Perspectives of **SIDIS**

Anselm Vossen

Thanks to content shown at

Hard Scattering is a premier tool to probe the quark and gluon degrees of freedom

• Proton Structure extracted using QCD factorization theorem

Momentum structure in the parton model parametrized by TMDs (spin $\frac{1}{2}$)

 In addition to the spin-spin correlations can have spin momentum correlations!

SIDIS X-section in the Parton Model

SIDIS cross-section

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{h\perp}^2} \\ &= \frac{\alpha^2}{x\,y\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} \right. \\ &+ \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} + S_L\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\,\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h}\right] \\ &+ S_L\,\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ &+ S_T\left[\sin(\phi_h - \phi_S)\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\,F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) + \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} \right. \\ &+ \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}\right] + S_T\lambda_e\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} \right] \right\} \end{split}$$

- Disentangling the different contributions is not trivial
- Ratio of T to L flux – At fixed x e.g. change Q $\varepsilon = \frac{1 - y - \frac{1}{4}\gamma^2 y^2}{1 - y + \frac{1}{2}y^2 + \frac{1}{4}\gamma^2 y^2}, \qquad \gamma = \frac{2Mx}{Q}.$

Beyond the parton picture

- Higher Twist Contributions
- Overlap of regions that are not captured by factorized TMD picture
- VM Meson decays
- Radiative corrections
- Assumption of suppressed long photon contributions

One persons 'complication' is another person's signal...

→Need high lumi, leverarm in kinematics to disentangle various contributions

Landscape

To extract 3D structure Need luminosity

- Jlab12: 2018+
- JLab22:

Exposure

Kinematic comparisons

Jefferson Lab with CEBAF at 12 GeV

Detector Requirements: Complementarity

GlueX/Hall D Detector						
Hall D	Hall B	Hall C	Hall A			
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations			
polarized photons	Hermeticity	precision				
Ε _γ ~8.5-9 GeV		11 GeV beamline				
10 ⁸ photons/s		target flexibility				
good momentum/a	angle resolution	excellent momentum resolution				
high multiplicity	reconstruction	luminosity up to 10 ³⁸				
particle ID						

Detector Requirements: Complementarity

GlueX/Hall D Detector	14 10 10 10 10 10 ⁴ 10					
Hall D	Hall B	Hall C	Hall A			
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations			
polarized photons	hermeticity	precision				
Ε_γ~8.5-9 GeV	11 GeV beamline					
10 ⁸ photons/s	target flexibility					
good momentum/a	ingle resolution	excellent momentum resolution				
high multiplicity I	reconstruction	luminosity up to 10 ³⁸				
particle ID						

Tentative Timelines relevant for TMD program shown here

CLAS12 in Hall B

 2018-2020: unpolarized proton/deuterium target – long. polarized beam

 2022/23 longitudinally polarized proton/deuterium long target → ≈ 5 % produced

 Future Polarized He3 (long/trans)

<u>Hall A</u>

 2028 SoLID with He3/proton target (long/transverse)

See talk by Chao Peng

CLAS12 pion BSAs

Phys.Rev.Lett. 128 (2022) 6, 062005

unpolarized FF

Higher Twist PDFs

13

twist-3 FF

Collins FF

Better: di-hadrons

$$F_{LU}^{\sin\phi_R} = -x \frac{|\boldsymbol{R}|\sin\theta}{Q} \left[\frac{M}{m_{hh}} x e^q(x) H_1^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) + \frac{1}{z} f_1^q(x) \widetilde{G}^{\triangleleft q} \left(z, \cos\theta, m_{hh} \right) \right],$$

- First extraction of e(x)
- Further constrains from F_{UL} and F_{LL}

Compare Partial Wave Decomposition in MC and Data

• Comparing to Polarized Lund model here (StringSpinner, A. al, *Comput.Phys.Commun.* 272 (2022))

Twist-2 A_{LU} Amplitudes

Twist-2 A_{LU} Amplitudes

• New version of string+3 P_0 model shown₁ at SPIN (Kerbizi) with improved VM treatment

Longitudinal target results

• Results represent 5% proton target

Harut Avakian at

 $F_{LL} \propto g_1(x,k_T) \otimes D_1(z,p_T)$

Convolution over transverse momentum 16 space

• Rich program underway

Target Fragmentation \rightarrow Fracture Functions

Notional CEBAF & upgrade schedule (FY24 – FY42)

- Accelerator and engineering team have worked up an early schedule and cost estimate
 - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
 - For completeness, Moller and SoLID (part of 12 GeV program) are shown; positron source development also shown

	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Moller (funded)																		
SoLID (science rev)																		
Positron Source Dev																		
Pre-Project Dev																		
Upgrade Phase 1																		
Transport comm/e+																		
Upgrade Phase 2																		
CEBAF Up																		

Tia Keppel at

High x at Jlab 22

Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab

t: 2306.09360 [nucl-ex]

- ≈doubling beam energy significantly increases phase space
- Pin down valence structure of the proton
- Integration in global analyses (e.g. strange distributions, CS Kernel)
- See M. Battaglieri's talk

SIDIS physics at an EIC: Coverage

- Common theme on EIC impact
 - Extended kinematic coverage and precision, along with polarization and possible beam charge degrees of freedom allow multi-pronged approach → needed to extract multidimensional objects
 - -TMD factorization is valid

Coverage to low *x*: access sea and gluon distributions

Order of magnitude in luminosity depending on \sqrt{s} (beware of projections with fixed $\int L$)

Longitudinal double spin asymmetries

$$\bullet\; A_{LL} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\Downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\Downarrow}} \varpropto g_1$$

- Projections for Athena (2022 JINST 17 P10019)
- 3% point-to-point, 2% scale uncertainties (from Hera experience)
- *z* > 0.2
- $15.5 f b^{-1}$ at 18x275, other datasets scaled accordingly

Access to TMDs: Kinematic factors

		Polarization	Depolarization		
<u>Twist 2</u>	Boer-Mulders	UU	В		
	Sivers	UT	1		
	Transversity	UT	B/A		
	Kotzinian-Mulders	UL	B/A		
	Wormgear (LT)	LT	C/A		
	Helicity DiFE G [⊥]	LU	C/A		
		UL	1		
Twist 3	e(x)	LU	W/A		
	h _L (x)	UL	V/A		
	g _T (x)	LT	W/A		

Statistical uncertainty scaling factor for 18x275

Depolarization Factors

		Polarization	Depolarization		
<u>Twist 2</u>	Boer-Mulders	UU	В		
	Sivers	UT	1		
	Transversity	UT	B/A		
	Kotzinian-Mulders	UL	B/A		
	Wormgear (LT)	LT	C/A		
	Helicity DiFF G [⊥]	LU	C/A		
		UL	1		
<u>Twist 3</u>	e(x)	LU	W/A		
	h _L (x)	UL	V/A		
	g _T (x)	LT	W/A		

Suppressed at EIC

Example: transversity extraction from Jlab and the EIC

Phys.Lett.B 816 (2021) 136255

*He*³ Double Tagging at the EIC allows clean neutron measurement

- Neutron is to 87% polarized
- Double tagged events thus provide access to polarized neutron beam

 Reconstruction of initial neutron momentum from tagged protons allows reduction of uncertainties from nuclear corrections

Friščić, I, Nguyen, D, Pybus, JR, Jentsch et al 27

Precision Λ physics at the EIC

 $> 10^{-4}$

-0.05

0.2

0.4

 z_{Λ}

- Phys.Rev.D 105 (2022) 9, 094033
- Also $\rightarrow\uparrow$ spin transfer, in-jet fragmentation
- $40 f b^{-1}$ at each energy
- Significant impact of low \sqrt{s} data 28

Lambda feed-down composition vs JLab20

- Possible to unfold at the EIC (not so much at Jlab)
 - ML methods might help

Study by M. McEneaney(Duke) JLab22 similar

Summary/Conclusion/Outlook

- Broad and diverse SIDIS program
 - Present: JLab12, COMPASS
 - -Future: JLab22, EIC
- Wide kinematic reach enabling us to understand the full QCD picture
- Jlab: unprecendented precision in valence quark regime
- EIC: new frontiers
- What is missing in this talk:
 - -COMPASS
 - Deuterium target: Statistics now similar to proton target
 - Work on radiative corrections: RADGEN→DJANGOH
 - Exciting/large datasets still to be analyzed
 - Exclusive limit
 - -TMDs in medium
 - Charged current at the EIC
 - Details on JLab12, 22 and EIC programs can be found in review papers and detector proposals
 - Yellow Report, Athena, ECCE, CORE proposals, PSQ report...
 - -...(and a lot more)

Wide Coverage

lectroproduction kinematics

0.2

0.2 0.3

0², GeV²

0.4

0.5

0.6

0.4

0.6

JLab7/9/11

0.8

Experiments measure azimuthal dependence of the cross section as a function of x, Q^2 ,z, P_T

- Studies of azimuthal modulations give access to underlying dynamics (3D partonic distributions,...)
- QCD predicts the Q²-dependence of 3D PDFs

Hadron production in hard scattering

34 H. Avakian, SPIN2023, Sep 28

Appearance of perturbative asymmetries

- Additionally: perturbative generation of asymmetries from g_T
- What about di-hadron correlations?

Abele, Aicher, Piacenza, Schafer, Vogelsang (2022)

Benic et al. Phys. Rev. D 104, 094027

Unpolarized TMDs

х

 Top: Explicit z dependence of select pion multiplicities in 3 x-Q² bins, including the double-Gaussian fits

Figure 25: Impact on the error bands of the TMD in k_{\perp} space (left) and its Fourier-conjugate b_{\perp} (right) at two values of x and at Q = 2 GeV, based on the MAP22TMD analysis [132]. Purple bands: current situation. Red bands: after the inclusion of JLab22 data.

Lambda

Example, Access of e(x) in SIDIS x-section

• Di-hadron cross section: Clean access to e(x)

$$F_{LU}^{\sin \phi_R} = -x rac{|m{R}| \sin heta}{Q} \left[rac{M}{m_{hh}} x \, e^q(x) \, H_1^{\triangleleft \, q}ig(z, \cos heta, m_{hh}ig) + rac{1}{z} \, f_1^q(x) \, \widetilde{G}^{\triangleleft \, q}ig(z, \cos heta, m_{hh}ig)
ight],$$

• See e.g. Aurore Courtoy, arXiv:1405.7659

• f

41

RECOMMENDATION 1

The highest priority of the nuclear scie munity is to capitalize on the extraordi tunities for scientific discovery made p the substantial and sustained investme United States. We must draw on the tal the nation to achieve this goal.

RECOMMENDATION 2

As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.

RECOMMENDATION 3

We recommend the expeditious completion of the EIC as the highest priority for facility construction.

RECOMMENDATION 4

We recommend capitalizing on the unique ways in which nuclear physics can advance discovery science and applications for society by investing in additional projects and new strategic opportunities.

Structure functions and depolarization factors in SIDIS

- 1) Theory works well for $P_T/Q < 0.25$,
- 2) Kinematic regions not trivial to separate at lower energies
- 3) Multi-dimensional measurements critical, requiring high lumi
- 4) Decays can lead to additional contamination

Maybe not the full picture

- Twist-3
- Regions
- Mesons

- Decays
- Rad corr
- Some projections from the EIC
- Jlab 22

e(x) in single hadrons

- The 3D nucleon structure in momentum space can be described by TMDs
- SIDIS provides an effective tool to probe the transverse momentum dependent partonic structure of the nucleon

→ A convolution of 4 TMDs and 4 fragmentation functions

→ The results can be used in a global fit to constrain the TMDs and FF

Projection of transverse TSSAs

Athena projections for the measurement of Sivers asymmetries

$$0.2 < z < 0.7, Q^2 > 1.0, y > 0.05, \frac{qT}{Q} < 1.0$$

Detector Requirements: Complementarity

GlueX/Hall D Detector				
Hall D	Hall B	Hall C	Hall A	
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations	
polarized photons	hermeticity	precision		
Ε _γ ~8.5-9 GeV		11 GeV beamline	SOLD	
10 ⁸ photons/s		target flexibility	GEM	
good momentum/angle resolution		excellent momen	Calorimeter Cherenkov (Light) Calorimeter Cherenkov (Heavy)	
high multiplicity reconstruction		luminosity up to 10 ³⁸		
particle ID				

Detector Requirements: Complementarity

GlueX/Hall D Detector	14 10 10 10 10 10 ⁴ 10			
Hall D	Hall B	Hall C	Hall A	
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations	
polarized photons	hermeticity	precision		
Ε_γ~8.5-9 GeV	11 GeV beamline			
10 ⁸ photons/s	target flexibility			
good momentum/angle resolution		excellent momentum resolution		
high multiplicity reconstruction		luminosity up to 10 ³⁸		
particle ID				

Tentative Timelines relevant for TMD program shown here

CLAS12 in Hall B

 2018-2020: unpolarized proton/deuterium target – long. polarized beam

- 2022+ polarized long target?
- Future Polarized He3 (long/trans)
- Polarized transverse HD

<u>Hall A</u>

- 2023 Transverse single spin asymmetries on He3 (64 beam days)
- 2028 SoLID with He3/proton target (long/transverse)

Accessing e(x) in the TMD framework

• The PDF e can be measured in the F_{LU} structure function of the cross section for the production of a pion on an unpolarized target.

Efremov, K. Goeke, and P. Schweitzer, Phys.Rev. D67, 114014 (2003)

Example, Access of e(x) in SIDIS x-section

• Di-hadron cross section: Clean access to e(x)

$$F_{LU}^{\sin \phi_R} = -x rac{|m{R}| \sin heta}{Q} \left[rac{M}{m_{hh}} x \, e^q(x) \, H_1^{\triangleleft \, q}ig(z, \cos heta, m_{hh}ig) + rac{1}{z} \, f_1^q(x) \, \widetilde{G}^{\triangleleft \, q}ig(z, \cos heta, m_{hh}ig)
ight],$$

• See e.g. Aurore Courtoy, arXiv:1405.7659

Partial Wave, Model comparisions, VM, stringspinner string-P03 model

Analog to PDFs; Momentum Sum Rules

• A direct relationship exists to the eight leading twist PDFs after the fracture functions are integrated over the fractional longitudinal nucleon momentum, ζ .

Can We Separate Target and Current?

Feynman variable

$$x_F = \frac{p_h^z}{p_h^z(\max)}$$
 in CM frame $\mathbf{p} = -\mathbf{q}$, $-1 < x_F < 1$

Rapidity

$$y_h = \frac{1}{2} \log \frac{p_h^+}{p_h^-} = \frac{1}{2} \log \frac{E_h + p_h^z}{E_h - p_h^z}$$

- No clear *experimental* definition of what constitutes current production versus target production.
- Odd structure functions, with different production mechanisms in both regions, give a possible clue.
- Protons (as opposed to mesons) at CLAS12 kinematics give a unique opportunity because they have extensive coverage in both regions.

Current and Target Separation

- Odd-function (sine) modulations exhibit a sign flip around the transition from target to current fragmentation. Interestingly, we observe F_{LU} ~ F_{UL}.
- Even-function (cosine) behavior of double-spin asymmetry does not show a sign flip; possible signs decreasing F_{LL} as $x_F \rightarrow \pm 1$ (x_B decreasing but likely not the only cause).
- Consistent beam-spin asymmetries in unpolarized H₂ and polarized NH₃ indicates minimal nuclear medium modification.

Kotzinian-Mulders Asymmetry

No Collins mechanism in the TFR so F_{UL}^{sin2φ} (and F_{UU}^{cos2φ}) are pure twist-4. We would expect small magnitude at -x_F.

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T\right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{MM_h}h_{1L}^{\perp}H_1^{\perp}\right]$$

- The F_{UL}^{sin2φ} asymmetry is purely generated by the Collins mechanism – whereby a transversely polarized quark flips orientation during hadronization and produces an asymmetric distribution in the transverse plane.
- Hadronization in the TFR is more isotropic there is no additional chiral-odd quantity like the Collins function to pair with the Kotzinian-Mulders TMD because factorization into separate soft and hard scale processes does not hold.

Early signs give a *possible* hint but need more statistics!

Statistical uncertainty scaling factor for 5x41

Slide from C. Dilks

Back-to-back (dSIDIS) Formalism

- When two hadrons are produced "back-to-back"^{1,2} with one in the CFR and one in the TFR the structure function contains a convolution of a fracture function and a fragmentation function.
- Leading twist beam(target)-spin asymmetry.

1. M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132 2. M. Anselmino et al., Phys. Lett. B. 713 (2012), 317-320, [hep-ph] 1112.2604

Access to unmeasured fracture functions

- x-dependence increases in magnitude in the valance quark region.
- ζ_2 -dependence shows decreasing amplitude with increasing momenta. Possibly due to correlations with x.
- Relatively flat as a function of z_1 , possibly due to cancellation of fragmentation functions.
- $A_{LU} \propto \frac{\mathcal{C} \left[w_5 \hat{l}_1^{\perp h}(x, \zeta_2, P_{T2}) D_1(z_1, P_{T1}) \mathcal{C} \right]}{\mathcal{C} \left[\hat{u}_1(x, \zeta_2, P_{T2}) D_1(z_1, P_{T1}) \mathcal{C} \right]}$ First observation of TMD fracture functions and long-range correlations between current and target. Already working on follow up (negative pion, deuteron target, more statistics etc.)

Target-Current

Ex mesons

Long target

Compass rad corrections

New e(x) Extraction – Proton Flavor Combination

$$A_{LU}^{\sin\phi_R} \propto \frac{M}{Q} \frac{\sum_{q} e_q^2 \left[x e^q(x) H_{1,sp}^{\triangleleft,q}(z,m_{\pi\pi}) + \frac{m_{\pi\pi}}{zM} f_1^q(x) \tilde{G}_{sp}^{\triangleleft,q}(z,m_{\pi\pi}) \right]}{\sum_{q} e_q^2 f_1^q(x) D_{1,ss+pp}^q(z,m_{\pi\pi})}$$
 (wist-3 DiFF

- Scenario I: Wandzura-Wilczek (WW) Approximation
 - Drop twist-3 DiFF
- Scenario II: Beyond WW approximation

C

- Estimate max integrated twist-3 DiFF from COMPASS A_{UL} and A_{LL}

Future

- Timeline
- LRP

Physics with Jlab 22

- High X phasespace-->seaquarks (e.g. strange)
- Lambda/charm
- Collins Soper Kernel

• See slides from MC for EIC workshop, summer school

SIDIS physics at an EIC: Coverage

- Common theme on EIC impact
 - Extended kinematic coverage and precision, along with polarization and possible beam charge degrees of freedom allow multi-pronged approach → needed to extract multidimensional objects
 - -TMD factorization is valid

Coverage to low *x*: access sea and gluon distributions

Order of magnitude in luminosity depending on \sqrt{s} (beware of projections with fixed $\int L$)

Wide Coverage

Longitudinal double spin asymmetries

$$\bullet\; A_{LL} = \frac{\sigma^{\uparrow\uparrow} - \sigma^{\uparrow\Downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\uparrow\Downarrow}} \varpropto g_1$$

- Projections for Athena (2022 JINST 17 P10019)
- 3% point-to-point, 2% scale uncertainties (from Hera experience)
- *z* > 0.2
- $15.5 f b^{-1}$ at 18x275, other datasets scaled accordingly

Depolarization Factors

		Polarization	Depolarization
Twist 2	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiFF G_1^{\perp}	LU	C/A
		UL	1
<u>Twist 3</u>	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A
Statistical uncertainty scaling factor for 5x41

Slide from C. Dilks

Depolarization Factors

		Polarization	Depolarization
<u>Twist 2</u>	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiFF G_1^{\perp}	LU	C/A
		UL	1
Twist 3	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A

Suppressed at EIC

Unpolarized TMDs

х

 Top: Explicit z dependence of select pion multiplicities in 3 x-Q² bins, including the double-Gaussian fits

Projection of transverse TSSAs

Athena projections for the measurement of Sivers asymmetries

$$0.2 < z < 0.7, Q^2 > 1.0, y > 0.05, \frac{qT}{Q} < 1.0$$

Example: transversity extraction from Jlab and the EIC

But careful with parametrization bias...

Phys.Lett.B 816 (2021) 136255

*He*³ Double Tagging at the EIC allows clean neutron measurement

- Neutron is to 87% polarized
- Double tagged events thus provide access to polarized neutron beam

 Reconstruction of initial neutron momentum from tagged protons allows reduction of uncertainties from nuclear corrections

- What has been discussed before
- Landscape of experiments, what can be done where... (case for Jlab, kinematics, twist3)
- See EIC, AMBER talks
- (pick up 'CT' thing from Jianwei: CT needs lumi...
- Introduce HW
- New developments

 Radcor: (how is that for di-hadrons)
- JLab22 (see cynthias talk)
- Compass deuterium
- Long range plan...

1. Introduction/theoretical background

Figure 25: Impact on the error bands of the TMD in k_{\perp} space (left) and its Fourier-conjugate b_{\perp} (right)

RECOMMENDATION 2

As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques. the substantial and sustained investments of the United \$ RECOMMENDATION 3 the native recommend the expeditious completion of the

RECOMMENDATION 4

uction.

We recommend capitalizing on the unique ways in which nuclear physics can advance discovery science and applications for society by investing in additional projects and new strategic opportunities.

High x at Jlab 22

Figure 27: Transverse momentum dependence of sea and valence quarks [151] (left) and extension of the transverse momentum coverage with JLab22 (open circles) for a given bin in x and z (0.25 < x < 0.3, 0.35 < z < 0.45) at $Q^2 > 3$ GeV².

Detector Requirements: Complementarity

GlueX/Hall D Detector			
Hall D	Hall B	Hall C	Hall A
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations
polarized photons	hermeticity	precision	
Ε _γ ~8.5-9 GeV	11 GeV beamline		
10 ⁸ photons/s	target flexibility		
good momentum/angle resolution		excellent momentum resolution	
high multiplicity reconstruction		luminosity up to 10 ³⁸	
particle ID			

Detector Requirements: Complementarity

GlueX/Hall D Detector			
Hall D	Hall B	Hall C	Hall A
excellent hermeticity	luminosity 10 ³⁵	energy reach	custom installations
polarized photons	hermeticity	precision	
Ε _γ ~8.5-9 GeV		11 GeV beamline	SOLD
10 ⁸ photons/s		target flexibility	GEM
good momentum/angle resolution		excellent momen	Calorimeter Cherenkov (Light) Calorimeter Cherenkov (Heavy)
high multiplicity reconstruction		luminosity up to 10 ³⁸	
particle ID			

Detector Requirements: Complementarity

$\frac{1}{10^{\circ}}$	x			
Hall D Hall C Hall .	7			
excellent luminosity energy reach custo	m			
hermeticity 10 ³⁵ installat	ions			
polarized photons hermeticity precision				
E _γ ~8.5-9 GeV 11 GeV beamline				
10 ⁸ photons/s target flexibility				
good momentum/angle resolution excellent momentum resolution	excellent momentum resolution			
high multiplicity reconstruction Iuminosity up to 10 ³⁸	luminosity up to 10 ³⁸			
particle ID				

Jefferson Lab

Tentative Timelines relevant for TMD program shown here

CLAS12 in Hall B

- 2018-2020: unpolarized proton/deuterium target – long. polarized beam
 →Results shown here correspond to 15% of p-Data (120/90 beam days)
- FY22 polarized long target?
- Polarized He3 (long/trans)
- Polarized transverse HD

<u>Hall A</u>

- 2023 Transverse single spin asymmetries on He3 (64 beam days)
- 2028 SoLID with He3/proton target (long/transverse)

SBS+BB Projected Results: Collins and Sivers SSAs

Projected A_{UT}^{Sivers} vs. x (11 GeV data only)

Projected A_{UT}^{Collins} vs. x (11 GeV data only)

• E12-09-018 will achieve statistical FOM for the neutron ~100X better than HERMES proton data and ~1000X better than Hall A E06-010 neutron data. *Near-future more precise COMPASS deuteron data will sharpen expected impacts, urgency of E12-09-018*

• SBS installation starts 2020. E12-09-018 could run as early as 2022; 2023 more likely.

SoLID@12-GeV JLab: QCD at the intensity frontier

SoLID provides *unique* capability combining high luminosity (10^{37-39} /cm²/s) (>100 of CLAS12; >1000 times of EIC) and large acceptance with full ϕ coverage to maximize the science return of the 12-GeV CEBAF upgrade

SoLID with unique capability for rich physics programs

✓ Pushing the phase space in the search of new physics and of hadronic physics
 ✓ 3D momentum imaging of a relativistic strongly interacting confined system (<u>nucleon spin</u>)
 ✓ Superior sensitivity to the differential electro- and photo- production cross section of J/ψ near threshold (<u>proton mass</u>)

SoLID physics complementary and synergistic with the EIC science (proton spin and mass, two important EIC science questions) – high-luminosity SoLID unique for valence quark tomography (separation of structure from collision) and precision J/ψ production near the threshold

Nucleon momentum tomography and confined motion

Polarized ³He (``neutron") @ SoLID

SoLID impact on tensor charge

- Sivers: an example of TMDs
- Confined quark motion inside nucleon
- Quantum correlations between nucleon spin and quark motion
 Q² = 2.4 GeV²

Tensor charge: a fundamental QCD quantity to test lattice QCD Probe new physics combined with EDMs

1	5		
	u quark	d quark	
0.5		0.5 -	

Notional CEBAF & upgrade schedule (FY24 - FY42)

- Accelerator and engineering team have worked up an early schedule and cost estimate
 - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
 - For completeness, Moller and SoLID (part of 12 GeV program) are shown; positron source development also shown

