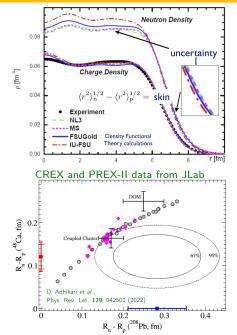
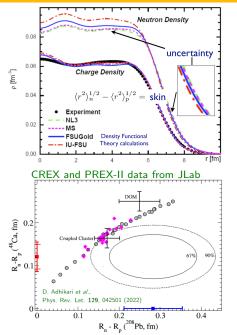
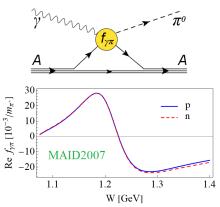
Second-order pion-nucleus potential for scattering and photoproduction

Viacheslay Tsaran


Institute of Nuclear Physics, University of Mainz

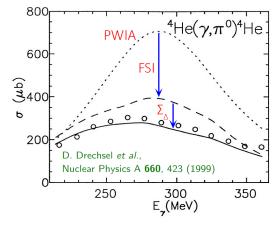
October 17, 2023



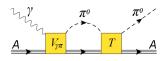


π^0 photoproduction – a tool for studying neutron distributions

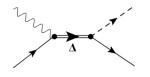
π^0 photoproduction – a tool for studying neutron distributions


 π^0 photoproduction provides nucleon FF: $V_{\gamma\pi} \propto f_{\gamma\pi} F_N(q)$

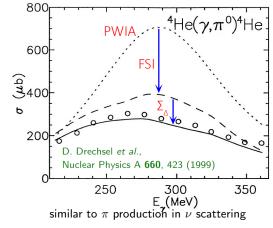
Neutron distribution can be extracted: $F_n(q) = F_N(q) - F_n(q)$

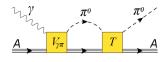

Precise theoretical model for photoproduction on nuclei is required

Elastic scattering amplitude is needed to describe pion production

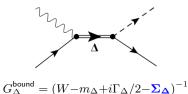

3 photoproduction components:

- $V_{\gamma\pi}$ for PWIA
- ullet scattering amplitude T for FSI


 \bullet Effective $\Delta(1232)$ self-energy Σ_Δ


$$G_{\Delta}^{\rm bound} = \left(W\!-\!m_{\Delta}\!+\!i\Gamma_{\Delta}/2\!-\!\mathbf{\Sigma_{\Delta}}\right)^{-1}$$

Elastic scattering amplitude is needed to describe pion production


3 photoproduction components:

- $V_{\gamma\pi}$ for PWIA
- ullet scattering amplitude T for FSI

• Effective $\Delta(1232)$ self-energy Σ_{Δ}

Outlook:

- Scattering: new potential fitted to π^{\pm} -12C scattering data
- 3 energy-independent real parameters
- Inclusion of the intermediate charge exchange and spin-flip
- Application of our model to photoproduction