1S-3S CW spectroscopy on deuterium atoms

Pauline Yzombard, Paul Martin, Simon Thomas, Lucile Julien, François Biraben, François Nez

Sorbonne Université, CNRS, ENS, Collège de France

PREN - June 2023

Overview

- The experiment
- Dealing with systematics
- A new systematics effect ?
- Preliminary result ?

Overview

- The experiment
- Dealing with systematics
- A new systematics effect ?
- Preliminary result ?

1S–3S Hydrogen CW spectroscopy

Slide – courtesy of S. Thomas

Overview of the experiment

Slide – courtesy of S. Thomas

Overview of the experiment

Spectroscopy 1S-3S on Deuterium

Some of the results obtained during the PhD thesis S. Thomas - dec. 2021

Based on the campaign measurement on **Deuterium** atoms:

From 20 October to 17 December 2020

- 9434 spectra
- 3 values of pressure
- 4 values of magnetic field (x 2 direction) (new B field at "low" 20G)
- measurement of the laser intensity (AC. Stark shift estimation)

Overview

- The experiment
- Dealing with systematics
- A new systematics effect ?
- Preliminary result ?

Dealing with systematics ...

1S - 3S spectroscopy on electronic Deuterium:

A few 10⁻¹² relative uncertainty targeted

One of the main works: identifying systematics effects and try to compensate or characterize them !

Pressure shift

6

Origin: Collisions with rest gas in the chamber

- => broadening ~2 kHz << negligible (natural linewidth 1 MHz)
- => non negligible shift of the center of the line

See also: Ph.D thesis H. Fleurbaey (2017) https://tel.archives-ouvertes.fr/tel-01633631

Light shift (AC Stark shift)

See also Ph.D thesis H. Fleurbaey (2017) https://tel.archives-ouvertes.fr/tel-01633631

Figures taken from Ph.D thesis S. Thomas (2021)

2^{sd} Order Doppler effect frequency shift

Need to determine the velocity distribution of the H beam ...

And no 1-photon transition easily achievable (121nm laser) for 1st order Doppler broadening measurement

2^{sd} Order Doppler effect Compensating it ?

2^{sd} Order Doppler effect Avoiding it ?

Let's zoom in hyperfine structure

2- γ transition Selection rules $\Delta mF = 0$

Avoiding 2nd order Doppler effect

- Total compensation of 2^{sd} Ord. Doppler for B = B1 and B2 for mF=-3/2 transition

Avoiding 2nd order Doppler effect

- Total compensation of 2^{sd} Ord. Doppler for B = B1 and B2 for mF=-3/2 transition
- For v = 2.3 km/s: the transitions m_F=-3/2 and m_F=3/2 are split by ~50 kHz for B = B1 and B2.
- The 3S natural bandwith ~1 MHz ⇒ Both lines are excited

13

Avoiding 2nd order Doppler effect

The two lines cannot be resolved \Rightarrow partial compensation only due to Motional Stark

 \Rightarrow **Determination of the velocity distribution** by fitting the dispersion curve with several data points for different B (« pink» profile)

Our theoretical fluorescence lines: take into account:

- Zeeman, Motional Stark, 2^{sd} Doppler effects
- Integrated over all the velocity distribution. Fits give the "zero field" frequency (corrected from the above shifts)

The theoretical lines depend on:

- B field
- Velocity distribution of the H beam (2 parameters to model it)

Protocol: it our data sets for each recorded B field, with various velocity distribution parameters.

Our theoretical fluorescence lines: take into N account:

- Zeeman, Motional Stark, 2^{sd} Doppler effects
- ency Integrated over all the velocity distribution. Fits give the "zero field" frequency (corrected from output the above shifts) The theoretical lines depend on:

B field ۲

15

Velocity distribution of the H beam (2 parameters to model it)

Protocol: it our data sets for each recorded B field, with various velocity distribution parameters.

Extracted

Our theoretical fluorescence lines: take into 고 account:

- Zeeman, Motional Stark, 2^{sd} Doppler effects
- Integrated over all the velocity distribution. Fits give the "zero field" frequency (corrected from by the above shifts)

The theoretical lines depend on:

- B field
- Velocity distribution of the H beam (2 parameters to model it)

Protocol: it our data sets for each recorded B field, with various velocity distribution parameters.

Velocity distribution of the D beam $\bigcup_{U,A}$

 $f(v,\sigma,v_0) \propto v f_M(v,\sigma) P[\Psi(z),\mathrm{Kn}] \exp(-v_0/v)$

Overview

- The experiment
- Dealing with systematics
- A new systematics effect ?
- Preliminary result ?

For the campaign, we recorded data over [-3,3] MHz range

Improvements of the experiment during the last years

- Recent Work to increase the frequency stability and tunability of the laser
 - Before: usual scan ± 2.5 3 MHz scan (≈ 5 Natural Linewidth) ~
 6 min for 1 run (= 10 scans)
 - possible up to \pm 5 MHz (\approx 10 Natural Linewidth) ~ 11 min
 - New system: ±10 30 MHz scan possible (≈ 20 60 Natural Linewidth) ~ 20 min ⇒ A few "wide" scans recorded

With a wider laser frequency scan:

Deuterium spectrum 14/12/2020, run 38 B=0.46 G

$$F(v_L) = Lor(v_L, v_{Bump}, \Gamma_{Bump})$$

Fitting range : edge data only

Bump data only Lorentizan fit averaged data

> Presence of a "Pedestal fluorescence signal" = "Bump" signal

$$F(v_L) = F_{theo}(v_L, v0, \sigma0) + F_{theo}(v_L, vB, \sigmaB) + B$$

24

$F(v_L) = F_{theo}(v_L, v0, \sigma0) + F_{theo}(v_L, vB, \sigmaB)$

Fitting range : all data

Theo curve + Extra broaden Theo curve for Bump, whole data

What does it change for the fitted centre frequency?

What does it change for the fitted centre frequency?

Issue with the new "low" field data ...

Story more complex at weak B field: B ~ 20 G

Asymmetry of the pedestal due to neighbouring lines at B~20 G

Issue with the new "low" field data ...

Story more complex at weak B field: like 20 G

Issue with the "low" field data

Story more complex at weak B field: B ~ 20 G

Overview

- The experiment Dealing with systematics
- A new systematics effect ?
- Preliminary result ?

Data analysis

- From 20 October to 17 December 2020 B field recorded:
- -0.46 **, +20.16, -21.09**, +165.99, -166.91, -167.80, +187.20,
- -188.12 G
- Data recorded over [-3,3] MHz atomic frequency range ⇒ impossible to well determine the pedestal parameters in such a short frequency range (centre, bandwidth, amplitude) for the fits.
- Issues in the fits for the B=20.16 and B=-21.09 G because of the neighbouring lines (asymmetrical pedestal signal leads to a wrong positioning of the centre line)

Example of the issue with the B=20G data

Even for the "best parameters" that minimize χ^2 of the determination of velocity distribution: not a "good" correction of dispersion type profile of the data separated by B fields

30

Whereas, excluding the B=20 G data

contributions	In frequencies	comments
v _{fit} (δv _{fit}) 1S-3S F=3/2 -> F=3/2	2 923 538 429 299.7 (1.5) kHz	 Take into account the the SOD, the Zeeman effect, and the motional Stark shifts Statistical uncertainty Uncertainty of the v_{mean}(B=0.46G) due to 20mG uncertainty
$\Delta v_{\text{pressure shift}} \left(\delta v_{\text{PS}} \right)$	+2.6 (0.9) kHz	0
$\Delta v_{\text{light shift}}(\delta v_{\text{LS}})$	-2.5 (3.0) kHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$\Delta v_{quantum interference}(\delta v_{QI})$	+0.6 (0.2) kHz	H. Fleurbaey, et al <u>Phys. Rev. A 95, 052503 (2017)</u> .
Δv _{correctionSyrte}	-0.171(<0.010) kHz	From Syrte (maser drift in time)
$\Delta v_{Bump}(\delta_{Bump})$	0.0 (3.0) kHz	To be investigated
Tot 1S-3S F=3/2 -> F=3/2	2 923 538 429 300.1 (4.5) kHz	Not corrected of the HFS

Thanks for your attention

Overview

- The experiment
- Dealing with systematics
- A new systematics effect ?
- Preliminary result ?
- What next ?

The new H beam experiment

- Based on dry pumps ! 🗸 .
- New design to decoupled the mirrors'

 cavity of the 205 nm from the vibrations of the turbo pumps
- Better power supplies for the coils and compensating Earth-B field coils
- Wider laser frequencies scans to investigate better the pedestal signal
- Better laser stability
- New design of the

The new H beam experiment

• For 1S-3S then 1S-4S

Back up

The proton radius puzzle ? 1 sigma

The proton radius puzzle ? 3 sigmas

2020 Garching 1S-3S

Calibration of B fields – 2 methods

CW 205nm laser generation

Schematic of the «old » H beam experiment

Schematics of the «old » H beam experiment

Pollution of the mirrors \Rightarrow breaking vacuum every 2 days to clean

8 Slide – courtesy of S. Thomas

Schematic of the «old » H beam experiment

B= 0.46G

 \Rightarrow Blocks the fluorescence due to 205 nm \Rightarrow drastic reduction of the background signal !

With some light ON

4 Picture – courtesy of S. Thomas

Velocity distribution of the D beam