The Proton Radius Puzzle

Michael Kohl <kohlm@jlab.org> *

Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606

* Supported by NSF PHY-2113436, DOE DE-SC0013941, and JSA

Outline

- Recent reviews
- The Proton Charge Radius
 Definition
- The Puzzle
 - Spectroscopy
 - Scattering
- Theory
 - Quark models
 - Effective theories
 - Lattice QCD
- Present and future experiments
- Conclusion
 - There has been a trend, however we are not done yet

The New York Times

Recent reviews

- H. Gao, M. Vanderhaeghen, *The proton charge radius,* Rev. Mod. Phys. 94, 015002 (2022)
- J.-P. Karr, D. Marchand, E. Voutier, *The proton size,* Nature Reviews Physics 2, 601–614 (2020)
- C. Peset, A. Pineda, and O. Tomalak, *The proton radius (puzzle?) and its relatives,* Prog. Part. Nucl. Phys. 121, 103901 (2021)

Definition

G. Miller, *Defining the Proton Radius: a Unified Treatment* Phys. Rev. C 99, 035202 (2019)

Proton = a rather light, relativistic, composite object Moment of rest charge distribution not probed by spectroscopy or scattering

Consistent, covariant treatment:
$$\langle r_E^2 \rangle = -6 \frac{dG_E^p(Q^2)}{dQ^2} \Big|_{Q^2 \to 0}$$

Transverse charge density may be considered (relativistically correct)

Lepton scattering and charge radius

Lepton scattering from a nucleon:

Vertex currents:

$$J_N^{\mu} = \overline{\psi}_N \left[F_1(Q^2) \gamma^{\mu} + F_2(Q^2) \frac{i\sigma^{\mu\nu} q_{\nu}}{2M_N} \right] \psi_N$$

 $J^{\mu}_{e} = -e\overline{u}_{e}\gamma^{\mu}u_{e}$

 F_1 , F_2 are the Dirac and Pauli form factors

Sachs form factors:

$$G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)$$

$$G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Fourier transform (in the Breit frame) gives spatial charge and magnetization distributions

Derivative in $Q^2 \rightarrow 0$ limit:

$$\begin{split} \left\langle r_E^2 \right\rangle &= -6 \frac{dG_E^p(Q^2)}{dQ^2} \Big|_{Q^2 \to 0} \\ \left\langle r_M^2 \right\rangle &= -6 \frac{dG_M^p(Q^2)/\mu_p}{dQ^2} \Big|_{Q^2 \to 0} \end{split}$$

Expect identical behavior for any charged lepton – e[±], µ[±]

Atomic physics

Muonic hydrogen

Muonic hydrogen:

muon μ^- + proton p

muon mass $m_{\mu} \approx 200 \times m_e$ Bohr radius $r_{\mu} \approx 1/200 \times r_e$

 μ inside the proton: $200^3 \approx 10^7$

muon much is more sensitive to $r_{\rm p}$ Slide by R. Pohl

Muonic hydrogen

FIG. 20. Muonic hydrogen energy levels relevant to the proton charge radius measurement. From Jingyi Zhou.

H. Gao and M. Vanderhaeghen: The proton charge radius Rev. Mod. Phys., Vol. 94, No. 1, January–March 2022

015002-26

The proton radius puzzle in 2010/2013

Proton radius puzzle has drawn attention

The New York Times

The proton radius puzzle in 2016

11

There is also a deuteron radius puzzle

- Muonic deuterium agrees with muonic hydrogen w/ istope shift: R. Pohl et al., (CREMA) Science 353, 669 (2016)
- Electron scattering not (yet) conclusive
- Muonic ⁴He agrees with electronic helium:
 - J. Krauth et al., Nature 589, 527 (2021)

The community got engaged

- Workshops and conferences 2012, 2016 ECT* 2014, 2018 Mainz 2019 Losinj 2022, 2023 PREN (Paris, Mainz)
- Special sessions of many other major conferences
- Re-analyses
- Theoretical efforts
- New experiments Spectroscopy Scattering

Possible resolutions to the puzzle

- The µp (spectroscopy) result is wrong Discussion about theory and proton structure for extracting the proton radius from muonic Lamb shift measurement
- The ep (spectroscopy) results are wrong Accuracy of individual Lamb shift measurements? Rydberg constant could be off by ~5 sigma
- The ep (scattering) results are wrong
 Fit procedures not good enough
 Q² not low enough, structures in the form factors
- Proton structure issues in theory

Off-shell proton in two-photon exchange leading to enhanced effects differing between μ and e Hadronic effects different for μp and ep: e.g. proton polarizability (*effect* $\propto m_i^4$)

Physics beyond Standard Model differentiating µ and e Lepton universality violation, light massive gauge boson(s) Constraints on new physics from meson decays and spectroscopy

New spectroscopy results: 2S-4P (Garching)

New spectroscopy results: 1S-3S (Paris)

Hélène Fleurbaey et al., PRL 120, 183001 (2018)

G. Miller @ INT: Is there still a proton radius puzzle? Is electron-hydrogen spectroscopy accurate enough?

New spectroscopy results: 2S-2P (York)

→ Small radius! Independent of Rydberg

N. Bezginov et al., Science 365, 1007 (2019) – published Sep 5, 2019

New electron scattering: PRad

"A small proton charge radius from an electron-proton scattering experiment"

Weizhi Xiong et al., Nature 575, 147 (2019)

CODATA2018 new recommended values

Return to List Go to New Search

CODATA2018 new recommended values

Puzzle solved?

Cross sections and form factors of PRad are different – why?

Plot: courtesy by J. Bernauer

- Accuracy of radiative corrections?
- What did previous experiments do wrong?
- Which result is to be preferred, and why?
- Need independent checks and validations
 (→ ISR, ULQ2, MUSE, AMBER, PRad-II, MAGIX, …)

Initial state radiation (ISR) at MAMI

- New MAMI experiment to extract G_E^p at lowest Q² ~ 10⁻⁴ (GeV/c)²
- In the data ISR can not be distinguished from FSR, Q² (Recon) > Q² (ISR)
- Combining data and simulation, ISR and form factor can be extracted
- Method tested at higher Q²
- Pilot pub. 2017, prel. result May 2019, M. Mihovilovic, EPJA 57, 107 (2021)
- Improvements underway (jet target), Y. Wang et al., PRC 106, 044610 (2022)

Initial state radiation (ISR) at MAMI

→ Large radius!

M. Mihovilovic et al., EPJA 57, 107 (2021)

New spectroscopy results: 1S-3S (Garching)

→ Intermediate radius!

New spectroscopy results: 2S-8D (Colorado)

→ Intermediate radius!

The proton radius puzzle in 2023

Red	= μp spectroscopy
Blue	= ep scattering
Light blue	= re-fitting of e scattering
Green	= ep spectroscopy
Black	= CODATA

Plot: courtesy by J. Bernauer

Theoretical efforts

- Advanced models, e.g. RCQM, light-front, …
 - rather accurate, increasingly sophisticated
 - inspired by effective degrees of freedom
 - model-dependent, as the name says
 - assumptions often ad hoc and not dynamically generated
- Effective theories and phenomenology
 - Phenomenological parameterizations
 - Advanced fits (e.g. z-expansion) with physics constraints
 - **Dispersion Theory**
 - Chiral Effective Field Theory, HBCPT, ...
 - DSE, quark orbital momentum, di-quark correlations
 - Increasingly dynamic
- QCD = "Exact" theory of Strong Interaction, non-perturbative – Lattice QCD
 - Uses first principles, phenomena dynamically generated

Recent Lattice QCD results

Isovector observables: no disconnected diagrams Radii typically come out too small (pion mass, lattice box size) Figure: from H. Gao, M. Vanderhaeghen, Rev. Mod. Phys. 94, 015002 (2022)

New milestone: Precision Lattice QCD

 $\sqrt{\langle r_E^2 \rangle^p} = 0.820(14) \text{ fm}, \sqrt{\langle r_M^2 \rangle^p} = 0.8111(89) \text{ fm}, \text{ and } \mu_M^p = 2.739(66)$

Consistent with small radius

D. Djukanovic, G. von Hippel, H.B. Meyer, K. Ottnad, M. Salg, and H. Wittig, arXiv:2309.07491v1

Ongoing and future scattering experiments

- PRad-II @ JLab
- ULQ2 @ ELPH
- MAGIX @ MESA
- MUSE @ PSI
- AMBER @ CERN

30

R. Gilman's draft scribbling for the MUSE logo contest on the back of an envelope

PRad-II at JLab

- Improvements for PRad-II:
 - ✓ Better upstream vacuum and halo rejection
 - Add second GEM plane
 - ✓ Upgrade HyCal: PbW0₄, FADC readout
 - Added scintillators: separate Moller from ep in elect. scattering angular range of 0.5° - 0.8°
 - Factor 4 reduction of statistical errors

H. Gao: ERICE School on Nuclear Physics, September 18th, 2023

PRad-II at JLab

H. Gao: ERICE School on Nuclear Physics, September 18th, 2023

ULQ2 @ ELPH

ULQ2 twin-spectrometer setup

ULQ2 info by T. Suda and Y. Honda

ULQ2 @ ELPH

- ULQ2: $E_0 \sim 10-60 \text{ MeV}$; $\theta_e \sim 30^{\circ}-150^{\circ}$; $Q^2 \sim 3x10^{-4} 0.008 \text{ (GeV/c)}^2$
- Twin magnetic spectrometers (2019+2021)
- Commissioning since 2019, production running 2023-24

ULQ2 info by T. Suda and Y. Honda

ULQ2 @ ELPH

- Production running just started with CH₂ target
- Normalization to ¹²C elastic scattering
- Expected errors 10⁻³ on σ_{ep} , 1% on r_{p}

ULQ2 info by T. Suda and Y. Honda

MAGIX at **MESA**

MAGIX at **MESA**

MAGIX info: S. Schlimme

MAGIX Collaboration @ MESA

Motivation for µp scattering

Idea for MUSE developed by R. Gilman, G. Miller, and M.K. at PINAN2011, Morocco

MUSE at PSI

- Beam particle tracking
- Liquid hydrogen target
- Scattered lepton detected

Measure $e^{\pm}p$ and $\mu^{\pm}p$ elastic scattering p = 115, 153, 210 MeV/c $\theta = 20^{\circ}$ to 100° $Q^2 = 0.002 - 0.07 (GeV/c)^2$ $\epsilon = 0.256 - 0.94$

Challenges

- Secondary beam with π background – PID in trigger
- Non-magnetic spectrometer
- Background from Møller scattering and muon decay in flight

<mark>e/π/</mark>μ

2023-2025: MUSE production data taking

2016-2019: Assembly complete; Initial commissioning 2020-2022: Commissioning cont'd under initial Covid-19 constraints 2023: Started production data for 12 beam months over ~2 years

MUSE coverage and expected errors

- Anticipated form factor uncertainty
- E. Cline, *et al.*,

SciPost Phys. Proc. 5, 023 (2021)

MUSE coverage and expected errors

- Stat. errors plotted, systematics <0.5%</p>
- Based on assumption of 1 year of running
- ~20% of scattering data taken in 2023
- Radius to 0.007 fm, R_{μ} – R_{e} to 0.005 fm

AMBER at CERN

AMBER info: J. Friedrich

Apparatus for Meson and Baryon Experimental Research

TPC, 20 bar ~50 keV precision for recoiling proton

AMBER at CERN

Figure: J. C. Bernauer AMBER info: J. Friedrich

2018: First measurement H_2 TPC in high energy μ beam

- **2021:** First test run with IKAR TPC and existing tracking detectors from COMPASS
- 2023: Test run with new free-running DAQ
- 2024: Test run with IKAR TPC and UTS prototypes
- **2025:** Physics run with new TPC and final UTS

Ongoing and future scattering experiments

Experiment	Probe	Q ² / (GeV/c) ²	Status
PRad II	e⁻	0.00004 - 0.06	Approved by JLab PAC
ULQ2	e⁻	0.0003 - 0.008	Commissioning 2019-22, running 2023-24
MAGIX	e	0.00001 - 0.03	Beam 2025, data on proton 2027
MUSE	e⁺,e⁻, μ⁺, μ⁻	0.002 - 0.07	Physics running 2023-25
AMBER	µ⁺, µ⁻	0.001 - 0.04	Test runs ongoing, physics run 2025

Thanks to: S. Schlimme, J. Friedrich, H. Gao, T. Suda, Y. Honda, and E. Downie

45

- Proton Radius Puzzle remains unresolved
- $\hfill \ensuremath{\,\bullet}$ Diverse array of scattering experiments, e and μ
- Each with different beam / systematics; expected precision 0.004-0.010 fm
- Many further spectroscopy efforts underway

Summary

- PRP not resolved, 13 years later
- 2016-2019 trend favored smaller radius, resulting in CODA2018, supported by theory (most recent Lattice QCD)
- 2020-2022 trend not stringently reconfirming a small radius, tension
- Unclear why larger radii should be considered wrong
- Phase space for BSM physics has been narrowed by work of many
- TPE exists but is too small to explain PRP
- PRad-Mainz discrepancy points to potential issues with radiative corrections
- Await results from new experiments within near future:

 e-scattering w/ (ULQ2, MAGIX) and w/o magnetic field (PRad, MUSE)
 µ-scattering: smaller rad. corr., cleaner than e? (MUSE, AMBER)
- MUSE allows for comparison of ep and µp, as well as TPE for both
- Conclusion
 - There has been a trend, however we are not done yet

Backup