Nuclear Structure in Light Muonic Atoms: µH

Vadim Lensky

Institut für Kernphysik, Johannes-Gutenberg Universität Mainz

PREN & µASTI Joint Meeting Mainz, June 27, 2023

Nuclear Structure in (Muonic) Atoms and Ions

- Atomic spectra are sensitive to nuclear properties:

 Lamb Shift: E_{LS} = E_{QED} + C R_E² + E_{NS}
 Small Z: expand in α, Zα charge radius
 - nuclear size $\mathcal{C} \propto \alpha^4 + \dots$
 - nuclear structure $E_{NS} \propto \alpha^5 + \dots$
- Muonic atoms: greater sensitivity to charge radii

Bohr radius $a = (Z \alpha m_r)^{-1}$

• But also greater sensitivity to subleading nuclear response

Lamb Shift:
$$\Delta E = \frac{2\pi Z \alpha}{3} \frac{1}{\pi (an)^3} \begin{bmatrix} R_E^2 - \frac{Z \alpha m_r}{2} R_F^3 \end{bmatrix} + \dots$$

Friar radius Subleading nuclear Zemach radius response

Two-Photon Exchange (TPE)

- The most important part of the nuclear response beyond finite size
- Described in terms of (doubly virtual forward) Compton scattering: VVCS
- Elastic ($v = \pm Q^2/2M_{target}$, elastic e.m. form factors) and inelastic (~ nuclear generalised polarisabilities)

• Defines the theoretical uncertainty as of now

	Correction	μH	μD	$\mu^{3}\mathrm{He}^{+}$	$\mu^4 \mathrm{He}^+$
$E_{ m QED}$ $\mathcal{C} r_C^2$ $E_{ m NS}$	point nucleus finite size nuclear structure	$\begin{array}{r} 206.0344(3) \\ -5.2259r_p^2 \\ 0.0289(\textbf{25}) \end{array}$	$\begin{array}{r} & & \\ 228.7740(3) \\ -6.1074r_d^2 \\ & 1.7503(200) \end{array}$	$ \begin{array}{r} 1644.348(8) \\ -103.383 r_h^2 \\ 15.499(378) \end{array} $	$\begin{array}{r} 1668.491(7) \\ -106.209 r_{\alpha}^2 \\ 9.276(433) \end{array}$
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)

Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl – theory review (2022) ^a experiment: CREMA (2013-2023)

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$\alpha_{\rm em} M^{\mu\nu}(\nu, Q^2) = -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) T_1(\nu, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu, Q^2) + \frac{i}{M^3} \epsilon^{\nu\mu\alpha\beta} q_{\alpha}(p \cdot q \ s_{\beta} - s \cdot q \ p_{\beta}) S_2(\nu, Q^2) \right\}$$

Lamb Shift:
$$E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

Subtract point-like and finite size!

• Unitarity and analyticity, data-driven: dispersive relations

Structure functions $F_1(x, Q^2)$, $F_2(x, Q^2)$: inclusive electron scattering

$$T_{1}(\nu, Q^{2}) = T_{1}(0, Q^{2}) + \frac{32\pi M \nu^{2}}{Q^{4}} \int_{0}^{1} dx \frac{x F_{1}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}},$$

$$T_{2}(\nu, Q^{2}) = \frac{16\pi M}{Q^{2}} \int_{0}^{1} dx \frac{F_{2}(x, Q^{2})}{1 - x^{2}(\nu/\nu_{el})^{2} - i0^{+}} \qquad x = Q^{2}/(2M\nu)$$

- The subtraction function $T_1(0, Q^2)$ is not directly accessible in experiment
- Data on structure functions is deficient (for anything other than proton)

VVCS and Structure Functions

• Forward spin-1/2 VVCS amplitude

$$\begin{aligned} \alpha_{\rm em} \, M^{\mu\nu}(\nu, \, Q^2) &= -\left\{ \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \right) \, \mathcal{T}_1(\nu, \, Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} \, q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} \, q^{\nu} \right) \, \mathcal{T}_2(\nu, \, Q^2) \right. \\ &+ \frac{i}{M} \, \epsilon^{\nu\mu\alpha\beta} \, q_\alpha s_\beta \, S_1(\nu, \, Q^2) + \frac{i}{M^3} \, \epsilon^{\nu\mu\alpha\beta} \, q_\alpha (p \cdot q \, s_\beta - s \cdot q \, p_\beta) \, S_2(\nu, \, Q^2) \right\} \end{aligned}$$

Lamb Shift:
$$E_{nS}^{2\gamma} = -8i\pi\alpha m \left[\phi_n(0)\right]^2 \int \frac{d^4q}{(2\pi)^4} \frac{\left(Q^2 - 2\nu^2\right) T_1(\nu, Q^2) - \left(Q^2 + \nu^2\right) T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

- Subtract point-like and finite size!
- Typical energies in (muonic) atoms are small: use effective field theories
 - chiral EFT (covariant, HB, ...)
 - or even pionless EFT for nuclear effects
 - expansion in powers of a small parameter
 - order-by-order uncertainty estimate
- Calculate VVCS or structure functions
- In nuclei heavier than proton: also calculate the elastic form factors

Nuclei Heavier than Proton

- Most of the TPE correction is nuclear (as in: no nucleon polarisation)
- Nuclear part of subtraction function converges (finite energy sum rule)

Gorchtein (2015)

- TPE integrals with nuclear response functions from χEFT will converge
- "Most popular" method

$$E_{\text{pol}} = -\frac{4 \pi \alpha^2}{3} \phi^2(0) \int_{E_T} dE \sqrt{\frac{2 \mu}{E}} |\langle \phi_N | \vec{d} | E \rangle|^2$$

Friar, Pachucki, Wienczek, Kalinowski, Rosenfelder, Leidemann, Bacca, Ji, Hernandez, Acharya, Li Muli, VL, ...

- Single-nucleon contributions need to be accounted for separately
 - relatively more important in heavier nuclei
 - sizeable uncertainty!
 - neutron not so well constrained empirically

	$\delta^A_{ m Zem}$	$\delta^A_{ m pol}$	$\delta^N_{ m Zem}$	$\delta^N_{ m pol}$	δ_{TPE}
$ \mu^{2}H $ $ \mu^{3}H $ $ \mu^{3}He^{+} $ $ \mu^{4}He^{+} $	$\begin{array}{r} -0.423(04) \\ -0.227(06) \\ -10.49(23) \\ -6.14(31) \end{array}$	-1.245(13) -0.480(11) -4.23(18) -2.35(13)	$\begin{array}{c} -0.030(02) \\ -0.033(02) \\ -0.52(03) \\ -0.54(03) \end{array}$	-0.020(10) -0.031(17) -0.25(13) -0.34(20)	-1.718(17) -0.771(22) -15.49(33) -9.37(44)
	nucle	' ar	individua		
Ji et al. (2018)					6

Lamb Shift of μ H in Covariant B χ PT

- Delta counting: $\Delta = M_{\Delta} M \gg m_{\pi}$
- The contributions of the Delta isobar are suppressed by powers of m_{π}/Δ
- Expansion in powers of

 $p/\Delta \sim m_\pi/\Delta \sim 0.5$

• LO B**χ**PT: pion-nucleon loops

 $\Delta E_{2S}^{\text{LO, pol}} = -9.6^{+1.4}_{-2.9} \ \mu\text{eV}$

• Delta exchange:

Alarcon, VL, Pascalutsa (2014)

- suppressed in ΔE_{2S}^{pol} but affects the subtraction
- insert transition form factors (Jones-Scadron)

$$\Delta E_{2S}^{\Delta- ext{pole}} = 0.95 \pm 0.95 \ \mu eV$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

Various Subtraction Functions

- The diversity of the results for the proton subtraction function $T_1(0, Q^2)$
 - HBChPT: dipole FF, matches β_{M1} [PDG] and the slope at 0 modification of Birse, McGovern (2012)
 - BChPT: transition FFs change the subtraction function
 - Empirical: Regge asymptotic at high energy subtracted Tomalak, Vanderhaeghen (2015)

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- Zero crossing at low Q^2 is present in BChPT with FFs; established in the empirical derivation, but the position not well known (0.1..0.4 GeV²)
- Big cancellations between different mechanisms (πN and $\pi \Delta$ loops vs. Δ pole), also cancellations in the LS integral because of the sign change
- Empirical derivation has sizeable errors towards $Q^2 = 0$ (not shown) attributed to mismatch between structure function fit in the resonance region (Christy-Bosted) and at high energies (Donnachie-Landshoff) => needs a better (combined) structure function parametrization

Lamb Shift of µH in Various Approaches

Reference	$E_{2S}^{(\text{subt})}$	$E_{2S}^{(\text{inel})}$	$E_{2S}^{(\text{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$
DATA-DRIVEN DISPERSIVE EVALUATION					
(75) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)
(76) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(77) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)		
(78) Birse and McGovern '12	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)
(79) Gorchtein et al.'13 $^{\rm a}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(80) Hill and Paz '16					-30(13)
(81) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)
Leading-order $B\chi PT$					
(82) Alarcòn et al. '14			$-9.6^{+1.4}_{-2.9}$		
(83) Lensky et al. '17 $^{\rm b}$	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$		
LATTICE QCD					
(84) Fu et al. '22					-37.4(4.9)

Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

Antognini, Hagelstein, Pascalutsa (2022)

- Agreement between different approaches, also on the size of the subtraction contribution separately despite the variation in $T_1(0, Q^2)$
- Still, the subtraction contribution has the biggest uncertainty, and needs to be further constrained

Subtraction Function: How to Constrain it?

$$T_{1}(0, Q^{2}) = \beta_{M1} Q^{2} + \left[\frac{1}{6}\beta_{M2} - \alpha_{em}\sqrt{\frac{3}{2}}P'^{(M1,M1)0}(0) + \frac{1}{(2M)^{2}}\beta_{M1} + \alpha_{em}b_{3,0}\right] Q^{4} + \mathcal{O}(Q^{6})$$

VL, Hagelstein, Pascalutsa, Vanderhaeghen (2017)

- The knowledge of $b_{3,0}$ constrains the slope
- Get from dilepton electroproduction, $ep o ep \ell^+ \ell^-$ Pauk, Carlson, Vanderhaeghen (2020)
- A different subtraction point: $v_s = iQ$ instead of $v_s = 0$ Hagelstein, Pascalutsa (2021)
 - may be advantageous to use [no zero crossing at low Q^2 , less affected by cancellations, smaller Δ contribution, inelastic contribution becomes small]

• An improvement in empirical extraction of $T_1(0, Q^2)$ [or $T_1(iQ, Q^2)$] is possible, needs better parametrizations of proton structure functions!

HFS of μH in Covariant BχPT

$$egin{aligned} E_{\mathsf{hfs}}(nS) &= rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1+\Delta_{\mathsf{QED}}+\Delta_{\mathsf{weak}}+\Delta_{\mathsf{strong}}
ight) \ &\Delta_{\mathsf{strong}} &= \Delta_{\mathsf{Zemach}}+\Delta_{\mathsf{recoil}}+\Delta_{\mathsf{pol}} \end{aligned}$$

$$\Delta_{\text{Zemach}} = -2Z\alpha m_r R_Z = -2Z\alpha m_r \frac{-4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^2} \left[\frac{G_M(Q^2)G_E(Q^2)}{1+\kappa} - 1 \right]$$
Zemach radius

- Zemach radius can help one to pin down magnetic properties of the proton
- Need to know the TPE effect precisely to narrow the frequency scan range to measure the ground state HFS in μH

Planned by CREMA, FAMU, J-PARC/Riken-RAL

- Polarisability contribution connects to finer proton structure effects higher (spin, longitudinal-transverse, ...) polarisabilites
- Fine interplay between elastic (e.m. FFs) and inelastic (polarisabilities) structure properties

HFS of μH in Covariant BχPT

$$egin{aligned} E_{\mathsf{hfs}}(nS) &= rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1+ arDelta_{\mathsf{QED}} + arDelta_{\mathsf{weak}} + arDelta_{\mathsf{strong}}
ight) \ &\Delta_{\mathsf{strong}} &= arDelta_{\mathsf{Z}} + arDelta_{\mathsf{recoil}} + arDelta_{\mathsf{pol}} \end{aligned}$$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{Zm}{2\pi(1+\kappa)M} \left(\delta_1 + \delta_2\right), \\ \delta_1 &= 2\int_0^\infty \frac{dQ}{Q} \left\{ \frac{5+4v_l}{(v_l+1)^2} \left[4I_1(Q^2)/Z^2 + F_2^2(Q^2) \right] - \frac{32M^4}{Q^4} \int_0^{x_0} dx \, x^2 g_1(x, Q^2) \right. \\ &\quad \times \frac{1}{(v_l+v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l+1} \right) \right\}, \\ \delta_2 &= 96M^2 \int_0^\infty \frac{dQ}{Q^3} \int_0^{x_0} dx \, g_2(x, Q^2) \left(\frac{1}{v_l+v_x} - \frac{1}{v_l+1} \right) \end{split}$$

 $I_1(Q^2) = \frac{2M^2Z^2}{Q^2} \int_0^{x_0} dx \, g_1(x, Q^2)$ The generalised GDH integral $v_l = \sqrt{1 + 1/\tau_l}, \ v_x = \sqrt{1 + x^2\tau^{-1}}, \ \tau_l = \frac{Q^2}{4m^2}, \ \tau = \frac{Q^2}{4M^2}$ Kinematic functions

HFS of μH in Covariant BχPT

$$E_{
m hfs}(nS) = rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1 + \Delta_{
m QED} + \Delta_{
m weak} + \Delta_{
m strong}
ight)$$

 $\Delta_{
m strong} = \Delta_{
m Zemach} + \Delta_{
m recoil} + \Delta_{
m pol}$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_{LT} + \Delta_{TT} + \Delta_{F_2} = \frac{m}{2\pi(1+\kappa)M} \left(\delta_{LT} + \delta_{TT} + \delta_{F_2} \right), \\ \delta_{LT} &= \frac{4M}{\alpha\pi^2} \int_0^\infty dQ \int_0^{x_0} dx \, \frac{1}{v_l + v_x} \frac{1}{x^2 + \tau} \left[1 - \frac{1}{(1+v_l)(1+v_x)} \right] \sigma_{LT}(x, Q^2), \\ \delta_{TT} &= \frac{4M^2}{\alpha\pi^2} \int_0^\infty \frac{dQ}{Q} \int_0^{x_0} \frac{dx}{x} \frac{1}{1+v_l} \left[\frac{2\tau}{x^2 + \tau} + \frac{1}{(v_l + v_x)(1+v_x)} \right] \sigma_{TT}(x, Q^2), \\ \delta_{F_2} &= 2 \int_0^\infty \frac{dQ}{Q} \frac{5 + 4v_l}{(v_l + 1)^2} F_2^2(Q^2) \end{split}$$

 $v_l = \sqrt{1 + 1/\tau_l}, \ v_x = \sqrt{1 + x^2 \tau^{-1}}, \ \tau_l = Q^2/4m^2, \ \tau = Q^2/4M^2$ Kinematic functions

• Rewritten in terms of scattering cross sections

HFS of μH in Covariant BχPT: Cancellations

- LO BxPT result $E_{hfs}^{\langle LO \rangle \text{ pol.}}(1S, H) = 0.69(2.03) \text{ peV}$ $E_{hfs}^{\langle LO \rangle \text{ pol.}}(1S, \mu H) = 6.8(11.4) \mu \text{eV}$
- Consistent with zero
- Cancellations!

Hagelstein, VL, Pascalutsa (2023)

- The LT and TT contributions are large and almost cancel each other
- The LO BχPT result is nearly zero

– Ε(Δ_{pol.})

— Ε(Δ_{LT})

— Ε(Δ_{TT})

— E(Δ₁)

 $- E(\Delta_2)$

Sizeable uncertainty

HFS of μH in Covariant BχPT: More Cancellations

$$egin{aligned} E_{\mathsf{hfs}}(nS) &= rac{8}{3} rac{Zlpha}{(an)^3} rac{1+\kappa}{mM} \left(1+ arDelta_{\mathsf{QED}} + arDelta_{\mathsf{weak}} + arDelta_{\mathsf{strong}}
ight) \ &\Delta_{\mathsf{strong}} &= arDelta_{\mathsf{Z}} + arDelta_{\mathsf{recoil}} + arDelta_{\mathsf{pol}} \end{aligned}$$

$$\begin{split} \Delta_{\text{pol.}} &= \Delta_1 + \Delta_2 = \frac{Zm}{2\pi(1+\kappa)M} (\delta_1 + \delta_2), \\ \delta_1 &= 2 \int_0^\infty \frac{dQ}{Q} \left\{ \frac{5 + 4v_l}{(v_l+1)^2} \Big[4I_1(Q^2)/Z^2 + F_2^2(Q^2) \Big] - \frac{32M^4}{Q^4} \int_0^{x_0} dx \, x^2 g_1(x, Q^2) \right. \\ &\times \frac{1}{(v_l+v_x)(1+v_x)(1+v_l)} \left(4 + \frac{1}{1+v_x} + \frac{1}{v_l+1} \right) \Big\}, \\ \delta_2 &= 96M^2 \int_0^\infty \frac{dQ}{Q^3} \int_0^{x_0} dx \, g_2(x, Q^2) \left(\frac{1}{v_l+v_x} - \frac{1}{v_l+1} \right) \end{split}$$

$$I_1(0) = -\frac{\kappa^2}{4}$$
 $F_2(0) = \kappa$

- Cancellation between the Pauli form factor and the intelastic contributions
- Enhanced at low Q!

HFS of μH in Covariant BχPT: More Cancellations

• Cancellation between the Pauli form factor and the intelastic contributions

$$\begin{split} \delta_{1}(\mathrm{H}) &\sim \left(\underbrace{-\frac{3}{4}\kappa^{2}r_{\mathsf{Pauli}}^{2} + \underbrace{18M^{2}c_{1B}}_{\rightarrow 3.54}}_{\text{$\rightarrow -2.19$}}\right)Q_{\mathsf{max}}^{2} = 1.35(90)\\ \delta_{1}(\mu\mathrm{H}) &\sim \left[\underbrace{-\frac{1}{3}\kappa^{2}r_{\mathsf{Pauli}}^{2} + \underbrace{8M^{2}c_{1}}_{\rightarrow 2.13} - \underbrace{-\frac{M^{2}}{3\alpha}\gamma_{0}}_{\rightarrow 0.18}}_{\text{$\rightarrow -1.45$}}\right]\int_{0}^{Q_{\mathsf{max}}^{2}}Q^{2}\beta_{1}(\tau_{\mu}) = 0.86(69) \end{split}$$

- Potentially leads to an increased uncertainty
- No data from $Q^2 = 0$ to $Q^2 \simeq 0.045 \text{ GeV}^2$
 - one invokes interpolation
 - may not work so well
- Further investigations are needed

 new spin structure function
 parametrisations (cancellations with
 elastic parts as a constraint)

 a careful analysis of cancellations

HFS of μH in Covariant BχPT: Zemach Radius

Results:

 $R_{\rm Z}({\rm H}) = 1.010(9) \,{\rm fm}$ $R_{\rm Z}(\mu{\rm H}) = 1.040(33) \,{\rm fm}$

> Zemach radius extracted is smaller than in most of other works

• The smallness of the Zemach radius compensates the smallness of the polarisability contribution:

$$\Delta_Z = -2Z\alpha m_r R_Z$$

TPE Corrections: A Challenge for Theory

• The uncertainties show that TPE corrections are a challenge:

	Correction	$\mu { m H}$	$\mu \mathrm{D}$	$\mu^{3} \mathrm{He}^{+}$	$\mu^4 \mathrm{He^+}$				
$E_{ m QED}$ $\mathcal{C} r_C^2$ $E_{ m NS}$	point nucleus finite size nuclear structure	$206.0344(3) \\ -5.2259r_p^2 \\ 0.0289({\color{red}25})$	$228.7740(3) \\ -6.1074r_d^2 \\ 1.7503(200)$	$\begin{array}{c} 1644.348(8) \\ -103.383r_h^2 \\ 15.499({\color{red}378}) \end{array}$	$\begin{array}{c} 1668.491(7) \\ -106.209r_{\alpha}^2 \\ 9.276(\textbf{433}) \end{array}$				
$E_L(\exp)$	$experiment^{a}$	202.3706(23)	202.8785(34)	1258.612(86)	1378.521(48)				
		Pachu	Pachucki, VL, Hagelstein, Li Muli, Bacca, Pohl (202						

• Further progress in studying the proton structure is important for matching the precision in μ H (also as input for heavier nuclei)

- Lamb shift:
 - more reliable structure function fits/parametrisations (with inputs from BχPT [polarisabilities...]) to further constrain proton subtraction function
 - subtraction: $T_1(iQ, Q^2)$ instead of $T_1(0, Q^2)$ may work better in μ H
- HFS:
 - structure function fits/parametrisations taking into account the cancellations with the elastic form factors as constraints
 - a careful analysis of uncertainties
- Test theories with new precise experimental data

Thank You for Your Attention!