

The muX experiment

Andreas Knecht Paul Scherrer Institute

PREN & muASTI 2023 Mainz 27. 6. 2023

Muonic atom spectroscopy

PAUL SCHERRER INSTITUT

Muonic energy levels highly sensitive to nuclear charge distribution due to large overlap

Large effect:

 E_{1s} (Z=82) ~ 19 MeV (point nucleus) \rightarrow 10.6 MeV (finite size)

How to extract nuclear charge parameters from measured muonic energies

PAUL SCHERRER INSTITUT

How to extract nuclear charge parameters from measured muonic energies

PAUL SCHERRER INSTITUT

Muonic atom spectroscopy

- 2p 1s energy is highly sensitive to charge radius
- ▶ What is the limiting factor? → Typically theoretical modelling, especially calculation of nuclear response to presence of muon (nuclear polarization) and charge distribution model

Rhenium measurements

The two rhenium isotopes ¹⁸⁵Re and ¹⁸⁷Re are the last stable isotopes without a measured, absolute charge radius

Hyperfine splitting of 5g-4f transitions

- First extract quadrupole moment
- ▶ For higher muonic transitions measure full quadrupole moment
 → typically chosen: 5g-4f transition
- Drawback:
 - Transitions not separated
 - Effect only through widening of peaks

PAUL SCHERRER INSTITU

Fitting experimental spectra

- ▶ Fitting the experimental spectra with the quadruple moment as a free parameter
- Two germanium detectors as cross-check

Konijin et al., Nucl. Phys. A **360**, 187 (1981) Antognini et al., PRC **101**, 054313 (2020)

Rhenium charge radius

- 2p-1s lines used to extract charge radius
- Hyperfine structure clearly seen and more resolved than for 5g-4f transitions
- Work in progress

What about radioactive atoms?

- All stable isotopes (except rhenium) have been measured with muonic atom spectroscopy
- In a few special cases also radioactive isotopes, e.g. americium
 - The paper describes the americium target as "modest weight of 1 gram"

Nowadays: 0.2 µg of open ²⁴¹Am allowed in muon experimental area...

Cannot stop muons directly in microgram targets Need new method!

PAUL SCHERRER INSTITUT Our radioactive targets of interest ²⁰ Ra ²⁴⁸Cm, 3x10⁵ y ²²² Rn Radon SF: 8% 3.8day 85 A1 a: 92% ²¹⁸84**PO** ²¹⁴84**PO** 'n ²⁴⁴Pu, 8x10⁷ y ²¹⁰ Bi

Around 3 neutrons per SF emitted

Vorobyev et al., AIP Conf. Proc. 798, 255 (2005)

▶ 5.5 µg target material allowed

80 Hg

²¹⁰ Pb

- ▶ Gamma rate of ~400 kHz from all daughters
- Interest from atomic parity violation

- ▶ 32.6 µg target material allowed
- Heaviest nucleus accessible

²¹⁴ Pb

Transfer reactions

- Stop in 100 bar hydrogen (10% liquid density) target with 0.25% deuterium admixture
- Form muonic hydrogen μp
- Transfer to deuterium forming µd, gain binding energy of 45 eV
- Hydrogen gas quasi transparent for µd at ~5 eV (Ramsauer-Townsend effect)
- $\triangleright~\mu d$ reaches target and transfers to μRa
- Measure emitted X-rays from cascade

Inspired by work of Strasser et al. and Kraiman et al.

F. Mulhauser et al., Physical Review A 73, 034501 (2006)

100 bar hydrogen target

- Target sealed with 0.5 mm carbon fibre window plus carbon fibre/titanium support grid
- Target holds up to 350 bar
- 10 mm stopping distribution (FWHM) inside 15 mm gas volume
- Target disks mounted onto the back of the cell

Entrance & veto detectors

- Entrance detector to see incoming muon
- Veto scintillators to form anticoincidence with decay electron

Germanium array

2017/2018

- I1 germanium detectors in an array from French/UK loan pool, Leuven, PSI
- First time a large array is used for muonic atom spectroscopy

▶ 2019

- Miniball germanium detector array from CERN
- 26 germanium crystals in total

N. Warr et al., "The Miniball spectrometer", Eur. Phys. J. A 49, 40 (2013)

Optimisation of the transfer yield

- A 200 µg Au target was mounted inside the gas cell
- The amount of the 2p-1s µAu X-rays was measured by scanning the:
 - c_D: D2 admixture in H2 gas (cD)
 - p: stopping position of the muon beam
- Good agreement of all observables with simulation

A. Adamczak et al., Eur. Phys. J. A 59, 15 (2023)

17

Measurement with microgram gold target

- Measurement with 5 µg gold target as proof-of-principle
- Spectrum taken over 18.5 h

A. Adamczak et al., Eur. Phys. J. A 59, 15 (2023)

Radioactive targets

15.5 μ g ²⁴⁸Cm target

4.4 μg ²²⁶Ra target

1.4 µg ²²⁶Ra target

- ▶ Made by a combination of electroplating and printing by Institut für Kernchemie, Mainz
- Difficult to make thin targets that have only very little organic contamination
- \triangleright We did not observe anything from 4.4 μg radium target; only hints from 1.4 μg target
- For both curium and radium target we suffered from palladium contamination —> only about 1/3 of muons went to target material

Energy dependence on the charge radius and quadrupole moment

Andreas Knecht

Muonic curium spectrum

- Succeeded to measure muonic curium for the first time
- Effectively a 5 µg target, so no principal show stopper to measure radium as well if the target can be made sufficiently clean and with the required amount

²⁴⁸Cm results

Systematic effect	Description	$\Delta(dR)$	σ_{dR}	$\Delta(dQ)$	σ_{dQ}
Fitting features	Instrumental line-shape	0	0.000 032	0	0.0014
	SE/FE ratio	0	0.000015	0	0.0013
	Binning	0	0.000 008	0	0.0008
	Fitting energy range	0	0.000 033	0	0.0013
	Background model	0	0.000042	0	0.0040
Energy calibration	Free intensities fit	0	0.000 028	0	0.0004
	Combined	0	0.000 070	0	0.0047
	Wrong energy of ¹⁶ N line	0.00012	0.000 04	-0.000 82	0.000 55
	Energy calibration scheme	0	0.000 007	0	0.000 67
	Uncertainty of literature energy	0	0.000 018	0	0.002 25
	Line-shape for energy calibration	-0.000 068	0.000 038	0	0
	Combined	0.000 052	0.000 058	-0.000 82	0.0024
Theory	Uncertainty of nuclear polarization correction	0	0.000 20	0	0.000 11
Charge distribution model	Change of the skin thickness parameter	0	0.0022	0	0.001 91
Discrepancies of spectrum and fit	Free Gaussian fits	0	0.000 95	0	0.0282
Total		0.000 052	0.0024	-0.000 82	0.0288

PAUL SCHERRER INSTITUT

Results on the nuclear charge radius and quadrupole moment:

 $R = 5.9455(1)_{stat}(117)_{sys} \text{ fm}$ $Q = 12.003(8)_{stat}(361)_{sys} \text{ b}$

Next steps ²⁴⁸Cm analysis:

- Understand the discrepancies between the fitted and measured hyperfine transitions
- Then, the systematic effect of the skin thickness can be reduced by fitting the 2p→1s and 3d→2p together

Charge distribution model

- In the absence of guidance from electron scattering, need to rely completely on model for charge distribution
- Uncertainty on tail (skin thickness) or central depletion (w parameter) or ...
- Higher order deformations?
- In the end have ideally several transitions that help to constrain through different moments the shape somewhat
- Need to assign reasonable systematic uncertainty
- Not always treated very rigorously in the past

Conclusions

- Muonic atom spectroscopy is a powerful tool to study properties of nuclei (charge radius, quadrupole moment, nuclear structure)
- muX project developed method based on transfer reactions to perform measurements with microgram target material
- Measured muonic curium spectrum for the first time!
- ▶ Radium measurements to come; other isotopes being prepared, e.g. ^{39,40,41}K

muX collaboration

A. Adamczak¹, A. Antognini^{2,3}, E. Artes⁴, N. Berger⁴, T. Cocolios⁵,
N. Deokar⁴, R. Dressler², Ch.E. Düllmann^{4,6,7}, R. Eichler², M. Heines⁵,
H. Hess⁸, P. Indelicato⁹, K. Jungmann¹⁰, K. Kirch^{2,3}, A. Knecht²,
E. Maugeri², C.-C. Meyer⁴, J. Nuber^{2,3}, A. Ouf⁴, A. Papa^{2,11}, N. Paul⁹,
R. Pohl⁴, M. Pospelov^{12,13}, D. Renisch^{4,7}, P. Reiter⁸, N. Ritjoho^{2,3},
S. Roccia¹⁴, M. Seidlitz⁸, N. Severijns⁵, A. Antognini^{2,3},
K. von Schoeler³, N. Warr⁸, F. Wauters⁴, and L. Willmann¹⁰

¹Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland ²Paul Scherrer Institut, Villigen, Switzerland ³ETH Zürich, Switzerland ⁴Johannes Gutenberg University Mainz, Germany ⁵KU Leuven, Belgium ⁶GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany ⁷Helmholtz Institute Mainz, Germany ⁸Institut für Kernphysik, Universität zu Köln, Germany ⁹LKB Paris, France ¹⁰University of Groningen, The Netherlands ¹¹University of Pisa and INFN, Pisa, Italy ¹²University of Victoria, Canada ¹³Perimeter Institute, Waterloo, Canada ¹⁴Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, France.

Andreas Knecht

Backup

Muonic atom spectroscopy

- Nuclear polarisation is the dominating factor that in the end determines the accuracy of the extracted charge radius
- Typically assumed uncertainty: 10 - 30%
- Nuclear excitation spectra important
- Looking for theorists that want to tackle these calculations with modern methods

TABLE II. Theoretical nuclear polarization corrections in ²⁰⁸ Pb.										
Energy (MeV)	Γ	$B(E\lambda)\uparrow \\ (e^2b^{2\lambda})$	1s _{1/2} (eV)	2s _{1/2} (eV)	$2p_{1/2}$ (eV)	$2p_{3/2}$ (eV)	$3p_{1/2}$ (eV)	3 <i>p</i> _{3/2} (eV)	$\frac{3d_{3/2}}{(eV)}$	3 <i>d</i> _{5/2} (eV)
2.615	3-	0.612	135	12	90	84	26	26	111	-63
4.085	2+	0.318	198	20	182	180	76	84	6	4
4.324	4+	0.155	14	1	8	7	2	2	1	1
4.842	1-	0.001 56	7	1	-9	-8	0	0	1	1
5.240	3-	0.130	27	2	16	15	5	5	2	2
5.293	1-	0.002 04	9	2	-27	-19	0	-1	1	1
5.512	1-	0.003 80	16	3	-90	-53	-1	-1	1	1
5.946	1-	0.000 07	0	0	3	- 30	0	0	0	0
6.193	2+	0.050 5	29	3	22	21	7	7	0	0
6.262	1-	0.000 24	1	0	3	5	0	0	0	0
6.312	1-	0.000 22	1	0	3	4	0	0	0	0
6.363	1-	0.000 14	1	0	2	2	0	0	0	0
6.721	1-	0.00075	3	1	6	7	0	-1	0	0
7.064	1-	0.001 56	6	1	9	11	-1	-1	0	0
7.083	1-	0.00075	3	1	4	5	-1	-1	0	0
7.332	1-	0.002 04	8	1	10	11	-2	-2	0	0
Tota	l low-lyi	ng states	458	48	233	242	111	117	123	- 53
13.5	0+	0.047 872	906	315	64	38	24	15	1	0
22.8	0+	0.043 658	546	147	43	26	15	10	0	0
13.7	1-	0.537 672	1454	221	786	738	255	258	66	54
10.6	2+	0.761 038	375	37	237	222	67	68	33	30
21.9	2+	0.566 709	207	21	108	99	29	29	8	7
18.6	3-	0.497 596	77	7	40	36	11	11	3	2
33.1	3-	0.429 112	53	5	25	23	7	7	2	1
> 3 ^a		176	15	80	71	21	21	4	4	
Total high-lying states		3794	768	1383	1253	429	419	117	98	
	Tota	1	4252	816	1616	1495	540	536	240	45

^aValues from Ref. 7. Positive NP values mean that the respective binding energies are increased.

Bergem et al., PRC 37, 2821 (1988)

Ramsauer-Townsend effect

- Quantum mechanical effect in the scattering transitions due to matching of muonic atom wavelength and scattering potential
- Hydrogen gas quasi-transparent for µd at 4 eV
- Transport cross-section: Taking into account angular dependence of cross-section; change in momentum proportional to transport cross-section

Scattering cross sections

- Scattering on deuterium does not show a Ramsauer-Townsend minimum
- Need to be careful to not have too much deuterium in the gas mixture

Hyperfine splitting of 5g-4f transitions

Andreas Knecht

PAUL SCHERRER INSTITUT

Atomic parity violation in radium

- ▶ Weak interaction leads to parity violating effects in atomic transitions
 → enhanced in heavy atoms (∝Z³) due to large overlap with nucleus
- Extract Weinberg angle using precision atomic calculations

→ Needs knowledge of the radium charge radius with 0.2% accuracy

Weinberg angle comparable to α and m_e in electromagnetism

properties at low momentum

UL SCHERR

Discrepancies between the fitted and the measured transition energies

 2p→1s: discrepancies between the experimentally observed and the fitted transitions on the order of 5.9 keV are observed

•
$$\frac{R}{E}$$
 sensitivity ~ $10^{-6} \frac{fm}{eV} \Rightarrow \sigma_{dR_{5.9 \, keV}} \approx 0.00095$

3d→2p: using the dR and dQ results from the 2p→1s fit to plot the 3d→2p transitions

No effect on the charge radius due to the much reduced sensitivity in the $3d \rightarrow 2p$

Charge distribution model systematics: skin thickness

