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Table 1

Summary of the contributions to aSMµ [1–36]. After the experimental number from E821, the first block gives the main results for the hadronic
contributions from Sections 2–5 as well as the combined result for HLbL scattering from phenomenology and lattice QCD constructed in Section 8.
The second block summarizes the quantities entering our recommended SM value, in particular, the total HVP contribution, evaluated from e+e�

data, and the total HLbL number. The construction of the total HVP and HLbL contributions takes into account correlations among the terms at
different orders, and the final rounding includes subleading digits at intermediate stages. The HVP evaluation is mainly based on the experimental
Refs. [37–89]. In addition, the HLbL evaluation uses experimental input from Refs. [90–109]. The lattice QCD calculation of the HLbL contribution builds
on crucial methodological advances from Refs. [110–116]. Finally, the QED value uses the fine-structure constant obtained from atom-interferometry
measurements of the Cs atom [117].
Contribution Section Equation Value ⇥1011 References
Experiment (E821) Eq. (8.13) 116 592 089(63) Ref. [1]
HVP LO (e+e�) Section 2.3.7 Eq. (2.33) 6931(40) Refs. [2–7]
HVP NLO (e+e�) Section 2.3.8 Eq. (2.34) �98.3(7) Ref. [7]
HVP NNLO (e+e�) Section 2.3.8 Eq. (2.35) 12.4(1) Ref. [8]
HVP LO (lattice, udsc) Section 3.5.1 Eq. (3.49) 7116(184) Refs. [9–17]
HLbL (phenomenology) Section 4.9.4 Eq. (4.92) 92(19) Refs. [18–30]
HLbL NLO (phenomenology) Section 4.8 Eq. (4.91) 2(1) Ref. [31]
HLbL (lattice, uds) Section 5.7 Eq. (5.49) 79(35) Ref. [32]
HLbL (phenomenology + lattice) Section 8 Eq. (8.10) 90(17) Refs. [18–30,32]
QED Section 6.5 Eq. (6.30) 116 584 718.931(104) Refs. [33,34]
Electroweak Section 7.4 Eq. (7.16) 153.6(1.0) Refs. [35,36]
HVP (e+e� , LO + NLO + NNLO) Section 8 Eq. (8.5) 6845(40) Refs. [2–8]
HLbL (phenomenology + lattice + NLO) Section 8 Eq. (8.11) 92(18) Refs. [18–32]
Total SM Value Section 8 Eq. (8.12) 116 591 810(43) Refs. [2–8,18–24,31–36]
Difference: �aµ := aexpµ � aSMµ Section 8 Eq. (8.14) 279(76)

storage ring efforts at CERN and BNL. An alternative and novel approach is being designed for J-PARC. It will feature an
ultra-cold, low-momentum muon beam injected into a compact and highly uniform magnet. The goal of the second effort
is to improve the theoretical SM evaluation to a level commensurate with the experimental goals. To this end, a group
was formed – the Muon g � 2 Theory Initiative – to holistically evaluate all aspects of the SM and to recommend a single
value against which new experimental results should be compared. This White Paper (WP) is the first product of the
Initiative, representing the work of many dozens of authors.

The SM value of aµ consists of contributions from quantum electrodynamics (QED), calculated through fifth order in
the fine-structure constant; the electroweak gauge and Higgs bosons, calculated through second order; and, from the
strong interaction through virtual loops containing hadrons. The overall uncertainty on the SM value remains dominated
by the strong-interaction contributions, which are the main focus of the Theory Initiative.

In this paper, significant new results are presented, as are re-evaluations and summaries of previous work. Particularly
important advances have been made in distilling the various approaches to obtaining the HVP contribution from the large
number of old and new data sets. The aim of the Initiative is an inclusive and conservative recommendation. At this time,
HVP is determined from e+e� data; new lattice efforts – while promising – are not yet at the level of precision and
consistency to be included in the overall evaluation. New here is a data-driven prediction of HLbL based on a recently
developed dispersive approach. Additionally, a lattice-QCD evaluation has reached the precision necessary to contribute to
the recommended HLbL value. Together they replace the older ‘‘Glasgow’’ consensus, and reduce the uncertainty on this
contribution, while at the same time placing its estimate on solid theoretical grounds. A compact summary of results
is given in Table 1, along with the section and equation numbers where the detailed discussions are presented. The
last column provides for each result the underlying list of references used to obtain it. We strongly recommend that
these references be cited in any work that uses the results presented here. The Initiative has created a website [118],
which includes links to downloadable bib files and citation commands, to make it easy to add these references to the
bibiliography. The recommended SM value lies 3.7� below the E821 experimental result.

1. Introduction

The anomalous magnetic moment of the muon1 has, for well over ten years now, provided an enduring hint for new
physics, in the form of a tantalizing 3–4� tension between SM theory and experiment. It is currently measured to a
precision of about 0.5 ppm [1], commensurate with the theoretical uncertainty in its SM prediction. With a plan to reduce
the experimental uncertainty by a factor of four, two new experiments will shed new light on this tension: the E989
experiment at Fermilab [119], which started running in 2018, and the E34 experiment at J-PARC, which plans to start its
first run in 2024 [120].

1 The muon magnetic moment µ is a vector along the spin s, µ = g(Qe/2mµ)s. The g factor consists of the Dirac value of 2 and the factor
aµ = (g � 2)µ/2, which arises from radiative corrections. The dimensionless quantity aµ is called by several names in the literature: ‘‘the muon
magnetic anomaly’’, the ‘‘muon anomalous magnetic moment’’, and the ‘‘muon anomaly’’. All of these terms are used interchangeably in this document.

6

Theory consensus on the Lamb shift and hfs of muonic hydrogen, 
deuterium, …; akin to the “g-2 Theory Initiative”
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Homepage and mailing list → https://asti.uni-mainz.de 
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Working groups, possible divisions:

1. μH, μD, …, μX, Mu(?) 

2. Lamb shift, fine structure, hyperfine splitting
3. QED, QCD = (EFTs, data-driven dispersive, lattice QCD)

QCD working group

• Elastic nucleon structure — form factors

• Inelastic nucleon structure — polarizabilities

• Other hadronic effects — HVP
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Refine exact terminology

Interplay of experiments and theory: fundamental constant determinations, theory tests, …

Prospects for NP searches

Recoil contributions

!D HFS, He isotope shift

…

QCD WORKING GROUP

New form factor data (elastic TPE contribution, …)

Subtraction function contributions

Neutron TPE contributions to light muonic atoms

…
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A. Antognini, FH, V. Pascalutsa, Ann. Rev. Nucl. Part. 72 (2022) 389-418

Proton structure
GE(Q2), GM(Q2)

F1(x,Q2), F2(x,Q2)
g1(x,Q2), g2(x,Q2)

Isotope shift
H – D(1S-2S)

rp

rp

rd

R∞

R∞

R∞

me/Mp

me/Mp

Mp/Md

Mp/M12C5+
Best test of

bound g-factors

Best test of
H-energy levels

Best test of a
three-body
molecule

Best test of 
higher-order
terms     Z5...7  

H(1S-3S)
δ = 1 × 10–12

He+(1S-2S)
δ = 6 × 10–12

Bound-electron g-factor
δ = 4 × 10–11

Theory tests

HD+

δ(rot) = 5 × 10–11

δ(rot–vib) = 2 × 10–11

rd(δ = 8 × 10–5)

μH (2S-2P)
δ = 1 × 10–5

rp(δ = 4 × 10–4)

H (1S-2S)
δ = 4 × 10–15

R∞(δ = 8 × 10–13)

Penning trap
programs

me, Mp, Md in atomic units

me/Mp (δ = 2 × 10–11)

HD+

δ(rot) = 1 × 10–11

δ(rot–vib) = 3 × 10–12

Figure 9
Simpli!ed scheme showing the impact of rp(µH) on improving fundamental constants and bound-state QED tests. Abbreviation: µH,
muonic hydrogen.

the rp value from CODATA 2018 does not completely re"ect the potential of the µH(2S-2P)
measurements. We thus sketch in the following the impact of rp(µH) by combining it with some
selected measurements and corresponding theory predictions in simple systems with distinctive
precision and sensitivity.Figure 9 illustrates the impact of theµH spectroscopy and its connection
to H,HD+, and Penning trap measurements that leads to cutting-edge tests of bound-state QED
for H-like systems, simple molecular systems, and bound-electron g-factors while improving
on fundamental constants such as the rp, rd, R∞, me, and Mp. Throughout this section we use
SI units.

5.1. Muonic Hydrogen to Hydrogen: Testing the Hydrogen Energy Levels
and Extracting R∞

Even though the recent H(2S-8D) measurement (15) is at some tension with the µH results, here
we exploit the agreement between the rp values from H (16, 17, 19) and µH to illustrate the
potential of combining µH and H measurements for testing the H energy levels and improving
on R∞, the most precisely known fundamental constant and a major player in the adjustment of
fundamental constants. R∞ also sets the energy scale for atoms, ions, and molecules, such that
precise predictions of transition frequencies in these systems require its precise value.
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EXPERIMENT		

�ETPE ± �theo (�ETPE) Ref. �exp(�LS) Ref.

µH 33 µeV ± 2 µeV Antognini et al. (2013) 2.3 µeV Antognini et al. (2013)

µD 1710 µeV ± 15 µeV Krauth et al. (2015) 3.4 µeV Pohl et al. (2016)

µ3
He

+
15.30 meV ± 0.52 meV Franke et al. (2017) 0.05 meV

µ4
He

+
9.34 meV ± 0.25 meV Diepold et al. (2018) 0.05 meV Krauth et al. (2020)

�0.15 meV ± 0.15 meV (3PE) Pachucki et al. (2018)

THEORY

(70) 2PE  (elastic 25, nuclear inelastic 36, nucleon inelastic 56)
(42) 3PE  (inelastic contribution missing)
  (4) QED

r↵ = 1.67824(2)sys(13)stat(82)theory fm

(25) 2PE  (mainly subtraction term)
(15) QED

basically only nuclear 2PErd = 2.12562(5)sys(12)stat(77)theory fm

rp = 0.84087(12)sys(23)stat(29)theory fm

present accuracy factor 5-10 worse than experimental precision    

present accuracy comparable with experimental precision    μH:	

μD,	μ3He+,	μ4He+:			

(Bacca, Gorchtein, FH, Lensky, Vanderhaeghen, Pascalutsa, …) (Pohl, Wauters, …)
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HYPERFINE SPLITTING IN !H
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Aldo Antognini 26

THEORY INITIATIVE

EHFS = 182.443
EF

+ 1.350(7)
QED+weak

+ 0.004
⏟

hVP

+ EF (1.01958(13)ΔZ + 1.01656(4)Δrecoil + 1.00402Δpol

2γ

) [meV]

X 7400(38) 20 7403(21) 837(3) 364(89) [ppm]

(<1) <1 ppm ? New FF measurements? Spin program? 
ChPT?

Theory compilations,  including mixed terms (recoil-finite size-
radiative), hadronic effects, meson contributions.

Experiment

37(95)
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Discrepancy between polarizability contribution

Comparison of structure function data to theory predictions

Low-Q region:

• Extrapolation of fit to data?

• Approximate formula?

…


