MENU 2023 - The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

15-20 Oct 2023 Europe/Berlin timezone

Dark Sector searches at the intensity frontier

Dark Sector searches at the intensity frontier

MENU 2023

M.Battaglieri (INFN)

Dark Matter (DM) vs Baryonic Matter (BM)

Compelling astrophysical indications about DM existence

★ How much DM w.r.t. BM?

- \star Does DM participate to non-gravitational interactions? \star Is DM a new particle?
- \star Constraint on DM mass and interactions
 - should be 'dark' (no em interaction)
 - should weakly interact with SM particles
 - should provide the correct relic abundance
 - should be compatible with CMB power spectrum

 \star We can use what we know about standard model particles to build a DM theory Use the SM as an example: $SM = U(I)_{EM} \times SU(2)_{Weak} \times SU(3)_{Strong}$

Particles, interactions and symmetries

Known particles & new forcecarriers

Particles: quarks, leptons

Force-carriers: gluons, γ , W, Z, graviton (?), Higgs, ... Two options:

- \star

... assuming that the gravity is not modified and DM undergoes to other interactions

New matter interacting trough the same forces New matter interacting through new forces

Exploring the WIMP's option

\star Experimental limits

Slow-moving cosmological weakly interacting massive particles

- DM detection by measuring the (heavy) nucleus recoil
- Constraints on the interaction strength from the DM Direct Detection limits
 - Scattering through Z boson ($\sigma \sim 10^{-39}$ cm²): ruled out
 - Approaching limits for scattering through the Higgs ($\sigma \sim 10^{-45}$ cm²)
 - Close to irreducible neutrino background

* No signal observed in Direct Detection * Experiments have (almost) no sensitivity to (light) DM (<I GeV)

Direct Detection

I MeV

WIMPs paradigm is not the only option (keeping the DM thermal origin)

 $\langle \sigma v \rangle \sim g^2_{\text{Dark}} g^2_{\text{SM}} M^2_{\text{DM}}/M^4_{\text{mediator}}$

Light Dark Matter

I GeV

Light Dark Matter (<TeV) naturally introduces light mediators

10 TeV

WIMPs

Mz

New interaction

Light Dark Matter

\star Experimental limits

Light Dark Matter with a (almost) weak interaction (new force!)

- Direct Detection is difficult
 - Low mass elastic scattering on heavy nuclei produces small recoil
 - eV-range recoil requires a different detection technology
 - Directionality may help to go behind existing limits at large masses

Accelerators-based DM search

covers an unexplored mass region extending the reach outside the classical DM hunting territory

Light Dark Matter

I MeV

I GeV

Dark Sector or Hidden Sector (DM not directly charged under SM interactions)

Can be explored at accelerators!

e Clab12

4

Dark Sector searches at the intensity frontier

nuclei produces small recoil etection technology existing limits at large masses

High intensity Moderate energy

Direct Detection

10 TeV

WIMPs

Mz

Experimental techniques

Dark Sector searches at the intensity frontier

5

e.

INFN

Fixed target vs. collider

Fixed Target

$\begin{array}{c} E_{1} & A' & E_{1} x \\ & E_{1} & E_{1} (1 - x) \\ & & \\ \hline Nucleus \\ 10^{11} e^{-} & 10^{23} \\ & atoms \\ & in \\ & target \\ \end{array}$

$$\sigma \sim rac{lpha^3 Z^2 \epsilon^2}{m^2} \sim O(10 \ pb)$$

high backgrounds limited A' mass

e+e- colliders

low backgrounds higher A' mass

*I/M_A[,] .vs. I/E_{beam}
*Coherent scattering from Nucleus (~Z²)

Dark Photon Signatures

Vector mediated Light Dark Matter

• Vector-Portal: DM-SM interaction mediated by U(1) gaugeboson (dark photon or A') couples to electric charge

A' interaction scenarios

- Secluded: no constraints by cosmology for accelerator based experiments. Any ε allowed
- Visible decay: final state contains SM particles
- Invisible decay: A' decays to Dark Sector invisible particles

Dark Sector searches at the intensity frontier

Dark Photon Signatures

Vector mediated Light Dark Matter

• Vector-Portal: DM-SM interaction mediated by U(1) gaugeboson (dark photon or A') couples to electric charge

A' interaction scenarios

- Secluded: no constraints by cosmology for accelerator based experiments. Any ε allowed
- Visible decay: final state contains SM particles
- Invisible decay: A' decays to Dark Sector invisible particles

A' Production mechanisms - e[±]

The Weizsacker-Williams approximation (A'-strahlung)

- The incoming electron 'see' a fast-moving cloud of effective photons to scatter from
- Photons are almost on-shell (low Q2) \rightarrow transverse photons ~ e⁻ γ_{Real} scattering
- Same treatment as the regular bremstrahlung
- Regularisations occurs in the case of interest $M_{A'} >> M_{e-}$
- Effective photon flux χ is critical, accounting for nuclear effect using FF

A' Production - positrons

e. 8 Lab12

INFN

- NON-RESONANT annihilation
 - A' along (e+e-) direction
 - RESONANT annihilation

- Two-body process
- A' forward-peaked along e⁺ direction
- $E_{A'} = E_R = m^2_{A'}/2_{me}$

- Known and used
- Collider (missing mass experiments)

Dark Sector searches at the intensity frontier

8

• Thin target experiments (visible decay)

Dark Sector searches at the intensity frontier

9

INFN

Hall A

Hall C

JLab Scientific mission

- What is the role of gluonic excitations in the spectroscopy of light mesons?
- Where is the missing spin in the nucleon? Role of orbital angular momentum?
- Can we reveal a novel landscape of nucleon substructure through 3D imaging at the femtometer scale?
- · What is the relation between short-range N-N correlations, the partonic structure of nuclei, and the nature of the nuclear force?
- Can we discover evidence for physics beyond the standard model of particle physics?

12 GeV experimental program is in full swing

- 33 experiments completed out of 91 approved
- ~8 years of physics ahead (~30 weeks/year)

Future opportunities at **CEBAF**

- Higher Energy
- Higher luminosity
- Positron beam

Hall B

10

ab12

APEX: A-Prime EXperiment

e- fixed target experiment installed in HALL A searching for dark photon visible decay

• Dark photon searched as a narrow resonance in e+e- mass over a smooth QED background

- Two High Resolution Spectrometers (HRSs) in coincidence to measure events with an e- in one arm and e+ in the other
- Standard HRS detector stack in both arms: Scintillators: SO and S2(timing), VDC (tracking), Cherenkov and Calorimeters (PID)
- 2010 test run: $E_b=2.2 \text{ GeV}@150 \text{ uA}$ on Ta foil
- Entire run in 2019: over 100x statistics

I) Bump Hunting (BH)
 Narrow e+e-resonance over a QED background
 ➡ good mass resolution: σ_{A'mass}~I MeV

2) Secondary decay vertex (vertexing)

Detached vertex from few mm to tens cm \Rightarrow good spacial resolution: $\sigma_{vertex} \sim Imm$

e. 8 Lab12

ואדא

Heavy photon signatures in HPS

BH + Vertexing = enhanced experimental reach

12

EM Calorimeter

ECal identifies e^+e^- pairs with precision timing to reject single e^- backgrounds.

Dark Sector searches at the intensity frontier

XI7 search at JLab

- Search for the XI7 in e+einvariant mass
- Presented to JLab PAC 49 in Aug 21 and granted a C2 approval

e @lab12

INFN

Search for Hidden Sector New Particles in the 3 – 60 MeV Mass Range

New (hidden) particle in MeV-scale mass range in forward electroproduction reactions from a heavy A solid target.

 e^{-} + Ta $\rightarrow e^{\prime}$ + γ^{*} + Ta $\rightarrow e^{\prime}$ + X + Ta^{*}, $X \rightarrow e^+e^-$ (with tracking) or $X \rightarrow \gamma \gamma$ (without tracking)

Mass range: [3 ÷ 60] MeV

Tantalum ($_{73}$ Ta¹⁸¹) film, thickness: 1 μm , 2.5x10⁻⁴ r.l. Target: density: 16.69 g/cm3 N(Ta) = 0.56x10+19 atoms/cm2

Experimental method:

- \checkmark "bump hunting" in the invariant mass spectrum over the beam background.
- direct detection of decay particles (e⁺e⁻) and scattered e⁻ \checkmark

Detection criteria:

- scattered electron is in the PbWO₄ acceptance with $E_{e} = [30 \text{MeV to } 0.7 \times E_{beam}];$
- decay e^{-} and e^{+} are in the PbWO₄ within energy: $[0.03 - 0.8 \times E_{beam}]$
- Target to PbWO4 distance L=7.5 m beam energy optimized for $E_e = 2.2 \text{ GeV}$ and 3.3 GeV

Beam time request

	Time [days]
Setup checkout, tests and calibration	4.0
Production at 2.2 GeV @ 50 nA	20.0
Production at 3.3 GeV @ 100 nA	30.0
Energy change	0.5
No target background sampling at 2.2 & 3.3 GeV	5.5
Total	60.0

Search sensitivity

m_X	σ_{m_X}	Background	Signal Counts	Lowest	lowest
MeV	MeV	Counts	(5.0 Significance)	ϵ^2	ϵ^2
30 days of 3.3 GeV at 100 nA					combined with signal
					from 20 days at 2.2 GeV
5.0	0.263	22.02M	23.48k	6.86E-09	5.94E-09
17.0	0.467	3.60M	9.50k	9.83E-09	8.51E-09
30.0	0.692	3.06M	8.76k	2.60E-08	2.25E-08
40.0	0.938	4.08M	10.11k	5.71E-08	4.94E-08
50.0	1.009	4.38M	10.48k	8.37E-08	7.24E-08

Experimental Setup (Side View)

4

Proposal submitted to JLab PAC49

XI7 search at JLab • Search for the XI7 in e+e e^{-} + Ta $\rightarrow e^{\prime}$ + γ^{*} + Ta invariant mass • Presented to Lab PAC 49 in Aug Target: 21 and granted a C2 approval • Presented to JLab PAC 50 in Aug \checkmark 2022 and granted A rate (full approval)

• To be scheduled

e. 2 lab12

INFN

Search for Hid

New (hidden) particle in Me in forward electroproduction

Mass range: [3 ÷ 60] MeV

Tantalum (73Ta181 density: 16.69 g/ $N(Ta) = 0.56 \times 10$

Experimental method:

✓ "bump hunting" in the beam background.

direct detection of dec

Detection criteria:

- scattered electron is in the $E_e = [30 \text{MeV to } 0.7 \times E_{\text{beam}}]$
- decay e⁻ and e⁺ are in the Pb $[0.03 - 0.8 \times E_{beam}]$
- Target to PbWO4 distance optimized for $E_e = 2.2 \text{ GeV}$

15

Two step process I) An electron radiates an A' and the A' promptly decays to a χ (DM) pair II) The χ (in-)elastically scatters on a e-/nucleon in the detector producing a visible recoil (GeV)

Experimental signature in the detector:

X-electron \rightarrow EM shower ~GeV energy

BDX @ JLab

Approved by JLab 2018 PAC with max rate (A)

Waiting to be scheduled

Accumulating 10²² EOT in ~2y BDX sensitivity is 10-100 times better than existing limits on LDM High energy beam available: 11 GeV
The highest available electron beam current: ~65 uA
The highest integrated charge: 10²² EOT (41 weeks)
Drilled shaft downstream of Hall-A BD
BDX detector (recycling BaBar Csl and/or PANDA PbVVO4 crystals)
Expected to run in parallel to the Moeller experiment (2026-2029)

BDX detector: EMCalorimeter + Veto

- 8 modules 10x10 crystals each
- 800 CsI(TI) crystals (BaBar)
- Negotiating with PANDA to loan
 ~3k ECal PbWO crystals
- 6x6 mm² Hamamatsu SiPM
- Plastic scintillator + WLS fibres

X beam

e @lab12

ĮNFN

'Drilled shaft': large hole in the ground Size: 0' (d) x 30' (deep) Possibly 2 (or 3) in a row 2'-3' apart

BDX detector

BaBar CsI(TI) crystal

BDX prototype to asses cosmic bg

BDX-MINI @JLab

BDX-MINI: pilot experiment to prove the validity and feasibility of the BDX experiment

- Two wells dug for bg muon tests
- E_{beam}=2.2 GeV, no muons
- Limited reach but first physics result!

• 44 PbWO4 PANDA/FT-Cal crystals (~1% BDX active volume) • 6x6 mm2 SiPM readout •2 active plastic scintillator vetos: cylindrical and octagonal (8 sipm each) + 2x lids + Passive W shielding

M.Battaglieri et al. EPJC (2021) 81:164

 $\epsilon^2 \alpha_D (m_{\chi}/m_{A'})^4$ Ŋ

• Data-taking completed, analysis completed • Results provide exclusion limits similar to the best existing experimnts (EI37, NA64, BaBar, ...)

18

- Run form Dec 2019 to Aug 2020
- Collected 4e21 EOT (40% BDX!) in ~4 months (+ cosmics)
- Good detector performance with high duty factor

Future: JPOS@JLAB

e⁺ annihilation on fixed (thick) target invisible

- Missing energy experiment with a positron beam
- Active beam-dump experiment (*á la* NA64 but with positron!)
- Clear signal (peak!) due to the annihilation: $M_{A'} = Sqrt(2 m_e E_{miss})$
- Missing energy exp (e+ $Z \rightarrow$ e+ Z' A' with A' \rightarrow invisible)
- II GeV e+ beam, low current
- Active target (calorimeter)
- Exclusion plots based on 1013 POT
- Detector: ECAL to measure e+ and an HCAL as a veto

E.Voutier talk!

M. Battaglieri et al., Eur. Phys. J. A 57, 253 (2021)

New physics perspectives at Jlab with secondary beams

- CEBAF-JLAB provides the highest intensity 10 GeV electron beam in the word
- High-intensity secondary beams are produced in the dump
 - LDM (if it exists)
 - Muon
- Neutrino

µ³BDX @ JLab

Probing muon-philic forces with secondary muon beam Muon beam

- muons are mainly produced by Bethe-Heitler radiative process
- high-intensity beam (up $10^8 \mu/s$)
- Bremsstrahlung-like E spectrum, focused and compact muon beam

decaying particles (similar to M³ proposed at Fermilab)

vBDX @ JLab **Detecting CEvNS at JLab**

Neutrino beam

- Mainly produced by π and μ decays (3v)
- high-intensity beam (up 10¹⁸ v/y/m2)
- Decay-At-Rest energy spectrum(off-axis)

CEvNS (Coherent Elastic nu-Nucleus Scattering)

- Low-energy neutrinos (<100 MeV) coherent scatter on nucleus
- Cross-section scales as N²

e.

INFN

- The largest xsec for $E_v < 100 \text{ MeV}$
- First detected in 2017 on Csl by COHERENT (~134 events)
- Low recoil energy due to kinematics O(10 keV)

Opportunities with 20+ GeV CEBAF: BSM physics Beyond hadronic physics with secondary beams at 24 GeV

Searching for Light Dark Matter in BDX

- Extension of the current LDM searches at 24 GeV
- Unique sensitivity to LDM scenarios (inelastic LDM)
- Complementarity to the current program

e @lab12

INFN

12

Neutrino beam

• up to 2x10¹⁸ nu/year/m3, with Decay-At-Rest Energy spectrum

Detector	e- @ 10 GeV v flux: 1E8 v/m²/year	e- @ 20 GeV v flux: 2E8 v/m²/year
Csl (1m ³) [thr : 10 keV]	8000	~15000
LAr (1m ³) [thr: 10 keV]	2500	~4500

Conclusions

* The existence of Dark Matter is a compelling reason to investigate new forces and matter over a broad range of mass

- * Accelerator-based (Light)DM search provides a unique feature of distinguishing DM signal from any other cosmic anomalies or effects
- * An extensive program to explore the Dark Sector making use of the high-intensity ~10GeV electron beam available at Jefferson Lab is in full swing
- * A new generation of dedicated and optimized experiments at high-intensity frontier will test the relic (light) dark matter scenario
- * A high-intensity positron beam available in the near future at Jefferson Lab will optimize LDM searches via annihilation
- * Other high-intensity muon and neutrino secondary beams will complement the current program
- * Discovery or decisive tests of the simplest scenarios will possible in the next 5-10 years!

