International Conference on Meson-Nucleon Physics and the Structure of the Nucleon Institute for Nuclear Physics of the Johannes Gutenberg University of Mainz October 16-20, 2023

Δ

.....

UNCOVERING NEW-PHYSICS SIGNALS IN NUCLEONS AND NUCLEI WITH LATTICE QCD

Zohreh Davoudi University of Maryland, College Park

LATTICE QCD TOUCHES ON ALMOST ALL AREAS OF HEP

GRAND PICTURE OF NEW PHYSICS DISCOVERY IN NUCLEON AND NUCLEI: EXAMPLE OF $0\nu\beta\beta$ decay

Cirigliano, ZD et al (USQCD), Eur. Phys. J. A (2019) 55: 197.

MORE DETAILS ON THE ROADMAP FROM QCD TO NUCLEAR OBSERVABLES FOR HEP

->

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	0 vββ Matrix Elements	EXO, Tonne-scale 0 vββ
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	0 vββ Matrix Elements	EXO, Tonne-scale 0vββ
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

Example: Axial charge and form factors of the nucleon from lattice QCD

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	0 vββ Matrix Elements	EXO, Tonne-scale 0 vββ
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

- Tonne-scale experiment planned in the U.S., design and interpretation of the results requires nuclear matrix elements in various scenarios.
- LNV from dimension-5 operator (light Majorana neutrino exchange)

$$\langle \pi^+ | S_{NL} | \pi^- \rangle, \ \langle p\pi^+ | S_{NL} | n \rangle, \ \langle pp | S_{NL} | nn \rangle$$
$$S_{NL} = \int dx \, dy \, S_0(x-y) \ T \left(J^+_\alpha(x) J^+_\beta(y) \right) \ g^{\alpha\beta}$$

 LNV from dimension-9 operators ("shortdistance" mechanisms). Requires matrix elements of 4-quark charge-changing operators

$$\langle \pi^+ | O_i | \pi^- \rangle, \langle p \pi^+ | O_i | n \rangle, \langle p p | O_i | n n \rangle$$

the $0\nu\beta\beta$ decay of the pion.

Nicholson et al (CalLatt), Phys. Rev. Lett. 121, 172501 (2018).

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	0 vββ Matrix Elements	EXO, Tonne-scale 0vββ
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

 Standard Model input is necessary to interpret the results of DM searches and translate these into limits on DM models.

• The low-energy limit of a generic spinindependent interaction is scalar coupling to any quark flavor.

MOTIVATION AND

- Lattice QCD is the key tool to obtain the strange contributions.
- Spin-dependent couplings and other interactions require knowledge of parton structure of nuclei.

SIGMA TERMS IN NUCLEON

$$\left[\sigma_{\pi N} = \frac{1}{2}(m_u + m_d)\langle N|\bar{u}u + \bar{d}d|N\rangle\right]$$

$$\sigma_s = m_s \langle N | \bar{s}s | N \rangle$$

Aoki et al (Flavor Lattice Averaging Group), FLAG Review (2021).

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Flavor Violation Lepton Number Violation	Nucleon and Nuclei Form Factors Ονββ Matrix Elements	Mu2e, COMET EXO, Tonne-scale 0vββ
Lepton Flavor Violation Lepton Number Violation CP Violation and Baryon Asymmetry in Universe	<section-header>Nucleon and Nuclei Form FactorsOvββ Matrix ElementsElectric Dipole Moment</section-header>	Mu2e, COMET EXO, Tonne-scale Οvββ Hg, Ra, <i>n</i> EDM at SNS and LANL

Reliable matrix elements will help establish pattern of LFV signatures in various decay channels depending on the underlying mechanism.

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	0 vββ Matrix Elements	EXO, Tonne-scale 0 vββ
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

- GUT and SUSY-GUT constraints require $p \rightarrow$ meson matrix elements. Some models predict suppression of p decay matrix elements due to nonperturbative dynamics.
- Upcoming DUNE will examine $p \rightarrow K l \nu$ and $p \rightarrow \pi \pi e^+$ decays with better precision, future hyper-K will further improve *p*-decay constraints.

 $\langle \pi^0 | \epsilon_{ijk}(u^{iT} C P_{R,L} d^j) P_L u^k | p \rangle$ $\langle \pi^+ | \epsilon_{ijk}(u^{iT}CP_{R,L}d^j)P_Ld^k | p \rangle$

e

Х

Form factors parametrizing the shown normalized matrix elements at given values of momentum transfer:

Physics	Target Quantity	Experiments	
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments	
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande	
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors	
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET	
Lepton Number Violation	0vββ Matrix Elements	EXO, Tonne-scale 0vββ	
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL	
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements	

- Some models of B-L violation do not allow the proton decay, therefore, neutron-antineutron oscillation bounds can provide powerful constraints.
- Two types of experiments: slow neutron beams and oscillation in nuclear medium with a distinct 5-pion final state.

 Theoretical uncertainties in neutron beam expts easier to control. Bounds could be improved by a factor of 1000 in next experiments.

MOTIVATION AND

TARGET OBSERVABLES

 Lattice QCD evaluates matrix elements of 6-quark operators that convert a neutron to an antineutron.

$$\frac{1}{\tau_{n\bar{n}}} = \delta m = c_{BSM}(\mu_{BSM}, \mu_W) c_{QCD}(\mu_W, \Lambda_{QCD}) \langle \bar{n} | \mathscr{O} | n \rangle$$

Physics	Target Quantity	Experiments
CP Violation and Neutrino Phenomenology	Neutrino-nucleus Scattering Cross Sections	DUNE, other Long-baseline Neutrino Experiments
Baryon Number Violation and Grand Unified Theories	Proton Decay Matrix Elements	DUNE, Hyper-Kamiokande
Baryon Number minus Lepton Number Violation	Neutron-antineutron Matrix Elements	ILL, ESS Super-K, DUNE and other reactors
Lepton Flavor Violation	Nucleon and Nuclei Form Factors	Mu2e, COMET
Lepton Number Violation	0 vββ Matrix Elements	EXO, Tonne-scale $0v\beta\beta$
CP Violation and Baryon Asymmetry in Universe	Electric Dipole Moment	Hg, Ra, <i>n</i> EDM at SNS and LANL
Dark Matter and New Physics Searches	Nucleon and Nuclei Form Factors	Dark Matter Experiments, Precision Measurements

- Permanent EDM of protons, neutrons and nuclei would be the best evidence for CP violation beyond the SM.
- Several neutron EDM experiments are planned (SNS and LANL in the U.S.), improving the limits by 2 orders of magnitude.

- Constraining BSM requires combining different non-zero EDM results and matching between nuclear-level EDM and quark/gluon effective CP violating operators.
- Quark EDM and tensor charges essentially done, more on isoscalar and strange/charm to be done. the rest of EDM contributions yet unconstrained.

$$\mathcal{L}_{6}^{CPV} = -\frac{i}{2} \sum_{f=e,u,d,s} \mathbf{d}_{f} \, \bar{f} \sigma \cdot F \gamma_{5} f - \frac{i}{2} \sum_{q=u,d,s} \tilde{\mathbf{d}}_{q} \, g_{s} \, \bar{q} \sigma \cdot G \gamma_{5} q + \mathbf{d}_{W} \frac{g_{s}}{6} G \tilde{G} G + \sum_{i} C_{i}^{(4f)} O_{i}^{(4f)}$$

See e.g., Bhattacharya et al, Phys. Rev. Lett. 115, 212002. Alarcon et al, arXiv:2203.08103 [hep-ph].

EXPECTATIONS FOR THE NEXT DECADE

Category	Milestone	Target	Experiment(s)
		precision	
Nucleon	Nucleon g_A^{u-d}	$1\%^{*}$	Neutron lifetime puzzle
matrix	Nucleon g_T^{u-d}	1%	UCNB, Nab
elements	Nucleon g_S^{u-d}	3%	UCNB, Nab
	$\sigma_{\pi N},\sigma_s$	5%	Mu2e, LZ, CDMS
	Nucleon r_E , r_A	5%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon $F_A(q^2)$	8%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon tensor	20%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon PDFs	$12\%^{*}$	ATLAS, CMS, DUNE, EIC expts
	Proton decay	10%	DUNE, HyperK
	$nn \to pp$	$50\%^*$	EXO, other $0\nu\beta\beta$ experiments
Circele reselect	Nucleon EDM	$10\%^{*}$	Neutron, proton EDM experiments
Single-nucleon	$g_{A,T,S}, 1 < A \leq 4$	$20\%^*$	All neutrino, DM, EDM,
		Kronfeld at	t al, USQCD Snowmass whitepaper (2022).

EXPECTATIONS FOR THE NEXT DECADE

Category	Milestone	Target	Experiment(s)
		precision	
Nucleon	Nucleon g_A^{u-d}	$1\%^{*}$	Neutron lifetime puzzle
matrix	Nucleon g_T^{u-d}	1%	UCNB, Nab
elements	Nucleon g_S^{u-d}	3%	UCNB, Nab
	$\sigma_{\pi N},\sigma_s$	5%	Mu2e, LZ, CDMS
	Nucleon r_E , r_A	5%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon $F_A(q^2)$	8%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon tensor	20%	DUNE, MicroBooNE, NOvA, T2K
	Nucleon PDFs	$12\%^{*}$	ATLAS, CMS, DUNE, EIC expts
	Proton decay	10%	DUNE, HyperK
	nn ightarrow pp	$50\%^*$	EXO, other $0\nu\beta\beta$ experiments
Cincele and	Nucleon EDM	$10\%^{*}$	Neutron, proton EDM experiments
Single-nucleon Multi-nucleon	$g_{A,T,S}, 1 < A \leq 4$	$20\%^*$	All neutrino, DM, EDM,
		Kronfeld at	t al, USQCD Snowmass whitepaper (2022).

Need more resource assessments and sensitivity analysis using synthetic data for nuclear matrix elements. $\Delta_{\beta\beta} = 10\%, \, \Delta_E = 10\%$ $\Delta_{\beta} = 1\%, \, \Delta_E = \Delta_{\widetilde{E}} = 1\%$ 2.0 Leading-order -150 Leading-order $\widetilde{L}_{1,A} \, [{\rm MeV}]$ $\sum_{\substack{N \in \mathcal{S} \\ i \in \mathcal{S}}} 1.5$ $0\nu\beta\beta$ coupling two-nucleon -400 with light correlated axial -650 Majorana coupling 0.5 neutrinos -900 14 10 12 16 8 8 10 12 14 16 ZD, Kadam, Phys. Rev. D 105 (2022) 9, 094502. *L* [fm] *L* [fm]

i) The complexity of systems grows rapidly with the number of quarks.

Detmold and Orginos, Phys. Rev. D 87, 114512 (2013). See also: Detmold and Savage, Phys.Rev.D82 014511 (2010). Doi and Endres, Comput. Phys. Commun. 184 (2013) 117.

ii) Excitation energies of nuclei are much smaller than the QCD scale.

Beane at al (NPLQCD), Phys.Rev.D79 114502 (2009). Beane, Detmold, Orginos, Savage, Prog. Part. Nucl. Phys. 66 (2011). Junnakar and Walker-Loud, Phys.Rev. D87 (2013) 114510. Briceno, Dudek and Young, Rev. Mod. Phys. 90 025001.

iii) There is a severe signal-to-noise degradation.

Paris (1984) and Lepage (1989).

Wagman and Savage, Phys. Rev. D 96, 114508 (2017). Wagman and Savage, arXiv:1704.07356 [hep-lat].

CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO LATTICE QCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO LATTICE QCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

CAN WE COMBAT SIGNAL-TO-NOISE AND SIGN PROBLEMS IN MONTE CARLO LATTICE QCD SIMULATIONS WITH NEW COMPUTATIONAL PARADIGMS?

Quantum Information Science and Technology for Nuclear Physics, Beck, Carlson, Davoudi, Formaggio, Quaglioni, Savage, et al, arXiv:2303.00113 [nucl-ex].

Physics

CP Violation and Neutrino Phenomenology

Baryon Number Violation and Grand Unified Theories

Baryon Number minus Lepton Number Violation

> Lepton Flavor Violation

Lepton Number Violation

CP Violation and Baryon Asymmetry in Universe

Dark Matter and New Physics Searches

TO SUMMARIZE:

Theorists supporting the research program in searches for new physics in rare processes in nucleon and nuclei include high-energy physicists building the high-scale models, QCD physicists matching high-scale models to hadronic-scale quantities, and nuclear physicists matching the hadronic quantities to nuclear-scale quantities for experiment. The synergy among these communities will be essential.

Lattice field theorists have long identified the impactful calculations in this area and are pushing the frontiers of **exploratory** as well as **mature full-scale computations** of quantities of relevance to this program.

The quantities of interest are a set of local (and bi-local) nucleon and nuclear matrix elements associated with SM or beyond the SM quark- and gluon-level currents. Few percent uncertainties in nucleon matrix elements and <50% uncertainties in few-nucleon matrix elements are achievable goals of this program over the next decade.

To expedite the computations and combat signal-to-noise and sign problems associated with finite-density systems and/or dynamical quantities, lattice field theorists are exploring new computational paradigms such as machine learning and quantum computing.

