^{(4)}}_{-0.007}+\underbrace{r_{2 \mathrm{NOPE}}^{(4)}}_{0.025}+\underbrace{r_{2 \mathrm{~N}, \mathrm{CT}}^{(4)}}_{0.008}=55.68(5) \mathrm{fm}^{4}$
Error budget (preliminary):
Truncation (N4LO): $\pm 0.035, \pi N$ LECs: ± 0.005, NN LECs: ± 0.04, other errors negligible

4ib moment of the charge distirlbution

The fourth-order moment $\left\langle r_{d}^{4}\right\rangle:=60 G_{C}^{\prime \prime}(0)$ is being measured in the ULQ2 exp toshimi Suda et al.

$$
\left\langle r_{d}^{4}\right\rangle=r_{\mathrm{str}}^{(4)}+\frac{10}{3} r_{\mathrm{str}}^{(2)}\left(r_{n}^{(2)}+r_{p}^{(2)}+\frac{3}{4 m^{2}}\right)+\left(r_{n}^{(4)}+\frac{5}{2 m^{2}} r_{n}^{(2)}\right)+\left(r_{p}^{(4)}+\frac{5}{2 m^{2}} r_{p}^{(2)}+\frac{45}{16 m^{4}}\right)
$$

$\begin{aligned} & \text { Results for } \Lambda=500 \mathrm{MeV}: \\ & \text { (very preliminary, likely to change) }\end{aligned} r_{\text {str }}^{(4)}=\underbrace{r_{\text {matter }}^{(4)}}_{55.442}+\underbrace{r_{\text {boost }}^{(4)}}_{0.215}+\underbrace{r_{\text {SO }}^{(4)}}_{-0.007}+\underbrace{r_{2 \mathrm{NOPE}}^{(4)}}_{0.025}+\underbrace{r_{2 \mathrm{~N}, \mathrm{CT}}^{(4)}}_{0.008}=55.68(5) \mathrm{fm}^{4}$
Error budget (preliminary):
Truncation (N4LO): ± 0.035, πN LECs: ± 0.005, NN LECs: ± 0.04, other errors negligible
$\begin{aligned} & \text { As an application, one can predict }\left\langle r_{d}^{4}\right\rangle=64.62 \pm 0.05_{\chi \mathrm{EFT}} \pm \underbrace{\text { (very preliminary, likely to change) }}_{\text {CODATA }+ \text { PDG }}\end{aligned} \underbrace{0.05_{\mathrm{r}_{N}^{(2)}}}_{\begin{array}{l}r_{p}^{(4)}=1.3 \pm 0.3 \mathrm{fm}^{4} \\ r_{n}^{(4)}=-0.5 \pm 0.2 \mathrm{fm}^{4}\end{array}} \pm \underbrace{0.36_{\mathrm{r}_{\mathrm{N}}^{(4)}}} \mathrm{fm}^{4}$

4ib moment of the charge distirlbution

The fourth-order moment $\left\langle r_{d}^{4}\right\rangle:=60 G_{C}^{\prime \prime}(0)$ is being measured in the ULQ2 exp toshimi Suda et al.

$$
\left\langle r_{d}^{4}\right\rangle=r_{\mathrm{str}}^{(4)}+\frac{10}{3} r_{\mathrm{str}}^{(2)}\left(r_{n}^{(2)}+r_{p}^{(2)}+\frac{3}{4 m^{2}}\right)+\left(r_{n}^{(4)}+\frac{5}{2 m^{2}} r_{n}^{(2)}\right)+\left(r_{p}^{(4)}+\frac{5}{2 m^{2}} r_{p}^{(2)}+\frac{45}{16 m^{4}}\right)
$$

$\begin{aligned} & \text { Results for } \Lambda=500 \mathrm{MeV}: \\ & \text { (very preliminary, likely to change) }\end{aligned} r_{\text {str }}^{(4)}=\underbrace{r_{\text {matter }}^{(4)}}_{55.442}+\underbrace{r_{\text {boost }}^{(4)}}_{0.215}+\underbrace{r_{\text {SO }}^{(4)}}_{-0.007}+\underbrace{r_{2 \mathrm{NOPE}}^{(4)}}_{0.025}+\underbrace{r_{2 \mathrm{~N}, \mathrm{CT}}^{(4)}}_{0.008}=55.68(5) \mathrm{fm}^{4}$
Error budget (preliminary):
Truncation (N4LO): ± 0.035, πN LECs: ± 0.005, NN LECs: ± 0.04, other errors negligible

$\begin{aligned} & \text { As an application, one can predict }\left\langle r_{d}^{4}\right\rangle=64.62 \pm 0.05_{\chi \mathrm{EFT}} \pm \underbrace{\text { (very preliminary, likely to change) }}_{\text {CODATA }+ \text { PDG }}\end{aligned} 0.05_{\mathrm{r}_{\mathrm{N}}^{(2)}} \pm \underbrace{0.0 .5 \pm 0.2 \mathrm{fm}^{4}}_{$| $r_{d}^{(4)}=1.3 \pm 0.3 \mathrm{fm}^{4}$ |
| :--- |
| $r^{(4)}$ |
| $0.36_{\mathrm{r}_{\mathrm{N}}^{(4)}}$ | $\mathrm{fm}^{4}}$

$$
1 \% \text { accuracy } \Rightarrow 8 \% \text { accuracy for } r_{n}^{(2)}+r_{p}^{(2)} \ldots
$$

Alternative determination of the nucleon isoscalar radius?

$$
r_{p}^{(2)}+r_{n}^{(2)}=\frac{\overbrace{\left[\left\langle r_{d}^{4}\right\rangle-r_{p}^{(4)}-r_{n}^{(4)}\right]}-r_{\mathrm{str}}^{(4)}-\frac{15}{16 m^{4}}}{\frac{10}{3} r_{\mathrm{str}}^{(2)}+\frac{5}{2 m^{2}}}-\frac{3}{4 m^{2}}
$$

Towards charge FFs of $\mathrm{A}=3,4$ nuclei

Goal: precise determination of $r_{\mathrm{str}, 4 \mathrm{He}} \&$ prediction for $r_{\mathrm{str}, \mathrm{A}=3}=\sqrt{1 / 3 r_{\mathrm{str}, 3 \mathrm{H}}^{2}+2 / 3 r_{\mathrm{str}, 3 \mathrm{He}}^{2}}$

Towards charge FFs of $A=3,4$ nuclel

『 NN interactions available at N4LO
（ 3NF beyond N2LO not yet available（but can use correlation between radii and BEs）
（ Isovector $\rho_{2 \mathrm{~N}}$ not available beyond $\mathrm{N}^{2} \mathrm{LO} \Rightarrow$ can only calculate ${ }^{4} \mathrm{He} \& 3 \mathrm{H}(\mathrm{e})$ isoscalar； the last remaining γ NN LEC（ ${ }^{1} \mathrm{~S}_{0} \rightarrow{ }^{1} \mathrm{~S}_{0}$ ）fixed from the ${ }^{4} \mathrm{He}$ FF data

V Isospin－breaking corrections，EM interactions（also beyond point－Coulomb）
ح Relativistic corrections from boosting ${ }^{3} \mathrm{H}(\mathrm{e})$ ，${ }^{4} \mathrm{He}$ to the Breit frame
细 Relativistic corrections to the BEs and WFs

$$
\left(2 \sqrt{\hat{p}^{2}+m^{2}}+\tilde{V}\right) \Psi=2 \sqrt{k^{2}+m^{2}} \Psi \quad \Rightarrow \quad\left(\frac{\hat{p}^{2}}{m}+V\right) \Psi=\frac{k^{2}}{m} \Psi
$$

1．Reconstruct \tilde{V} from V（nonlinear eq．，solved by iterations）
2．Use \tilde{V} to construct few－ N irreps．of the Poincaré group by employing the dynamical mass operator（ \Rightarrow boost effects，．．．）Polyzou et al．，Few Body Syst． 49 （2011）

3．Solve the relativistic Faddeev／Faddeev－Yakubovsky equations
鼣 Propagation of uncertainties and error analysis（expect～2\％accuracy）

Summary and conclusions

- Charge \& quadrupole FFs of 2H are in good shape (N4LO, high-precision)
- Other systems and processes are limited to N2LO accuracy due to unavailability of (consistently regularized) many-body forces \& exchange currents
\Rightarrow symmetry-preserving gradient flow regularization Hermann Krebs, EE, in progress
- Correlations between BEs and radii can be employed to obtain precise results for the charge FFs of ${ }^{4} \mathrm{He} \&{ }^{3} \mathrm{H}(\mathrm{e})_{\text {isoscalar }}$ already at this stage Arseniy Filin et al., in progress

Thanks to my collaborators!

