Lattice QCD Calculation of the Two-Photon Exchange Contribution to the Muonic-Hydrogen Lamb Shift

Speaker: Yang Fu (Peking U.)
Collaborators: Xu Feng (Peking U.), Lu-Chang Jin (UConn/RIKEN BNL), Chen-Fei Lu (Peking U.)
Based on Phys. Rev. Lett. 128 (2022) 17, 172002 + new progress

June 27, 2023
PREN \& μ ASTI conference

Outline

(1) Background
(2) Lattice QCD calculation of TPE to $\mu \mathrm{H}$ Lamb shift (based on PRL 128 (2022) 17, $172002+$ new progress)
(3) Lattice QCD calculation of subtraction function (ongoing)

4 Conclusion \& Outlook

Outline

(1) Background
(2) Lattice QCD calculation of TPE to $\mu \mathrm{H}$ Lamb shift
(based on PRL 128 (2022) 17, $172002+$ new progress)
(3) Lattice QCD calculation of subtraction function (ongoing)
(4) Conclusion \& Outlook

Muonic-hydrogen Lamb shift

- Lamb shift in $\mu \mathrm{H}$: most precise way to measure proton charge radius.

- m_{μ} is about 200 times of $m_{e} \rightarrow \mu \mathrm{H}$ Bohr radius is about $1 / 200$ of H
\Rightarrow much more sensitive to proton structure, especially the charge radius.
- Experiments done in 2010 and 2013, by CREMA at PSI

$$
\sqrt{\left\langle r_{p}^{2}\right\rangle}=0.84087(26)_{\exp }(29)_{\text {theo }} \mathrm{fm}
$$

10 times more precise than hydrogen / scattering result.
(Nature 466 (2010) 213, Science 339 (2013) 417)

- Proton structure effects beyond charge radius also enhanced
\Rightarrow Major source of theoretical uncertainty.

Muonic-hydrogen Lamb shift

- Theory for $\mu \mathrm{H}$ Lamb shift (Science 339 (2013) 417. Ann. of Phy. 331 (2013), 127)

$$
\begin{array}{ccc}
\text { Exp. value } & \text { Theory } \\
\Delta E_{2 S-2 P} & = & \Delta E_{\text {structure indep. }}+\Delta E_{\text {proton size }}+\Delta E_{T P E} \\
202370.6(2.3) & = & 206033.6(1.5)-5227.5(1.0)\left\langle r_{p}^{2}\right\rangle+33.2(2.0)
\end{array}
$$

- Two-photon exchange (TPE): the hadronic effect.

- The uncertainty of structure-independent part is further reduced

$$
\Delta E_{2 S-2 P}=206034.7(0.3)-5227.5(1.0)\left\langle r_{p}^{2}\right\rangle+33.2(2.0)
$$

Exp. value will also be improved by at least 5 times.

- TPE will dominate the total uncertainty.

Two-photon exchange

- TPE is sensitive to low-energy structure: non-perturbative QCD
- Dispersion relation: turn scattering data into amplitudes
- Cauchy formula + optical theorem
- No contribution from \mathcal{C}_{∞}, otherwise a subtraction must be performed
- Unfortunately here we need once-subtracted DR
- Subtraction leads to a "subtraction function": can not be fully extracted from experimental data.

Two-photon exchange

- Previous work: DR and/or EFTs. Results are in good agreement.
- Non-perturbative \Rightarrow lattice QCD
- can calculate full TPE directly
- or calculate the subtraction function, then combined with DR calculation

Lattice QCD

- Lattice QCD: path integral formalism of QCD in Euclidean space

$$
\begin{aligned}
\langle O\rangle & =\frac{1}{Z} \int[D U] \hat{O} \exp \{\underbrace{-S_{g}[U]}_{\text {gluon }}+\underbrace{\operatorname{Tr} \ln (M[U])}_{\text {quark }}\} \\
& \Rightarrow \frac{1}{N} \sum_{i} O_{i}
\end{aligned}
$$

- Dimension of the integral \propto number of points $\sim 10^{7}$
\rightarrow Monte Carlo method, average over configurations.
- Action is local \rightarrow configurations stored in position space.
- Three limit for LQCD calculation to reach the physical point:
- lattice size $L \rightarrow \infty$
- lattice spacing $a \rightarrow 0$
- quark mass $m_{q} \rightarrow m_{q, \text { phy }}$ (or pion mass $m_{\pi} \rightarrow m_{\pi, \text { phy }}$)

Outline

(1) Background

(2) Lattice QCD calculation of TPE to $\mu \mathrm{H}$ Lamb shift (based on PRL 128 (2022) 17, $172002+$ new progress)
(3) Lattice QCD calculation of subtraction function (ongoing)
(4) Conclusion \& Outlook

Calculation of TPE

- TPE diagram can be calculated using lattice QCD

But: free lepton \rightarrow TPE diagram is IR divergent
- The real definition of IR finite TPE: need to remove

1) point-like proton contribution (form factor $G_{E}=G_{M}=1$)

$$
T_{1}^{\mathrm{pt}}=\frac{M}{\pi} \frac{\nu^{2}}{Q^{4}-4 M^{2} \nu^{2}}, \quad T_{2}^{\mathrm{pt}}=\frac{M}{\pi} \frac{Q^{2}}{Q^{4}-4 M^{2} \nu^{2}}
$$

2) charge radius term from third Zemach moment contribution

$$
\Delta E^{\mathrm{rad}}=\alpha^{2}\left|\phi_{n}(0)\right|^{2} \int \frac{\mathrm{~d} Q^{2}}{Q^{2}} \frac{8 m M}{3(M+m) Q}\left\langle r_{p}^{2}\right\rangle
$$

- IR divergence shall cancel analytically even for numerical calculation. How?

IR subtraction

- Infinite-volume reconstruction (IVR) method.

$$
\text { Feng, Jin, PRD 100, } 094509 \text { (2019) }
$$

- Idea: low-energy structure \rightarrow long-distance hadronic function
\Rightarrow reconstruct point-like + charge radius

- We thus find the appropriate weight functions $L^{\text {pt }}, L^{\text {rad }}$
$\left\{\xi=c^{\mathrm{pt}} \int \mathrm{d}^{4} x L^{\mathrm{pt}}(x) H(x) c^{\mathrm{rad}} \int \mathrm{d}^{4} x L^{\text {rad }}(x) H(x)\right.$
therefore

$$
\begin{aligned}
\Delta E & =\int \mathrm{d}^{4} x \underbrace{\left[L(x)-c^{\mathrm{pt}} L^{\mathrm{pt}}(x)-c^{\mathrm{rad}} L^{\mathrm{rad}}(x)\right]}_{\text {R finite }} H(x) \\
& \equiv \int \mathrm{d}^{4} x L^{\mathrm{sub}}(x) H(x)
\end{aligned}
$$

Weight function $L^{\text {sub }}(x)$ is IR finite \rightarrow maintain IR cancellation automatically.

Finite-volume effect \& signal-to-noise problem

- Signal-to-noise ratio decays exponentially at long distance:

$$
H(x) / \delta H(x) \sim \exp \left\{-\left(M_{p}-\frac{3}{2} m_{\pi}\right)|x|\right\}
$$

- Weight function $L^{\text {sub }}\left(\vec{x}, t_{s}\right)$ increases rapidly as $|x|$ increases
\Rightarrow Significant finite-volume effect.

Figure: $L^{\text {sub }}(x)$ increases with $|x|$

Figure: model estimate: $4 \pi|x|^{2} L(x) H(x)$

- Converges at $|x| \sim 5 \mathrm{fm}$.
$\Rightarrow L \sim 10 \mathrm{fm}$ lattice box required. Possible, but $H(x)$ will be very noisy.

Finite-volume effects \& signal-to-noise problem

- Optimized subtraction scheme, idea: $A=(A-B)+B$
- Recall the charge conservation and charge radius

$$
1=\int \mathrm{d}^{4} x L^{\mathrm{pt}}(x) H(x), \quad\left\langle r_{p}^{2}\right\rangle=\int \mathrm{d}^{4} x L^{\mathrm{rad}}(x) H(x)
$$

We split the TPE correction into

$$
\Delta E=\underbrace{\left(\Delta E-c_{0}-c_{r} \cdot\left\langle r_{p}^{2}\right\rangle\right)}_{\Delta E^{(r)}}+c_{0}+c_{r} \cdot\left\langle r_{p}^{2}\right\rangle
$$

with $\Delta E^{(r)}$ calculated on lattice using reduced weight function

$$
L^{(r)}(x)=L^{\text {sub }}(x)-c_{0} L^{\text {pt }}(x)-c_{r} L^{\mathrm{rad}}(x)
$$

- The subtraction coefficients c_{0} and c_{r} are chosen by minimizing

$$
I\left(c_{0}, c_{r}\right)=\int_{R_{\min }}^{R_{\max }} \mathrm{d} x\left(4 \pi x^{2}\right)\left|L^{(r)}(x)\right|^{2}
$$

Finite-volume effect \& signal-to-noise problem

- Main contribution comes from the range of $1-3 \mathrm{fm}$ we therefore choose $R_{\min }=1 \mathrm{fm}$ and $R_{\max }=3 \mathrm{fm}$ to minimize $L^{(r)}(x)$
- Minimization yields

$$
\Delta E_{\text {TPE }}=0.77 \mu \mathrm{eV}+93.72 \cdot\left\langle r_{p}^{2}\right\rangle \mu \mathrm{eV} / \mathrm{fm}^{2}-\Delta E_{\mathrm{lat}}
$$

Figure: model estimate for $L_{1}(x)$ and $L_{1}^{(r)}(x)$

Figure: Numerical partial sum

- $\Delta E_{\text {lat }}$ with reduced weight function
\Rightarrow Finite-volume effect: $L \sim 10 \mathrm{fm} \rightarrow 5 \mathrm{fm}$, with error reduced by ~ 6 times.

Four-point correlation function

- Many LQCD works based on 2pt and 3pt correlation functions but this work requires nucleon 4pt functions.

- Complexity: $3 \mathrm{pt} \rightarrow 4 \mathrm{pt}$, one more summation over L^{3} \Rightarrow increased by $\sim 10^{4}-10^{6}$, new approach is needed.
- Solved by random field sparsening technique. Detmold et al., PRD 104, 034502 (2021)
- Sum over full space \rightarrow random points. et al., PRD 103, 014514 (2021)
- Strong correlation between data points
\Rightarrow Number of sums reduced by $10^{2} \sim 10^{3}$, with negligible loss of precision

- Increase in computational complexity becomes acceptable

Four-point correlation function

- One more point \rightarrow more types of quark field contractions.
- quark connected diagrams (10 types):

- quark disconnected diagrams (3 types):
notorious for high cost and bad signal-to-noise!

- Our calculation includes all types of connected diagrams and the first type of disconnected diagrams (other two suppressed by flavor SU(3))

Lattice setup

- Gauge ensemble: pion mass near physical

Ensemble	$m_{\pi}[\mathrm{MeV}]$	L / a	T / a	$a[\mathrm{fm}]$	$N_{\text {conf }}$
24 D	142	24	64	$0.1943(8)$	131

- Time separation sets for four-point correlation function:

$$
\begin{aligned}
\left\{\Delta t_{i} / a, \Delta t_{f} / a\right\} & =\{1,2\},\{2,1\},\{2,2\},\{2,3\},\{3,2\},\{3,3\} \\
t_{s} / a & =2,3,4,5
\end{aligned}
$$

total source-sink time separation ranges from 1.0 to 2.1 fm

- Published result reuse the point-source propagators already generated in previous calculation \rightarrow demonstrate the feasibility
\Rightarrow better use the smeared-source propagators \rightarrow we are currently generating!

Numerical results

- Partial sum $\sum_{|x|<R}$ of the result (at $\left\{\Delta t_{i}, \Delta t_{f}, t_{s}\right\}=\{2 a, 2 a, 4 a\}$) Upper: connected. Lower: disconnected.

- All contributions converge at $R \sim 2.5 \mathrm{fm}$
\Rightarrow Finite-volume effects are well under control within current uncertainties.

Numerical results

- Multiple sets of time separation to confirm ground-state saturation. Upper: connected. Lower: disconnected.

Numerical results

- The total TPE contribution is given by

$$
\begin{aligned}
\Delta E_{\mathrm{TPE}} & =-28.9(4.9) \mu \mathrm{eV}+93.72 \mu \mathrm{eV} / \mathrm{fm}^{2} \cdot\left\langle r_{p}^{2}\right\rangle \\
& =37.4(4.9) \mu \mathrm{eV}
\end{aligned}
$$

If not using the optimized subtraction scheme, we get $\Delta E_{\text {TPE }}=40(24) \mu \mathrm{eV}$.

- Compared with previous theoretical work

Next step: more statistics and better control the systematics

Improvements

- Here we highlight the improvements from smeared-source propagators.

Point-source props

Smeared-source props

- creation operator with correct quantum number can generate proton state but also generate all possible excited states \Rightarrow excited-state contamination
- Proton is not a point particle, extend the propagators in a reasonable way (e.g. Gaussian) can increase the overlap \Rightarrow smeared-source propagators.

Improvements: smeared propagators

- Point-source props $\left(n_{\text {conf }} \sim 130\right) \rightarrow$ smeared-source props $\left(n_{\text {conf }} \sim 110\right)$ still generating!

- Excited-state contamination better controlled
- Statistical uncertainty for connected part reduced by $\sim 50 \%$
\rightarrow smeared props are more correlated, field sparsening works more efficiently
More statistics \& more ensembles are ongoing - stay tuned for that!

Outline

(1) Background

(2) Lattice QCD calculation of TPE to $\mu \mathrm{H}$ Lamb shift (based on PRL 128 (2022) 17, $172002+$ new progress)
(3) Lattice QCD calculation of subtraction function (ongoing)
(4) Conclusion \& Outlook

Subtraction function

- Another way: evaluate the subtraction function with lattice QCD.

Motivation: DR + LQCD could be more precise compared to full LQCD

- F. Hagelstein \& V. Pascalutsa suggest performing the subtraction at
$\left(\nu_{s}, Q^{2}\right)=\left(i Q, Q^{2}\right)$ rather than $\left(0, Q^{2}\right)$.

Nucl. Phys. A 1016 (2021) 122323
$\Delta E_{\text {TPE }}^{\text {(inel) }}\left(\nu_{s}=i Q\right)=1.6 \mu \mathrm{eV}$ vs
$\Delta E_{\mathrm{TPE}}^{(\text {inel })}\left(\nu_{s}=0\right)=-12.3 \mu \mathrm{eV}$
\Rightarrow inelastic term is suppressed

- Situation for joint calculation:
- DR calculation: dominated by elastic term and is very precise
- LQCD calculation: this point can be accessed by simply set $Q=(Q, \overrightarrow{0})$

Dispersion relation

- In more detail

Blob: doubly-virtual Compton scattering (VVCS)

$$
T_{\mu \nu}=\left(-\delta_{\mu \nu}+\frac{Q_{\mu} Q_{\nu}}{Q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)-\left(P_{\mu}-\frac{P \cdot Q}{Q^{2}} Q_{\mu}\right)\left(P_{\nu}-\frac{P \cdot Q}{Q^{2}} Q_{\nu}\right) \frac{T_{2}\left(\nu, Q^{2}\right)}{M^{2}}
$$

- $T_{1,2}\left(\nu, Q^{2}\right)$ can be reconstructed via dispersion relations.
but once subtraction is needed for $T_{1}\left(\nu, Q^{2}\right)$
- Two ways to perform the subtracted DR:

1) Separate the Born term first, then perform DR to the non-Born part

$$
\begin{aligned}
T_{1}\left(\nu, Q^{2}\right) & =T_{1}^{\text {Born }}\left(\nu, Q^{2}\right)+T_{1}^{\text {non-Born }}\left(\nu, Q^{2}\right) \\
& =T_{1}^{\text {Born }}\left(\nu, Q^{2}\right)+T_{1}^{\text {inel }}\left(\nu, Q^{2}\right)+T_{1}^{\text {non-Born }}\left(i Q, Q^{2}\right)
\end{aligned}
$$

2) Perform DR directly to full amplitude

$$
T_{1}\left(\nu, Q^{2}\right)=T_{1}^{\mathrm{el}}\left(\nu, Q^{2}\right)+T_{1}^{\text {inel }}\left(\nu, Q^{2}\right)+T_{1}\left(i Q, Q^{2}\right)
$$

Lattice QCD calculation of subtraction function

- For LQCD, we prefer calculate $T_{1}\left(i Q, Q^{2}\right)$ instead of $T_{1}^{\text {non-Born }}\left(i Q, Q^{2}\right)$.
- we can only simulate the full hadronic function $H_{\mu \nu}(x)$, not $H_{\mu \nu}^{\text {non-Born }}(x)$.
- To avoid IR divergence, we subtract the contribution from $\lim _{Q \rightarrow 0} T_{1}\left(i Q, Q^{2}\right)$ then add it back to the elastic part.
- The size of each part is estimated below

Subt. point	$\Delta E^{\text {el }}$	$\Delta E^{\text {inel }}$	$\Delta E^{\text {subt }}[\mu \mathrm{eV}]$	subt. from LQCD
$\nu_{s}=i Q$	27.5	-1.6	$\lesssim 10$	uncertainty $<20 \%$ is OK
$\nu_{s}=0$	-15.9	12.3	~ 30	not favored

Elastic: using dipole form factors with $\sqrt{r_{E}^{2}}=\sqrt{r_{M}^{2}}=0.85 \mathrm{fm}$
Inelastic: Christy-Bosted parameterization
Subtraction: assuming total $\Delta E_{\text {TPE }} \sim 30 \mu \mathrm{eV}$
\Rightarrow Conclusion: lattice calculation also favors $\left(\nu_{s}, Q^{2}\right)=\left(i Q, Q^{2}\right)$

Lattice QCD calculation of subtraction function

- Need to extract $T_{1}\left(i Q, Q^{2}\right)$ from $T_{\mu \nu}$ (or $H_{\mu \nu}(x)$, simulated by lattice)

$$
T_{\mu \nu}=\left(-\delta_{\mu \nu}+\frac{Q_{\mu} Q_{\nu}}{Q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)-\left(P_{\mu}-\frac{P \cdot Q}{Q^{2}} Q_{\mu}\right)\left(P_{\nu}-\frac{P \cdot Q}{Q^{2}} Q_{\nu}\right) \frac{T_{2}\left(\nu, Q^{2}\right)}{M^{2}}
$$

at $\vec{Q}=\overrightarrow{0}$ non diagonal elements vanish \rightarrow one can use either $\sum_{i} T_{i i}$ or T_{00}

- For simplicity, we define ξ as $\nu=i \xi Q$
for $\sum_{i} T_{i j}$ it is straightforward, we get

$$
T_{1}\left(i Q, Q^{2}\right)=-\left.\frac{1}{3} \sum_{i} T_{i i}\right|_{\xi=1}
$$

for T_{00}, it vanishes at $\xi=1$, but the "derivative" survives

$$
T_{1}\left(i Q, Q^{2}\right)=-\left.\lim _{\xi \rightarrow 1} \frac{1}{1-\xi^{2}} T_{00}\right|_{\xi}
$$

both can be used, but on lattice they have different syst. and stat. error.

- We find it's better to extract subtraction function from T_{00}
- current conservation better held and smaller statistical uncertainty.

Contribution from subtraction function

- Evaluate the integral for TPE to Lamb shift, we get

$$
\Delta E^{\text {subt }}=16 \pi \alpha^{2}\left|\phi_{n}(0)\right|^{2} \int \mathrm{~d} Q \underbrace{\left(-\frac{\gamma\left(\tau_{l}\right)}{Q^{2}}\left[T_{1}\left(i Q, Q^{2}\right)-\lim _{Q \rightarrow 0} T_{1}\left(i Q, Q^{2}\right)\right]\right)}_{f(Q)}
$$

with $\tau_{I}=Q^{2} /\left(4 m_{\mu}^{2}\right)$ and $\gamma(\tau)=(1-2 \tau)\left[(1+\tau)^{1 / 2}-\tau^{1 / 2}\right]+\tau^{1 / 2}$

- The weight function is monotonically falling and

$$
\gamma\left(\tau_{\iota}\right)= \begin{cases}1, & Q \rightarrow 0 \\ \frac{3 m_{\mu}}{2 Q}, & Q \rightarrow \infty\end{cases}
$$

the contribution is heavily weighted to small momentum.

- For zero-momentum limit, the low-energy expansion gives

$$
f(0)=\frac{\alpha_{E}}{4 \pi \alpha_{\mathrm{EM}}}-\frac{3+3 \kappa^{2}+4 M^{2}\left\langle r_{E}^{2}\right\rangle}{48 \pi M^{3}}=0.97(6) \mathrm{GeV}^{-3}
$$

values are taken from PDG.

Preliminary result

- Lattice result of the integrand (connected diagrams only)

$$
f(Q)=-\frac{\gamma\left(\tau_{l}\right)}{Q^{2}}\left[T_{1}\left(i Q, Q^{2}\right)-\lim _{Q \rightarrow 0} T_{1}\left(i Q, Q^{2}\right)\right]
$$

same pion mass \& volume, different lattice spacing

need further control systematics and add quark disconnected diagrams.

Outline

(1) Background
(2) Lattice QCD calculation of TPE to $\mu \mathrm{H}$ Lamb shift (based on PRL 128 (2022) 17, $172002+$ new progress)
(3) Lattice QCD calculation of subtraction function (ongoing)

4 Conclusion \& Outlook

Conclusion \& Outlook

- Two ways for better determining the TPE contribution:
- Direct LQCD calculation to full TPE.
- Evaluate the subtraction function and combined with DR calculation.
- Future work:
- More statistics and better control the systematics.
- TPE correction to $\mathrm{H} \& \mu \mathrm{H}$ hyperfine splitting. (ongoing!)
- Also neutron TPE from LQCD.

Summary

- LQCD study of important quantities relevant for atomic spectroscopy
\rightarrow better understanding of hadron / nuclear structure, atomic physics, \cdots

Thank you!

further questions / discussions \rightarrow fy_deg@pku.edu.cn

