Nuclear structure corrections in muonic atoms

Simone Salvatore Li Muli

Sonia Bacca

G

Image credit: Oak Ridge National Laboratory, US department of energy; Conceptual art by LeJean Hardin and Andy Sproles

Muonic atoms

Hydrogen-like systems

Muonic atoms

The muon is more sensitive to the nucleus

Excellent precision probe for the nucleus

Experimental program at **PSI** of the **CREMA** collaboration

Muonic Hydrogen

- Pohl et al., Nature (2010) - Antognini et al., Science (2013)

Muonic Deuterium - Pohl et al., Science (2016)

Muonic Helium isotopes - Krauth et al., Nature (2021) - Schuhmann et al., Arxiv (2023)

A matter of precision

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm FS}^{(4)} \times r_c^2 + \delta_{\rm TPE}^{(5)} + \delta_{\rm 3PE}^{(6)} + \dots$$

For the muonic Helium-4 ion

A matter of precision

$$\delta_{\rm LS} = \delta_{\rm QED+NR} + \delta_{\rm FS}^{(4)} \times r_c^2 + \delta_{\rm TPE}^{(5)} + \delta_{\rm 3PE}^{(6)} + \dots$$

For the muonic Helium-3 ion

$$\delta_{\text{QED+NR}} = +1,644.348(8) \text{ meV}$$

$$\delta_{\text{FS}}^{(4)} = -103.383 \text{ meV fm}^{-2}$$

$$\delta_{\text{TPE}}^{(5)} = +15.499(378) \text{ meV}$$

$$\delta_{3\text{PE}}^{(6)} = -0.214(214) \text{ meV}$$

$$\delta_{\text{HO}}^{(5)} = -0.667(25) \text{ meV}$$

$$r_c = 1.97007(12)_{\rm ex}(93)_{\rm th}$$
 fm

K. Schuhmann et. al. Arxiv 2305.11679 (2023)

Theory

$$\begin{split} \Delta E_{nl} &= -8\alpha^2 m \ \phi_{nL}^2 \int \frac{d^3 q}{4\pi} \left\{ \sum_{N \neq 0} |\langle N| \ \rho_{\rm ch}(\mathbf{q}) \ |0\rangle|^2 \ \frac{(2E_q + \omega_N)}{q^4 E_q [(E_q + \omega_N)^2 - m^2]} \right. \\ &+ \sum_{N \neq 0} |\langle 0| \ \mathbf{J}_{\perp}(\mathbf{q}) \ |N\rangle|^2 \left[\frac{q^2}{4m^2} \ \frac{(2E_q + \omega_N)}{q^4 E_q [(E_q + \omega_N)^2 - m^2]} - \frac{1}{4m^2 q^3} \ \frac{\omega_N + 2q}{(\omega_N + q)^2} \right] \\ &+ B_{\perp}(\mathbf{q}) \ \frac{1}{8m^2 q^2} \left(\frac{1}{q} - \frac{1}{E_q} \right) \right\} \end{split}$$

$$\begin{split} \Delta E_{nl} &= -8\alpha^2 m \ \phi_{nL}^2 \int \frac{d^3 q}{4\pi} \left\{ \sum_{N \neq 0} |\langle N| \rho_{\rm ch}(\mathbf{q}) |0 \rangle|^2 \frac{(2E_q + \omega_N)}{q^4 E_q [(E_q + \omega_N)^2 - m^2]} \right. \\ &+ \sum_{N \neq 0} |\langle 0| \mathbf{J}_{\perp}(\mathbf{q}) |N \rangle|^2 \left[\frac{q^2}{4m^2} \frac{(2E_q + \omega_N)}{q^4 E_q [(E_q + \omega_N)^2 - m^2]} - \frac{1}{4m^2 q^3} \frac{\omega_N + 2q}{(\omega_N + q)^2} \right] \\ &+ \left. \left. + B_{\perp}(\mathbf{q}) \frac{1}{8m^2 q^2} \left(\frac{1}{q} - \frac{1}{E_q} \right) \right\} \end{split}$$

$$\begin{split} \Delta E_{nl} &= -8\alpha^2 m \ \phi_{nL}^2 \left\{ \sum_{N \neq 0} \int d^3 x \ d^3 y \ \langle 0 | \ \rho_{\rm ch}^{\dagger}(\mathbf{y}) | N \rangle \left\langle N | \ \rho_{\rm ch}(\mathbf{x}) | 0 \right\rangle \ \mathbf{I}_{\rm N}(z) \right. \\ &+ \sum_{N \neq 0} \int d^3 x \ d^3 y \ \langle 0 | \ J_i^{\dagger}(\mathbf{y}) | N \rangle \left\langle N | \ J_j(\mathbf{x}) | 0 \right\rangle \left[\delta_{ij} J_N(z) + z^i z^j \bar{J}_N(z) \right] \\ &+ \int d^3 x \ d^3 y \ B^{ij}(\mathbf{x}, \mathbf{y}) \ \frac{1}{2} \Big[\delta_{ij} K(z) + z_i z_j \bar{K}(z) \Big] \right\} \,. \end{split}$$

$$\begin{split} \Delta E_{nl} &= -8\alpha^2 m \ \phi_{nL}^2 \Biggl\{ \sum_{N \neq 0} \int d^3 x \ d^3 y \ \left\langle 0 \right| \rho_{\rm ch}^{\dagger}(\mathbf{y}) \left| N \right\rangle \left\langle N \right| \rho_{\rm ch}(\mathbf{x}) \left| 0 \right\rangle \ \mathbf{I}_{\rm N}(z) \\ &+ \sum_{N \neq 0} \int d^3 x \ d^3 y \ \left\langle 0 \right| J_i^{\dagger}(\mathbf{y}) \left| N \right\rangle \left\langle N \right| J_j(\mathbf{x}) \left| 0 \right\rangle \left[\delta_{ij} J_N(z) + z^i z^j \bar{J}_N(z) \right] \\ &+ \int d^3 x \ d^3 y \ B^{ij}(\mathbf{x}, \mathbf{y}) \ \frac{1}{2} \Biggl[\delta_{ij} K(z) + z_i z_j \bar{K}(z) \Biggr] \Biggr\} . \end{split}$$

Ab-initio strategy

Our strategy is to build models for the operators from first principles

 H_N { $\mathbf{D}, \mathbf{Q}, \ldots$ }

Solve the time-independent Schrödinger equation for the nuclear states

$$\widehat{H}_{\mathrm{N}} \left| \mathrm{N} \right\rangle = E_{\mathrm{N}} \left| \mathrm{N} \right\rangle$$

And calculate the relevant matrix elements with controlled approximations.

$$\langle N | \, \mathbf{D} \, | 0 \rangle$$

Nuclear Hamiltonians

Bayesian uncertainty quantification

Chiral perturbation theory is an expansion in $~Q=rac{m_\pi}{\Lambda_{
m v}}\sim 0.3$

It is then reasonable to assume that a similar expansion holds also for the observable calculated with the theory

$$X = \sum_{n=0}^{k} D_n + \sum_{n=k+1}^{\infty} D_n$$

One assumes that the expansion coefficients follow the same underlying distribution and uses the calculated coefficients to learn about the distribution.

Results

NS corrections in muonic Helium

Structure functions uncertainty

$$\begin{split} \Delta E_{nl}^{\mathrm{NR}} &= -8\alpha^2 \ \phi_{nl}^2 \sum_{N \neq 0} \int d^3x \ d^3y \ \langle 0| \ \rho_{\mathrm{ch}}^{\dagger}(\mathbf{y}) \left| N \right\rangle \langle N| \ \rho_{\mathrm{ch}}(\mathbf{x}) \left| 0 \right\rangle \ \mathrm{I}_{\mathrm{NR}}(z) \\ &= -8\alpha^2 \ \phi_{nl}^2 \sum_{N \neq 0} \int d^3x \ d^3y \ \langle 0| \ \rho_{\mathrm{ch}}^{\dagger}(\mathbf{y}) \left| N \right\rangle \langle N| \ \rho_{\mathrm{ch}}(\mathbf{x}) \left| 0 \right\rangle \ \left(\mathrm{I}_{\mathrm{NR}}^{(2)}(z) + \mathrm{I}_{\mathrm{NR}}^{(3)}(z) + \mathrm{I}_{\mathrm{NR}}^{(4)}(z) + .. \right) \end{split}$$

S.S.LM, et al. 2022 J. Phys. G: Nucl. Part. Phys. 49 105101

	$\mu^2 H$	$\mu^{3}\mathrm{H}$	$\mu^3 \text{He}^+$	$ \mu^4 \text{He}^+$
[1]	0.4%	1.3%	1.1%	0.8%
This work	0.8%	1.5%	4.8%	0.9%

[1] C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)

Uncertainty budget in TPE

	μ^{3} He ⁺			$\mu^4 \text{He}^+$			
	δ_{pol}	δ_{Zem}	δ_{TPE}	δ_{pol}	δ_{Zem}	δ_{TPE}	
	[%]	[%]	[%]	[%]	[%]	[%]	
							S.S.LM, et al. In preparation for 2023
Numerical [1]	0.4	0.1	0.1	0.4	0.3	0.4	
Numerical	0.1	0.2	0.1	0.4	0.3	0.2	
Nuclear model [1]	0.7	1.8	1.5	3.9	4.6	4.4	
Nuclear model (N2LO)	4.8	6.9	6.2	14.5	9.4	11	
Nuclear model (N3LO)	1.6	1.6	1.4	4.1	2.8	3	
η-expansion [1]	1.1	_	0.3	0.8	_	0.2	[1] C. Ji, et al. J. Phys. G: Nucl. Part. Phys. 45 (2018)
η -expansion	4.8	-	1.4	0.9	-	0.2	
Ζα [1]	1.5	0.0	0.4	1.5	0.0	0.4	
Ζα	-	-	-	-	-	-	
ISB [1]	1.8	0.2	0.5	2.2	0.5	0.5	
Nucleon-size [1]	1.2	1.3	0.9	2.7	2.0	1.2	
Relativistic [1]	0.4	_	0.1	0.1	_	0.0	
Coulomb [1]	3.0	-	0.9	0.4	-	0.1	
Total [1]	4.2	2.2	2.1	5.5	5.1	4.6	
Total (N2LO)	7.6	6.9	6.5	10.6	9.6	10.9	
Total (N3LO)	6.3	2.1	2.4	5.3	3.5	3.5	16

Helion charge radius

S.S.LM, et al. In preparation for 2023

Alpha particle charge radius

S.S.LM, et al. In preparation for 2023

Conclusions

- The nuclear model uncertainty of the two-photon-exchange correction to the Lamb-shift in muonic Helium ions is larger at N2LO and at a similar level at N3LO compared to the uncertainty quoted in the past.
- Our analysis of the *n* -expansion uncertainty suggests that in muonic He-3 the error band might be larger than previously expected.
- The calculation of the 3PE will improve the precision of the nuclear charge radii of the Helium isotopes by ~10%.
- These techniques can be applied to the study of other observable, like the Hyperfine splitting in muonic Deuterium and muonic He-3.

Backup

Uncertainties in muonic Helium

S.S.LM, et al. In preparation for 2022

	$\mu^3 \text{He}^+$			 $\mu^4 \text{He}^+$			
	$\delta_{\rm pol}$	δ_{Zem}	$\delta_{ ext{TPE}}$	$\delta_{ m pol}$	δ_{Zem}	$\delta_{ ext{TPE}}$	
	[%]	[%]	[%]	 [%]	[%]	[%]	
Numerical (2019)	0.4	0.1	0.1	0.4	0.3	0.4	
Numerical	0.1	0.2	0.1	0.4	0.3	0.2	
Nuclear model (2019)	0.7	1.8	1.5	3.9	4.6	4.4	
Nuclear model (N2LO)	4.8	6.9	6.2	14.5	9.4	11	
Nuclear model (N3LO)	1.6	1.6	1.4	4.1	2.8	3	
η -expansion (2019) η -expansion	1.1 4.8		0.3 1.4	0.8 0.9		0.2 0.2	

Preliminary works on Li atoms

$$\delta_{ ext{TPE}} = \delta_{ ext{D1}}^{(0)} + \delta_{ ext{C}}^{(0)} + \delta_{ ext{Z1}}^{(1)} + \delta_{ ext{Z3}}^{(1)} + \delta_{ ext{NS}}^{(2)} + \delta_{ ext{Q}}^{(2)} + \dots$$

δ _{tpe}	Ref. (1) (meV)	Ref. (2) (meV)
μ- ⁶ Li ²⁺	-11.8(3)	-15(4)
μ- ⁷ Li ²⁺	-22.2(4)	-21(4)

(1) S.L., A.Poggialini, S.Bacca, SciPost Phys. Proc. 3, 028 (2020)
(2) Drake et al, Phys. Rev. A 32, 713 (1985)

Priors

$$O = O_{ref} \left[c_0 + c_1 Q + c_2 Q^2 + \dots \right]$$

Priors	$\operatorname{pr}(\eta)$	Priors	$\operatorname{pr}(c_i \bar{c})$	$\operatorname{pr}(\overline{c})$
α_{η}	$\frac{1}{\lambda} \exp\left(\frac{\eta}{\lambda}\right)$	А	$\frac{\frac{1}{2\bar{c}}\theta(\bar{c}- c_i)}{(c_i-c_i)}$	$\frac{1}{\ln(\bar{c}_{>}/\bar{c}_{<})\bar{c}}\theta(\bar{c}-\bar{c}_{<})\theta(\bar{c}_{>}-\bar{c})$
eta_η	$\beta(a,b)$	В	$\left \frac{1}{\sqrt{2\pi}\bar{c}} \exp\left(-\frac{c_i}{2\bar{c}^2}\right) \right $	$\Big \frac{1}{\ln(\bar{c}_{>}/\bar{c}_{<})\bar{c}} \theta(\bar{c}-\bar{c}_{<}) \theta(\bar{c}_{>}-\bar{c})$

$$\delta_{\text{pol}}^{(5)} = C \sum_{N \neq N_0} \left(\frac{1}{\omega_N}\right)^{\frac{3}{2}} \int d^3 R \ d^3 R' \ \rho_N^p(\mathbf{R}) \ \begin{bmatrix} \eta^2 - \frac{1}{4}\eta^3 + \frac{1}{20}\eta^4 + \dots \end{bmatrix} \ \rho_N^p(\mathbf{R}')$$
LO NLO NLO N2LO

$$\eta = \sqrt{2m_r\omega_N} |\mathbf{R} - \mathbf{R}'| \approx \sqrt{\frac{m_r}{m_N}} \approx 0.33$$

... Some more algebra ...

$$\delta_{\text{pol}}^{(5)} = \sum_{i} \left[C_{i}(Z\alpha, m_{r}) \int_{0}^{\infty} \mathcal{F}_{i}(\omega/m_{r}) S_{O_{i}}(\omega) d\omega \right]$$

NS effects in 3He+ and 4He+

Uncertainty

Uncertainty sources

- Numerical
- Nuclear model
- Nucleon model
- Truncation of EM multipoles
- **ŋ-expansion**
- Expansion in (Za)

Evaluation of the TPE amplitude

Coulomb Distortion

Contribution coming from intermediate interactions between lepton and nucleus during the TPE process.

We include only the correction of order $(Z\alpha)^6 log(Z\alpha)$

Since we work in the leading dipole approximation, the correction is related to the electric dipole response

• Nucleon size effects

• Relativistic effects

They are smaller by factors $\frac{\omega_{th}}{m_r}$

Includes also first effects from electromagnetic currents. Are evaluated in the leading dipole approximation

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{th}}^{\infty} K_{L(T)} \left(\frac{\omega}{m_r}\right) S_{D1}(\omega)$$

TPE in He-3

28

NS corrections in µ4He+

S.S.LM, et al. In preparation for 2022

