Nucleon spin structure contributions to the Hyperfine Structure determination

Carl E. Carlson William & Mary PREN 2023 & μASTI Mainz, 26-30 June 2023

Talk based on old papers, Nazaryan, Griffioen, Carlson, PRL 2006, CJP 2007, LNP 2008, PRA 2008, 2011, plus recent thinking and recent conversations

In this talk

- Discussion of accurate calculation of hyperfine splitting (HFS) in hydrogen atom, both eH & μH
- Newly motivated by coming experiments
- Lowest order calculation gives the "Fermi energy" and we will discuss corrections to this

Lowest order (easy)

• UG textbook calculation!

• Get
$$E_F^p = \frac{8\pi}{3} (m_r \alpha)^3 \mu_B \mu_p$$

- $\mu_B = e/(2m_e) =$ Bohr magneton $\mu_p =$ exact magnetic moment for proton
- "Fermi energy"
- Can evaluate to about 10-figure accuracy

Next need corrections

- Write as $E^p_{HFS} = E^p_F \left(1 + \Delta_{QED} + \Delta_S + \text{some smaller corrections} \right)$
- Δ_{QED} well calculated, won't discuss here
- "some smaller corrections" won't be mentioned again
- Δ_S = structure dependent corrections, here meaning corrections from 2- γ exchange,

Conventionally separate as

$$\Delta_S = \Delta_Z + \Delta_R$$

NR elastic "Zemach" Rel. elastic Corrections

+

 Δ_{pol}

Polarizability corrections

To be discussed

- How do we get the 2γ corrections from ep scattering data? (General answer: dispersion relations)
- Can we use unsubtracted dispersion relation?
- Comparison with another method: $B\chi PT$ results
- Effect of new data—saw some already in Karl Slifer's talk, and defer further discussion to next talk (David Ruth).

2γ corrections

Not calculable *ab initio*.
But lower part is forward Compton scattering of off-shell photons, algebraically gotten from

$$T_{\mu\nu}(q,p,S) = \frac{i}{2\pi m_p} \int d^4\xi \ e^{iq\cdot\xi} \langle pS | Tj_{\mu}(\xi)j_{\nu}(0) | pS \rangle$$

• Spin dependence is in the antisymmetric part $T^{A}_{\mu\nu} = \frac{i}{m_{p}} \epsilon_{\mu\nu\alpha\beta} q^{\alpha} \left[H_{1}(\nu, Q^{2}) S^{\beta} + H_{2}(\nu, Q^{2}) \frac{p \cdot q S^{\beta} - S \cdot q p^{\beta}}{p \cdot q} \right]$

Some use
$$S_{1,2} = 4\pi^2 \alpha H_{1,2}$$

- Imaginary part of above is related to polarized inelastic *ep* scattering, with Im $H_1(\nu, Q^2) = \frac{1}{\nu} g_1(\nu, Q^2)$ and Im $H_2(\nu, Q^2) = \frac{m_p}{\nu^2} g_2(\nu, Q^2)$
- Emphasize: g_1 and g_2 are measured at SLAC, HERMES, JLab,...

2γ corrections

• Combine electron part of diagram with Compton bottom, and energy from 2γ exchange

$$\begin{split} \Delta_{\text{pol}} &= \frac{E_{2\gamma}}{E_F} \bigg|_{\text{inel}} = \frac{2\alpha m_e}{(1+\kappa_p)\pi^3 m_p} \\ &\times \int \frac{d^4 Q}{(Q^4 + 4m_e^2 Q_0^2)Q^2} \left\{ (2Q^2 + Q_0^2) H_1^{\text{inel}}(iQ_0, Q^2) - 3Q^2 Q_0^2 H_2^{\text{inel}}(iQ_0, Q^2) \right\} \end{split}$$

- (Wick rotated). Great, but don't know $H_{1,2}$ from data.
- But do know Im parts, and if no subtraction, simple Cauchy (dispersion relation) gives

$$H_1^{\text{inel}}(\nu, Q^2) = \frac{1}{\pi} \int_{\nu_{th}^2}^{\infty} d\nu'^2 \, \frac{\text{Im} \, H_1(\nu', Q^2)}{{\nu'}^2 - \nu^2}$$

and similarly for H_2 .

Do some integrals analytically, getting

•
$$\Delta_{\text{pol}} = \frac{\alpha m_e}{2(1+\kappa_p)\pi m_p} (\Delta_1 + \Delta_2)$$

•
$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{16m_p}{9} \int_{\nu_{th}}^\infty \frac{d\nu}{\nu^2} \beta_1 \left(\frac{Q^2}{\nu^2} \right) g_1(\nu, Q^2) \right\}$$

•
$$\Delta_2 = -12m_p \int_0^\infty \frac{dQ^2}{Q^2} \int_{\nu_{th}}^\infty \frac{d\nu}{\nu^2} \beta_2 \left(\frac{Q^2}{\nu^2} \right) g_2(\nu, Q^2)$$

•
$$\beta_1(\tau) = -3\tau + 2\tau^2 + 2(2-\tau)\sqrt{\tau(\tau+1)}$$
 (for $m_e = 0$)

•
$$\beta_2(\tau) = 1 + 2\tau - 2\sqrt{\tau(\tau+1)}$$

Comments

- Early history: begun by Iddings (1965), finalized by Drell and Sullivan (1967), put in present notation by de Rafael (1971). No spin-dependent data existed, no nonzero evaluation for > 30 years, until Faustov and Martynenko (2002), then modern era starts
- Someone added something: the F_2^2 term. Not inelastic. (Put in here, taken out somewhere else.) Thought convenient in 1967, still there.
- Term as written finite in $m_e \rightarrow 0$ limit, because of known sum rule, $4m_p \int_{\nu_{th}}^{\infty} \frac{d\nu}{\nu^2} g_1(\nu, 0) = -\kappa_p^2$ (DHGHY)

Get results

- Use data, modeling regions where data is scarce
- From CNG 2008, mostly using JLab 2003 data $\Delta_{pol}(eH,2S) = 1.88 (0.07) (0.60) (0.20) \text{ ppm}$ $\Delta_{pol}(\mu H,2S) = 351.0 (12.0) (107.0) (36.0) \text{ ppm}$
- Improved by Tomalak and by Peset and Pineda (2018). They realized that the experimental $E_{HFS}^{p}(eH)$ is known to 13 figures and the bulk of the μH calculation just scales with the m_{μ}/m_{e} mass ratio, known to 10 figures. Just need to calculate the smaller pieces that don't scale this way, leading to a final result with smaller overall uncertainty. Will see again soon.
- Want to proceed to discuss subtracted or unsubtracted dispersion relation for $H_{1,2}$

Unsubtracted dispersion relation (DR)?

- Was once openly discussed (< 2006, say), now seems generally thought o.k.
- DR comes from Cauchy integral formula applied with some contour (closed integration path)

$$H_{1}(\nu, Q^{2}) = \frac{1}{2\pi i} \oint \frac{H_{1}(\nu', Q^{2})}{{\nu'}^{2} - \nu^{2}} d\nu'^{2}$$

(DR in ν (or ν^{2}) with Q^{2} fixed)

- Work into $H_{1}(\nu,Q^{2}) = \frac{\operatorname{Res} H_{1}(\nu,Q^{2})\Big|_{el}}{\nu_{el}^{2} - \nu^{2}} + \frac{1}{\pi} \int_{cut} \frac{\operatorname{Im} H_{1}(\nu',Q^{2})}{\nu'^{2} - \nu^{2}} d\nu'^{2} + \frac{1}{2\pi i} \int_{|\nu'| = \infty} \frac{H_{1}(\nu',Q^{2})}{\nu'^{2} - \nu^{2}} d\nu'^{2}$
- Drop the $|\nu| = \infty$ term. O.k. if H_1 falls at high ν .
- Can view as standard or as dramatic assumption.

H_1

• The elastic term can be worked out, sticking on-shell form factors at the γp vertices,

$$H_1^{el} = \frac{2m_p}{\pi} \left(\frac{Q^2 F_1(Q^2) G_M(Q^2)}{(Q^2 - i\epsilon)^2 - 4m_p^2 \nu^2} - \frac{F_2^2(Q^2)}{4m_p^2} \right)$$

- The second term does not fall with ν at fixed Q^2 .
- Unsubtracted DR fails for H_1^{el} alone. Overall success requires exact cancelation between elastic and inelastic contributions.

• (In case of interest:
$$H_2^{el} = -\frac{2m_p}{\pi} \frac{m_p \nu F_2(Q^2) G_M(Q^2)}{(Q^2 - i\epsilon)^2 - 4m_p^2 \nu^2}$$

But then,

- Free quarks if there is at least one large momentum scale. So at high ν , Compton amplitude for proton should be sum of Compton amplitudes for free quarks, which have zero F_2 .
- Regge theory suggests H_1 must fall with ν . See Abarbanel and Nussinov (1967), who show $H_1 \sim \nu^{\alpha-1}$ with $\alpha < 1.*$
- Very similar DR derivation gives GDH sum rule, which is checked experimentally and works, within current experimental uncertainty.
- GDH sum rule also checked in LO and NLO order perturbation theory in QED. Appears to work.

Resolution?

- In modern times, authors who use experimental scattering data and DR to calculate the 2γ corrections assume an unsubtracted DR works for all of H_1 .
- Reevaluation always possible.
- Proceed to next topic, comparison of data driven evaluations of HFS to evaluations using B_{\chi}PT to obtain $H_{1,2}$.
- See if subtraction comments come into play.

Polarizability discrepancy

• Plot from Antognini, Hagelstein, Pascalutsa (2022), similar one in Hagelstein, Pascalutsa, Lensky (2022),

- Bad: polarizability corrections calculated in different ways do not agree.
- (Happens that different authors results for total HFS are in decent agreement, because Zemach terms also different. That "agreement" seems like luck. Want individual pieces to agree.)

Side note: how good need we be?

- New measurements of HFS in μH in 1S state are planned.
- May measure to 0.1 ppm (as fraction of Fermi energy). But need theory prediction to help determine starting point of laser frequency scan.
- From 2018 conference at MITP (Mainz), want theory prediction to 25 ppm or better. Better is what we should look for.
- Believe state of art for HFS in 1S μH is from Antognini, Hagelstein, Pascalutsa (2022), $E_{\rm HFS}^{1S} = 182.634(8) \,{\rm meV}$

or 44 ppm.

Application of $B\chi PT$

• Using chiral perturbation theory, one can calculate beyond the elastic case diagrams like

- Or diagrams where there is a $\Delta\mbox{-baryon}$ on the hadronic leg,

• These can be used to calculate $H_{1,2}$, at low Q^2 and CM energy W not too far from threshold. Also can get $\gamma^*N \to \pi N$ or $\gamma^*N \to \Delta$ and from them obtain $g_{1,2}$ at similarly low kinematics.

g_1 comparison

• Compare g_1 from B χ PT (blue lines) to actual JLab data

- O.k. This won't explain difference in Δ_{pol} results.

Non-pole terms

• Non-pole means u independent terms in $H_{1,2}$.

• Recall elastic
$$H_1^{el} = \frac{2m_p}{\pi} \left(\frac{Q^2 F_1(Q^2) G_M(Q^2)}{(Q^2 - i\epsilon)^2 - 4m_p^2 \nu^2} - \frac{F_2^2(Q^2)}{4m_p^2} \right).$$

- The B χ PT results for H_1 with π -N and Δ intermediate states also have non-pole terms.
- To calculate energies for the non-pole terms, cannot use the DR (at least not un-subtracted ones), but can use the expressions on slide 7, which were before any Cauchy trickery was used

Pole and non-pole

- One part: The Δ contribution to μH HFS for 2S state* $E_{pol}^{HFS} = -40.69 \,\mu \text{eV}$ pole $= 39.54 \,\mu \text{eV}$ non-pole $= -1.15 \,\mu \text{eV}$ total
- Lot of cancellation.
- But from asymptotic freedom, or from Regge analysis, or from success of DHG sum rule, expect zero non-pole term. Totality, from elastic and resonances and inelastic terms, needs to add to zero for the ν independent terms.
- Something to talk about.

One point

 How should one deal with non-zero non-pole terms that result from partial information, when one knows that the non-pole terms are zero when one has complete information?

Δ_{pol} with newest $g_{1,2}$

- Defer to David Ruth (next after next talk).
- Except for comment on handling regions outside the data range.
- Mostly, because of the kinematic factors, the need is for data at low Q^2 and low ν (or *W* near threshold), and this is where the data is.
- Again, mostly, where there is no data and we use models or interpolations, the contributions to Δ_{1,2} are not great and the accruing uncertainty is not great.

Δ_{pol} with newest $g_{1,2}$

- An exception may be the very low Q^2 region, where there is no data. For the 2003 data, this was $Q^2 < 0.0492$ GeV².
- And there may be a problem when comparing to χ PT.
- What we did: reminder

$$\Delta_1 = \frac{9}{4} \int_0^\infty \frac{dQ^2}{Q^2} \left\{ F_2^2(Q^2) + \frac{8m_p^2}{Q^2} B_1(Q^2) \right\}$$

with
$$B_1(Q^2) = \frac{4}{9} \int_0^{x_{\rm th}} dx \beta_1(\tau) g_1(x, Q^2)$$
.

• For very low Q^2 we used $B_1(Q^2) = -\frac{\kappa_p^2}{8m_p^2}Q^2 + c_{1B}Q^4 = -\frac{\kappa_p^2}{8m_p^2}Q^2 + 4.94 \,Q^4/\text{GeV}^4$ got by fitting to data $Q^2 < 0.3 \,\text{GeV}^2$

Δ_{pol} with newest $g_{1,2}$

- The region $Q^2 < 0.0492$ GeV² contributed about 15% of Δ_1 and (by our estimate) 30% of the uncertainty.
- Use standard expansion for the form factor, $F_2(Q^2) = \kappa_p \left(1 - \frac{1}{6} R_{Pauli}^2 Q^2 + \dots\right)$
- Get Integrand = $\frac{9}{4} \frac{1}{Q^2} \left(F_2^2 + \frac{8m_p^2}{Q^2} B_1 \right) = -\frac{3}{4} \kappa_p^2 R_{Pauli}^2 + 8m_p^2 c_{1B}$
- And $\Delta_1(0 \rightarrow Q^2_{low\,data}) \approx \text{Integrand} \cdot Q^2_{low\,data} \approx 1.35$

$$\Delta_{pol}$$
 with newest $g_{1,2}$

- χ PT has knowledge of g_1 at low Q^2 , and can do the integrals. Do good approximation by expanding the β_1 function for low Q^2 .
- Work for a while to get Integrand = $-\frac{3}{4}\kappa_p^2 R_{Pauli}^2 + 8m_p^2 c_1 - \frac{5m_p^2}{4\alpha}\gamma_0 + \mathcal{O}(Q^2),$

• Where
$$\gamma_0 = \frac{2\alpha}{m_p^2} \int \frac{d\nu}{\nu^4} g_1(\nu, 0)$$

and c_1 came from
 $I(Q^2) \equiv 4m_p \int \frac{d\nu}{\nu^2} g_1(\nu, Q^2) = -\kappa_p^2 + c_1 Q^2 + \mathcal{O}(Q^4)$

 Δ_{pol} with newest $g_{1,2}$

• Value for known, and doing integrals to get c_1 , find $\Delta_1(0 \rightarrow Q_{low \, data}^2) \approx \text{Integrand} \cdot Q_{low \, data}^2 \approx -0.45$

thanks again to F. Haglestein et al.

- Not even same sign!
- Corresponding numbers for μ are ~ ≈ 0.86 and -0.20

• Remembering $\Delta_{pol} = \frac{\alpha m_{\mu}}{2(1 + \kappa_p)\pi m_p} (\Delta_1 + \Delta_2)$, difference gives about 50 ppm or about 15% of discrepancy.

• More to talk about!

Summary

- Dispersive calculation, assuming no subtractions are needed, is complete, well defined, and unambiguous.
- Gets value of HFS using spin-dependent *ep* scattering data as input.
- Really pleased about new data.
- EFT calculations should also be totally fine, but there is a "tension" that requires resolution.