Gravitational form factors of the delta resonance in chiral EFT

Bao-Dong Sun (RUB)

Menu 2023, 16-20th Oct. 2023

Outline:

1. Introduce GFFs and D-term
2. Calculations on spin-3/2 GFFs
3. ChPT results for GFFs \& Local spatial densities
4. Summary

Proton electromagnetic Form Factors:

$\left\langle p^{\prime}, s^{\prime}\right| \hat{j}^{\mu}(x)|p, s\rangle=\bar{u}^{\prime}\left[\gamma^{\mu} F_{1}(t)+\frac{1}{2 m} i \sigma^{\mu \nu} \Delta_{\nu} F_{2}(t)\right] u e^{i\left(p^{\prime}-p\right) x}$
Dirac FF
Pauli FF
Sachs FFs $\quad G_{E}(t)=F_{1}(t)+\frac{t}{4 M^{2}} F_{2}(t) \quad \begin{aligned} & t \rightarrow 0 \\ & \text { charge }\end{aligned}$

$$
G_{M}(t)=F_{1}(t)+F_{2}(t) \quad \longrightarrow \begin{gathered}
\text { magnetic } \\
\text { moment }
\end{gathered}
$$

$$
\begin{aligned}
2 P & =\left(p^{\prime}+p\right)=(2 E, \overrightarrow{0}) \\
\Delta & =\left(p^{\prime}-p\right)=(0, \vec{\Delta}) \\
t & =\Delta^{2}
\end{aligned}
$$

Charge density in Breit frame:

$$
\rho(\vec{r})=\int \frac{d^{3} \Delta}{(2 \pi)^{3}} G_{E}\left(-\vec{\Delta}^{2}\right) e^{-i \vec{\Delta} \cdot \vec{r}}
$$

Charge radius:

$$
\left\langle r^{2}\right\rangle=\frac{\int d^{3} \vec{r} r^{2} \rho(\vec{r})}{\int d^{3} \vec{r} \rho(\vec{r})}
$$

Proton EMT FFs (ie: gravitational form factors GFFs):

$$
\begin{aligned}
& \left.\begin{array}{rlll}
\left\langle p^{\prime}, s^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p, s\rangle=\bar{u}^{\prime}\left[A^{a}(t) \frac{P_{\mu} P_{\nu}}{m}\right. & & \rightarrow 0 & \\
(a=q, g) & & & \text { mass } \\
& +J^{a}(t) \frac{i P_{\{\mu} \sigma_{\nu\} \rho} \Delta^{\rho}}{} & \longrightarrow & \text { spin }
\end{array}\right\} \begin{array}{ll}
\text { external } & 3+1
\end{array} \\
& +D^{a}(t) \frac{\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}}{4 m} \longrightarrow \text { D-term } \begin{array}{l}
\text { "internal" } \\
\text { property }
\end{array} \\
& \left.+m \bar{c}^{a}(t) g_{\mu \nu}\right] u e^{i\left(p^{\prime}-p\right) x} \quad \text { "Druck"= pressure }
\end{aligned}
$$

\otimes Free fermion: $D_{\text {fermion }}=0 \rightarrow \neq 0$: interaction! Hudson \& Schweitzer, 2018

Interpretation: Static EMT

- Definition in Breit frame (Polyakov, 2003)

$$
\begin{aligned}
T^{\mu \nu}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right) & =\sum_{a} T_{a}^{\mu \nu}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right) \\
& =\sum_{a} \int \frac{d^{3} \Delta}{2 E(2 \pi)^{3}} e^{-i \boldsymbol{\Delta} \cdot \boldsymbol{r}}\left\langle p^{\prime}, \sigma^{\prime}\right| \hat{T}_{a}^{\mu \nu}(0)|p, \sigma\rangle
\end{aligned}
$$

- Energy(mass) densities

$$
T^{00}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right)=\varepsilon_{0}(r) \delta_{\sigma^{\prime} \sigma}+\varepsilon_{2}(r) \hat{Q}_{\sigma^{\prime} \sigma}^{i j} Y_{2}^{i j}\left(\Omega_{r}\right)
$$

- Spin density

$$
\begin{aligned}
J^{i}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right) & =\sum_{a} J_{a}^{i}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right)=\epsilon^{i j k} r^{j} \sum_{a} T_{a}^{0 k}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right) \\
\rho_{J}(r) & =-r \frac{d}{d r} \int \frac{d^{3} \Delta}{(2 \pi)^{3}} e^{-\boldsymbol{\Delta} \cdot \boldsymbol{r}} \mathcal{J}_{1}(t)
\end{aligned} \quad \text { (averaged) } \quad \text { (Kim, BDS, 2020) }
$$

Epelbaum, Gegelia, Lange, Meißner, Polyakov, PRL 2022 Panteleeva, Epelbaum, Gegelia, Meißner, 2023
Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2023

- Radii: (energy, spin, mechanical)

$$
\begin{aligned}
& \left\langle r_{E}^{2}\right\rangle=\frac{1}{m} \int d^{3} r r^{2} \varepsilon_{0}(r) \\
& \left\langle r_{J}^{2}\right\rangle=\frac{\int d^{3} r r^{2} \rho_{J}(r)}{\int d^{3} r \rho_{J}(r)} \\
& \left\langle r_{n}^{2}\right\rangle_{\text {mech }}=\frac{\int d^{3} r r^{2}\left[p_{n}(r)+\frac{2}{3} s_{n}(r)\right]}{\int d^{3} r\left[p_{n}(r)+\frac{2}{3} s_{n}(r)\right]}
\end{aligned}
$$

- Local stability condition \& D-terms:
(Polyakov \& Schweitzer, 2018)

$$
\begin{aligned}
& \left.\frac{d F_{r}}{d S_{r}}\right|_{\text {unp }}=p_{0}(r)+\frac{2}{3} s_{0}(r) \geq 0 \\
& \mathcal{D}_{0}=m \int d^{3} r r^{2} p_{0}(r)=-\frac{4}{15} m \int d^{3} r r^{2} s_{0}(r) \leq 0
\end{aligned}
$$

- Pressure and shear forces: ("mechanical properties")
(Polyakov, BDS, 2019, Panteleeva, Polyakov, 2020)

$$
\begin{aligned}
T^{i j}\left(\boldsymbol{r}, \sigma^{\prime}, \sigma\right) & =p_{0}(r) \delta^{i j} \delta_{\sigma^{\prime} \sigma}+s_{0}(r) Y_{2}^{i j} \delta_{\sigma^{\prime} \sigma}+\left(p_{2}(r)+\frac{1}{3} p_{3}(r)-\frac{1}{9} s_{3}(r)\right) \hat{Q}_{\sigma^{\prime} \sigma}^{i j} \\
& +\left(s_{2}(r)-\frac{1}{2} p_{3}(r)+\frac{1}{6} s_{3}(r)\right) 2\left[\hat{Q}_{\sigma^{\prime} \sigma}^{i p} Y_{2}^{p j}+\hat{Q}_{\sigma^{\prime} \sigma}^{j p} Y_{2}^{p i}-\delta^{i j} \hat{Q}_{\sigma^{\prime} \sigma}^{p q} Y_{2}^{p q}\right] \\
& +\hat{Q}_{\sigma^{\prime} \sigma}^{p q} Y_{2}^{p q}\left[\left(\frac{2}{3} p_{3}(r)+\frac{1}{9} s_{3}(r)\right) \delta^{i j}+\left(\frac{1}{2} p_{3}(r)+\frac{5}{6} s_{3}(r)\right) Y_{2}^{i j}\right]
\end{aligned}
$$

spin-0 GFFs and its D-term

Definition: $\left\langle p^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p\rangle=\left[2 P_{\mu} P_{\nu} A^{a}(t)+\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right) D^{a}(t)+2 m^{2} \bar{c}^{a}(t) g_{\mu \nu}\right] e^{i\left(p^{\prime}-p\right) x} \quad 2+1$
Free Klein-Gordon field (no interaction):

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)\left(\partial^{\mu} \Phi\right)-V_{0}(\Phi), \quad V_{0}(\Phi)=\frac{1}{2} m^{2} \Phi^{2} \\
& T_{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}} \Rightarrow D \equiv \lim _{t \rightarrow 0} D(t)=-1
\end{aligned}
$$

Callan, Coleman, Jackiw 1970

spin-0 GFFs and its D-term

Definition: $\left\langle p^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p\rangle=\left[2 P_{\mu} P_{\nu} A^{a}(t)+\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right) D^{a}(t)+2 m^{2} \bar{c}^{a}(t) g_{\mu \nu}\right] e^{i\left(p^{\prime}-p\right) x} \quad 2+1$
Free Klein-Gordon field (no interaction):

Callan, Coleman, Jackiw 1970

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)\left(\partial^{\mu} \Phi\right)-V_{0}(\Phi), \quad V_{0}(\Phi)=\frac{1}{2} m^{2} \Phi^{2} \\
& T_{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}} \Rightarrow D \equiv \lim _{t \rightarrow 0} D(t)=-1
\end{aligned}
$$

Action in cured spacetime with conformal symmetry requires a non-minimal coupling term:

$$
S_{\text {grav }}=\int \mathrm{d}^{n} x \sqrt{-g}\left(\frac{1}{2} g^{\mu \nu}\left(\partial_{\mu} \Phi\right)\left(\partial_{\nu} \Phi\right)-V(\Phi)-\frac{1}{2} h R \Phi^{2}\right), \quad h=\frac{1}{4}\left(\frac{n-2}{n-1}\right)
$$

Generate one "improvement term" in EMT (not vanish in flat limit)

$$
\begin{aligned}
& \theta_{\text {improve }}^{\mu \nu}=-h\left(\partial^{\mu} \partial^{\nu}-g^{\mu \nu} \square\right) \Phi(x)^{2} \\
& \left(\text { with } \square=g^{\mu \nu} \nabla_{\mu} \nabla_{\nu}\right) \\
& T^{\mu \nu} \Rightarrow T^{\mu \nu}+\theta_{\text {improve }}^{\mu \nu} \Rightarrow D=-\frac{1}{3}
\end{aligned}
$$

spin-0 GFFs and its D-term

Definition: $\left\langle p^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p\rangle=\left[2 P_{\mu} P_{\nu} A^{a}(t)+\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right) D^{a}(t)+2 m^{2} \bar{c}^{a}(t) g_{\mu \nu}\right] e^{i\left(p^{\prime}-p\right) x} \quad 2+1$

Free Klein-Gordon field (no interaction):

Callan, Coleman, Jackiw 1970

$$
\begin{aligned}
& \mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)\left(\partial^{\mu} \Phi\right)-V_{0}(\Phi), \quad V_{0}(\Phi)=\frac{1}{2} m^{2} \Phi^{2} \\
& T_{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta S}{\delta g^{\mu \nu}} \Rightarrow D \equiv \lim _{t \rightarrow 0} D(t)=-1
\end{aligned}
$$

Action in cured spacetime with conformal symmetry requires a non-minimal coupling term:

$$
S_{\text {grav }}=\int \mathrm{d}^{n} x \sqrt{-g}\left(\frac{1}{2} g^{\mu \nu}\left(\partial_{\mu} \Phi\right)\left(\partial_{\nu} \Phi\right)-V(\Phi)-\frac{1}{2} h R \Phi^{2}\right), \quad h=\frac{1}{4}\left(\frac{n-2}{n-1}\right)
$$

Generate one "improvement term" in EMT (not vanish in flat limit)

$$
\begin{aligned}
& \theta_{\text {improve }}^{\mu \nu}=-h\left(\partial^{\mu} \partial^{\nu}-g^{\mu \nu} \square\right) \Phi(x)^{2} \\
& \text { (with } \left.\square=g^{\mu \nu} \nabla_{\mu} \nabla_{\nu}\right) \\
& T^{\mu \nu} \Rightarrow T^{\mu \nu}+\theta_{\text {improve }}^{\mu \nu} \Rightarrow D=-\frac{1}{3}
\end{aligned}
$$

- Even infinitesimally small interactions can drastically impact D-term
- Cannot arbitrarily add "total derivatives" to the EMT
- h removes UV divergences up to three loops in dimensional regularization

spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)

$$
\begin{aligned}
\left\langle p^{\prime}, \sigma^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p, \sigma\rangle & =\left[2 P_{\mu} P_{\nu}\left(-\epsilon^{\prime *} \cdot \epsilon A_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} A_{1}^{a}(t)\right)\right. \\
& +2\left[P_{\mu}\left(\epsilon_{\nu}^{\prime *} \epsilon \cdot P+\epsilon_{\nu} \epsilon^{\prime *} \cdot P\right)+P_{\nu}\left(\epsilon_{\mu}^{\prime *} \epsilon \cdot P+\epsilon_{\mu} \epsilon^{\prime *} \cdot P\right)\right] J^{a}(t) \\
& +\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right)\left(\epsilon^{\prime *} \cdot \epsilon D_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} D_{1}^{a}(t)\right) \\
& +\left[\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}\right) \Delta^{2}-\left(\epsilon_{\mu}^{\prime *} \Delta_{\nu}+\epsilon_{\nu}^{\prime *} \Delta_{\mu}\right) \epsilon \cdot P\right. \\
& \left.+\left(\epsilon_{\mu} \Delta_{\nu}+\epsilon_{\nu} \Delta_{\mu}\right) \epsilon^{\prime *} \cdot P-4 g_{\mu \nu} \epsilon^{\prime *} \cdot P \epsilon \cdot P\right] E^{a}(t) \\
6 \text { conserving } & +\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}-\frac{\epsilon^{\prime *} \cdot \epsilon}{2} g_{\mu \nu}\right) m^{2} \bar{f}^{a}(t) \\
3 \text { non-conserving } \quad & \left.+g_{\mu \nu}\left(\epsilon^{\prime *} \cdot \epsilon m^{2} \bar{c}_{0}^{a}(t)+\epsilon^{\prime *} \cdot P \epsilon \cdot P \bar{c}_{1}^{a}(t)\right)\right] e^{i\left(p^{\prime}-p\right) x}
\end{aligned}
$$

spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)

$$
\begin{aligned}
\left\langle p^{\prime}, \sigma^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p, \sigma\rangle & =\left[2 P_{\mu} P_{\nu}\left(-\epsilon^{\prime *} \cdot \epsilon A_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} A_{1}^{a}(t)\right)\right. \\
& +2\left[P_{\mu}\left(\epsilon_{\nu}^{\prime *} \epsilon \cdot P+\epsilon_{\nu} \epsilon^{\prime *} \cdot P\right)+P_{\nu}\left(\epsilon_{\mu}^{\prime *} \epsilon \cdot P+\epsilon_{\mu} \epsilon^{\prime *} \cdot P\right)\right] J^{a}(t) \\
& +\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right)\left(\epsilon^{\prime *} \cdot \epsilon D_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} D_{1}^{a}(t)\right) \\
& +\left[\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}\right) \Delta^{2}-\left(\epsilon_{\mu}^{\prime *} \Delta_{\nu}+\epsilon_{\nu}^{\prime *} \Delta_{\mu}\right) \epsilon \cdot P\right. \\
& \left.+\left(\epsilon_{\mu} \Delta_{\nu}+\epsilon_{\nu} \Delta_{\mu}\right) \epsilon^{\prime *} \cdot P-4 g_{\mu \nu} \epsilon^{\prime *} \cdot P \epsilon \cdot P\right] E^{a}(t) \\
6 \text { conserving } & +\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}-\frac{\epsilon^{\prime *} \cdot \epsilon}{2} g_{\mu \nu}\right) m^{2} \bar{f}^{a}(t) \\
3 \text { non-conserving } & \left.+g_{\mu \nu}\left(\epsilon^{\prime *} \cdot \epsilon m^{2} \bar{c}_{0}^{a}(t)+\epsilon^{\prime *} \cdot P \epsilon \cdot P \bar{c}_{1}^{a}(t)\right)\right] e^{i\left(p^{\prime}-p\right) x}
\end{aligned}
$$

Spin operators: Polyakov \& Schweitzer, 2018

$$
\begin{aligned}
& \hat{S}_{\sigma^{\prime} \sigma}^{\lambda}=\sqrt{S(S+1)} C_{S \sigma 1 \lambda}^{S \sigma^{\prime}} \\
& \hat{Q}^{i j}=\frac{1}{2}\left[\hat{S}^{i} \hat{S}^{j}+\hat{S}^{j} \hat{S}^{i}-\frac{2}{3} S(S+1) \delta^{i j}\right] \\
& \epsilon^{\mu}(p, \sigma)=\left(\frac{\vec{p} \cdot \hat{\epsilon}_{\sigma}}{m}, \hat{\epsilon}_{\sigma}+\frac{\vec{p} \cdot \hat{\epsilon}_{\sigma}}{m(m+E)} \vec{p}\right) \quad(\text { for } S=1)
\end{aligned}
$$

spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)

$$
\begin{aligned}
\left\langle p^{\prime}, \sigma^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p, \sigma\rangle & =\left[2 P_{\mu} P_{\nu}\left(-\epsilon^{\prime *} \cdot \epsilon A_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} A_{1}^{a}(t)\right)\right. \\
& +2\left[P_{\mu}\left(\epsilon_{\nu}^{\prime *} \epsilon \cdot P+\epsilon_{\nu} \epsilon^{\prime *} \cdot P\right)+P_{\nu}\left(\epsilon_{\mu}^{\prime *} \epsilon \cdot P+\epsilon_{\mu} \epsilon^{\prime *} \cdot P\right)\right] J^{a}(t) \\
& +\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right)\left(\epsilon^{\prime *} \cdot \epsilon D_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} D_{1}^{a}(t)\right) \\
& +\left[\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}\right) \Delta^{2}-\left(\epsilon_{\mu}^{\prime *} \Delta_{\nu}+\epsilon_{\nu}^{\prime *} \Delta_{\mu}\right) \epsilon \cdot P\right. \\
& \left.+\left(\epsilon_{\mu} \Delta_{\nu}+\epsilon_{\nu} \Delta_{\mu}\right) \epsilon^{\prime *} \cdot P-4 g_{\mu \nu} \epsilon^{\prime *} \cdot P \epsilon \cdot P\right] E^{a}(t) \\
6 \text { conserving } & +\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}-\frac{\epsilon^{\prime *} \cdot \epsilon}{2} g_{\mu \nu}\right) m^{2} \bar{f}^{a}(t) \\
3 \text { non-conserving } \quad & \left.+g_{\mu \nu}\left(\epsilon^{\prime * *} \cdot \epsilon m^{2} \bar{c}_{0}^{a}(t)+\epsilon^{* *} \cdot P \epsilon \cdot P \bar{c}_{1}^{a}(t)\right)\right] e^{i\left(p^{\prime}-p\right) x}
\end{aligned}
$$

Spin operators: Polyakov \& Schweitzer, 2018

$$
\begin{aligned}
& \hat{S}_{\sigma^{\prime} \sigma}^{\lambda}=\sqrt{S(S+1)} C_{S \sigma 1 \lambda}^{S \sigma^{\prime}} \\
& \hat{Q}^{i j}=\frac{1}{2}\left[\hat{S}^{i} \hat{S}^{j}+\hat{S}^{j} \hat{S}^{i}-\frac{2}{3} S(S+1) \delta^{i j}\right] \\
& \epsilon^{\mu}(p, \sigma)=\left(\frac{\vec{p} \cdot \hat{\epsilon}_{\sigma}}{m}, \hat{\epsilon}_{\sigma}+\frac{\vec{p} \cdot \hat{\epsilon}_{\sigma}}{m(m+E)} \vec{p}\right) \quad(\text { for } S=1)
\end{aligned}
$$

Multipole expansion: (Polyakov, BDS, 2019)

$$
\begin{aligned}
\left\langle\hat{T}_{a}^{00}(0)\right\rangle & =2 m^{2} \mathcal{E}_{0}^{a}(t) \delta_{\sigma^{\prime} \sigma}+\hat{Q}^{k l} \Delta^{k} \Delta^{l} \mathcal{E}_{2}^{a}(t) \\
\left\langle\hat{T}_{a}^{0 j}(0)\right\rangle & =i \epsilon^{j k l} \hat{S}_{\sigma^{\prime} \sigma}^{k} \Delta^{l} m \mathcal{J}^{a}(t) \\
\left\langle\hat{T}_{a}^{i j}(0)\right\rangle & =\frac{1}{2}\left(\Delta^{i} \Delta^{j}-\delta^{i j} \vec{\Delta}^{2}\right) \mathcal{D}_{0}^{a}(t) \delta_{\sigma^{\prime} \sigma} \\
& +\left(\Delta^{j} \Delta^{k} \hat{Q}^{i k}+\Delta^{i} \Delta^{k} \hat{Q}^{j k}-\vec{\Delta}^{2} \hat{Q}^{i j}-\delta^{i j} \Delta^{k} \Delta^{l} \hat{Q}^{k l}\right) \mathcal{D}_{2}^{a}(t) \\
& +\frac{1}{2 m^{2}}\left(\Delta^{i} \Delta^{j}-\delta^{i j} \vec{\Delta}^{2}\right) \Delta^{k} \Delta^{l} \hat{Q}^{k l} \mathcal{D}_{3}^{a}(t) \\
& + \text { non-conserving terms }
\end{aligned}
$$

spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)

$$
\begin{aligned}
\left\langle p^{\prime}, \sigma^{\prime}\right| \hat{T}_{\mu \nu}^{a}(x)|p, \sigma\rangle & =\left[2 P_{\mu} P_{\nu}\left(-\epsilon^{\prime *} \cdot \epsilon A_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} A_{1}^{a}(t)\right)\right. \\
& +2\left[P_{\mu}\left(\epsilon_{\nu}^{\prime *} \epsilon \cdot P+\epsilon_{\nu} \epsilon^{\prime *} \cdot P\right)+P_{\nu}\left(\epsilon_{\mu}^{\prime *} \epsilon \cdot P+\epsilon_{\mu} \epsilon^{\prime *} \cdot P\right)\right] J^{a}(t) \\
& +\frac{1}{2}\left(\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}\right)\left(\epsilon^{\prime *} \cdot \epsilon D_{0}^{a}(t)+\frac{\epsilon^{\prime *} \cdot P \epsilon \cdot P}{m^{2}} D_{1}^{a}(t)\right) \\
& +\left[\frac{1}{2}\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}\right) \Delta^{2}-\left(\epsilon_{\mu}^{\prime *} \Delta_{\nu}+\epsilon_{\nu}^{\prime *} \Delta_{\mu}\right) \epsilon \cdot P\right. \\
& \left.+\left(\epsilon_{\mu} \Delta_{\nu}+\epsilon_{\nu} \Delta_{\mu}\right) \epsilon^{\prime *} \cdot P-4 g_{\mu \nu} \epsilon^{\prime *} \cdot P \epsilon \cdot P\right] E^{a}(t) \\
6 \text { conserving } & +\left(\epsilon_{\mu} \epsilon_{\nu}^{\prime *}+\epsilon_{\mu}^{\prime *} \epsilon_{\nu}-\frac{\epsilon^{\prime *} \cdot \epsilon}{2} g_{\mu \nu}\right) m^{2} \bar{f}^{a}(t) \\
3 \text { non-conserving } \quad & \left.+g_{\mu \nu}\left(\epsilon^{\prime * *} \cdot \epsilon m^{2} \bar{c}_{0}^{a}(t)+\epsilon^{\prime *} \cdot P \epsilon \cdot P \bar{c}_{1}^{a}(t)\right)\right] e^{i\left(p^{\prime}-p\right) x}
\end{aligned}
$$

Spin operators: Polyakov \& Schweitzer, 2018

$$
\begin{aligned}
& \hat{S}_{\sigma^{\prime} \sigma}^{\lambda}=\sqrt{S(S+1)} C_{S \sigma 1 \lambda}^{S \sigma^{\prime}} \\
& \hat{Q}^{i j}=\frac{1}{2}\left[\hat{S}^{i} \hat{S}^{j}+\hat{S}^{j} \hat{S}^{i}-\frac{2}{3} S(S+1) \delta^{i j}\right] \\
& \epsilon^{\mu}(p, \sigma)=\left(\frac{\vec{p} \cdot \hat{\epsilon}_{\sigma}}{m}, \hat{\epsilon}_{\sigma}+\frac{\vec{p} \cdot \hat{\epsilon}_{\sigma}}{m(m+E)} \vec{p}\right) \quad(\text { for } S=1)
\end{aligned}
$$

Multipole expansion: (Polyakov, BDS, 2019)

$$
\begin{aligned}
\left\langle\hat{T}_{a}^{00}(0)\right\rangle & =2 m^{2} \mathcal{E}_{0}^{a}(t) \delta_{\sigma^{\prime} \sigma}+\hat{Q}^{k l} \Delta^{k} \Delta^{l} \mathcal{E}_{2}^{a}(t), \\
\left\langle\hat{T}_{a}^{0 j}(0)\right\rangle & =i \epsilon^{j k l} \hat{S}_{\sigma^{\prime} \sigma}^{k} \Delta^{l} m \mathcal{J}^{a}(t), \\
\left\langle\hat{T}_{a}^{i j}(0)\right\rangle & =\frac{1}{2}\left(\Delta^{i} \Delta^{j}-\delta^{i j} \vec{\Delta}^{2}\right) \mathcal{D}_{0}^{a}(t) \delta_{\sigma^{\prime} \sigma} \\
& +\left(\Delta^{j} \Delta^{k} \hat{Q}^{i k}+\Delta^{i} \Delta^{k} \hat{Q}^{j k}-\vec{\Delta}^{2} \hat{Q}^{i j}-\delta^{i j} \Delta^{k} \Delta^{l} \hat{Q}^{k l}\right) \mathcal{D}_{2}^{a}(t) \\
& +\frac{1}{2 m^{2}}\left(\Delta^{i} \Delta^{j}-\delta^{i j} \vec{\Delta}^{2}\right) \Delta^{k} \Delta^{l} \hat{Q}^{k l} \mathcal{D}_{3}^{a}(t) \\
& + \text { non-conserving terms }
\end{aligned}
$$

Gravitational multipole form factors

$$
\begin{aligned}
\mathcal{E}_{0}^{a}(t) & =A_{0}^{a}(t)-\frac{t}{m^{2}} \frac{5}{12} A_{0}^{a}(t)+\cdots \\
\mathcal{E}_{2}^{a}(t) & =-A_{0}^{a}(t)+2 J^{a}(t)-E^{a}(t)+\cdots \\
\mathcal{J}^{a}(t) & =J^{a}(t)-\frac{t}{4 m^{2}}\left[J^{a}(t)-E^{a}(t)\right]+\cdots \\
\rightarrow \mathcal{D}_{0}^{a}(t) & =-D_{0}^{a}(t)+\frac{4}{3} E^{a}(t)+\cdots \\
\mathcal{D}_{2}^{a}(t) & =-E^{a}(t) \\
\mathcal{D}_{3}^{a}(t) & =\frac{1}{4}\left[2 D_{0}^{a}(t)-2 E^{a}(t)+D_{1}^{a}(t)\right]+\cdots
\end{aligned}
$$

spin-3/2 GFFs

Definition: (Cosyn et al, 2019)

$$
\begin{aligned}
\left\langle\hat{T}_{a}^{\mu \nu}(0)\right\rangle=-\bar{u}^{\alpha^{\prime}}\left(p^{\prime}\right) & {\left[\frac{P^{\mu} P^{\nu}}{m}\left(g_{\alpha^{\prime} \alpha} F_{1,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{1,1}^{a}(t)\right)\right.} \\
& +\frac{\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right)}{4 m}\left(g_{\alpha^{\prime} \alpha} F_{2,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{2,1}^{a}(t)\right) \\
& +m g^{\mu \nu}\left(g_{\alpha^{\prime} \alpha} F_{3,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{3,1}^{a}(t)\right) \\
& +\frac{i\left(P^{\mu} \sigma^{\nu \rho}+P^{\nu} \sigma^{\mu \rho}\right) \Delta_{\rho}}{m}\left(g_{\alpha^{\prime} \alpha} F_{4,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{4,1}^{a}(t)\right) \\
7 \text { conserving } & -\frac{1}{m}\left(\Delta^{\mu} g_{\alpha^{\prime}}^{\nu} \Delta_{\alpha}+\Delta^{\nu} g_{\alpha^{\prime}}^{\mu} \Delta_{\alpha}+\Delta^{\mu} g_{\alpha}^{\nu} \Delta_{\alpha^{\prime}}+\Delta^{\nu} g_{\alpha}^{\mu} \Delta_{\alpha^{\prime}}\right. \\
3 \text { non-conserving } & -2 g^{\mu \nu} \Delta_{\alpha^{\prime}} \Delta_{\alpha}-g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{g} \Delta^{2}-g_{\left.\alpha^{\prime} g^{\prime} g_{\alpha}^{\mu} \Delta^{2}\right) F_{5,0}^{a}(t)} \\
& \left.+m\left(g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu}+g_{\alpha^{\prime}}^{\prime} g_{\alpha}^{\mu}\right) F_{6,0}^{a}(t)\right] u^{\alpha}(p, \sigma)
\end{aligned}
$$

spin-3/2 GFFs

Rarita-Schwinger spinor:
$u^{\mu}=\sum C_{1 \lambda \frac{1}{2} s}^{\frac{3}{2} \sigma} u_{s}(p) \epsilon_{\lambda}^{\mu}$

Definition: (Cosyn et al, 2019)

$$
\left\langle\hat{T}_{a}^{\mu \nu}(0)\right\rangle=-\bar{u}^{\alpha^{\prime}}\left(p^{\prime}\right)\left[\frac{P^{\mu} P^{\nu}}{m}\left(g_{\alpha^{\prime} \alpha} F_{1,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{1,1}^{a}(t)\right)\right.
$$

$$
+\frac{\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right)}{4 m}\left(g_{\alpha^{\prime} \alpha} F_{2,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{2,1}^{a}(t)\right)
$$

$$
+m g^{\mu \nu}\left(g_{\alpha^{\prime} \alpha} F_{3,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{3,1}^{a}(t)\right)
$$

$$
+\frac{i}{2} \frac{\left(P^{\mu} \sigma^{\nu \rho}+P^{\nu} \sigma^{\mu \rho}\right) \Delta_{\rho}}{m}\left(\underset{\substack{\text { (spin) }}}{\left.\left.g_{\alpha^{\prime} \alpha} F_{4,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{4,1}^{a}(t)\right), ~\right)}\right.
$$

$$
-\frac{1}{m}\left(\Delta^{\mu} g_{\alpha^{\prime}}^{\nu} \Delta_{\alpha}+\Delta^{\nu} g_{\alpha^{\prime}}^{\mu} \Delta_{\alpha}+\Delta^{\mu} g_{\alpha}^{\nu} \Delta_{\alpha^{\prime}}+\Delta^{\nu} g_{\alpha}^{\mu} \Delta_{\alpha^{\prime}}\right.
$$

$$
\left.-2 g^{\mu \nu} \Delta_{\alpha^{\prime}} \Delta_{\alpha}-g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu} \Delta^{2}-g_{\alpha^{\prime}}^{\nu} g_{\alpha}^{\mu} \Delta^{2}\right) F_{5,0}^{a}(t)
$$

$$
\left.+m\left(g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu}+g_{\alpha^{\prime}}^{\nu} g_{\alpha}^{\mu}\right) F_{6,0}^{a}(t)\right] u^{\alpha}(p, \sigma)
$$

Octupole operator:

$$
\begin{aligned}
\hat{O}^{i j k}= & \frac{1}{6}\left[\hat{S}^{i} \hat{S}^{j} \hat{S}^{k}+\hat{S}^{j} \hat{S}^{i} \hat{S}^{k}+\hat{S}^{k} \hat{S}^{j} \hat{S}^{i}\right. \\
& +\hat{S}^{j} \hat{S}^{k} \hat{S}^{i}+\hat{S}^{i} \hat{S}^{k} \hat{S}^{j}+\hat{S}^{k} \hat{S}^{i} \hat{S}^{j} \\
& \left.-\frac{6 S(S+1)-2}{5}\left(\delta^{i j} \hat{S}^{k}+\delta^{i k} \hat{S}^{j}+\delta^{k j} \hat{S}^{i}\right)\right]
\end{aligned}
$$

n-rank irreducible tensors:

$$
Y_{n}^{i_{1} i_{2} \ldots i_{n}}\left(\Omega_{p}\right)=\frac{(-1)^{n}}{(2 n-1)!!} p^{n+1} \partial^{i_{1}} \partial^{i_{2}} \ldots \partial^{i_{n}} \frac{1}{p}
$$

spin-3/2 GFFs

Multipole expansion: (Kim, BDS, 2020)

$$
\begin{aligned}
\left\langle\hat{T}_{a}^{00}(0)\right\rangle & =2 m E\left[\mathcal{E}_{0}^{a}(t) \delta_{\sigma^{\prime} \sigma}+\left(\frac{\sqrt{-t}}{m}\right)^{2} \hat{Q}_{\sigma^{\prime} \sigma}^{k l} Y_{2}^{k l} \mathcal{E}_{2}^{a}(t)\right] \\
\left\langle\hat{T}_{a}^{0 i}(0)\right\rangle & =2 m E\left[\frac{\sqrt{-t}}{m} i \epsilon^{i k l} Y_{1}^{l} \hat{S}_{\sigma^{\prime} \sigma}^{k} \mathcal{J}_{1}^{a}(t)+\left(\frac{\sqrt{-t}}{m}\right)^{3} i \epsilon^{i k l} Y_{3}^{l m n} \hat{O}_{\sigma^{\prime} \sigma}^{k m n} \mathcal{J}_{3}^{a}(t)\right] \\
\left\langle\hat{T}_{a}^{i j}(0)\right\rangle & =2 m E\left[\frac{1}{4 m^{2}}\left(\Delta^{i} \Delta^{j}+\delta^{i j} \Delta^{2}\right) D_{0}^{a}(t) \delta_{\sigma^{\prime} \sigma}\right. \\
& +\frac{1}{4 m^{4}} \hat{Q}_{\sigma^{\prime} \sigma}^{k l}\left(\Delta^{i} \Delta^{j}+\delta^{i j} \Delta^{2}\right) \Delta^{k} \Delta^{l} D_{3}^{a}(t) \\
& +\frac{1}{2 m^{2}}\left(\hat{Q}_{\sigma^{\prime} \sigma}^{i k} \Delta^{j} \Delta^{k}+\hat{Q}_{\sigma^{\prime} \sigma}^{j k} \Delta^{i} \Delta^{k}+\hat{Q}_{\sigma^{\prime} \sigma}^{i j} \Delta^{2}-\delta^{i j} \hat{Q}_{\sigma^{\prime} \sigma}^{k l} \Delta^{k} \Delta^{l}\right) D_{2}^{a}(t) \\
& + \text { non-conserving terms }
\end{aligned}
$$

Definition: (Cosyn et al, 2019)

$$
\left\langle\hat{T}_{a}^{\mu \nu}(0)\right\rangle=-\bar{u}^{\alpha^{\prime}}\left(p^{\prime}\right)\left[\frac{P^{\mu} P^{\nu}}{m}\left(g_{\alpha^{\prime} \alpha} F_{1,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{1,1}^{a}(t)\right)\right.
$$

$$
+\frac{\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right)}{4 m}\left(g_{\alpha^{\prime} \alpha} F_{2,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{2,1}^{a}(t)\right)
$$

$$
+m g^{\mu \nu}\left(g_{\alpha^{\prime} \alpha} F_{3,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{3,1}^{a}(t)\right)
$$

$$
+\frac{i}{2} \frac{\left(P^{\mu} \sigma^{\nu \rho}+P^{\nu} \sigma^{\mu \rho}\right) \Delta_{\rho}}{m}\left(\underset{\substack{\alpha^{\prime} \alpha \\ g_{4,0}^{a} \\ a}}{ }(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{4,1}^{a}(t)\right)
$$

7 conserving

$$
-\frac{1}{m}\left(\Delta^{\mu} g_{\alpha^{\prime}}^{\nu} \Delta_{\alpha}+\Delta^{\nu} g_{\alpha^{\prime}}^{\mu} \Delta_{\alpha}+\Delta^{\mu} g_{\alpha}^{\nu} \Delta_{\alpha^{\prime}}+\Delta^{\nu} g_{\alpha}^{\mu} \Delta_{\alpha^{\prime}}\right.
$$

3 non-conserving

$$
\left.-2 g^{\mu \nu} \Delta_{\alpha^{\prime}} \Delta_{\alpha}-g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu} \Delta^{2}-g_{\alpha^{\prime}}^{\nu} g_{\alpha}^{\mu} \Delta^{2}\right) F_{5,0}^{a}(t)
$$

$$
\left.+m\left(g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu}+g_{\alpha^{\prime}}^{\nu} g_{\alpha}^{\mu}\right) F_{6,0}^{a}(t)\right] u^{\alpha}(p, \sigma)
$$

Octupole operator:

$$
\begin{aligned}
\hat{O}^{i j k}= & \frac{1}{6}\left[\hat{S}^{i} \hat{S}^{j} \hat{S}^{k}+\hat{S}^{j} \hat{S}^{i} \hat{S}^{k}+\hat{S}^{k} \hat{S}^{j} \hat{S}^{i}\right. \\
& +\hat{S}^{j} \hat{S}^{k} \hat{S}^{i}+\hat{S}^{i} \hat{S}^{k} \hat{S}^{j}+\hat{S}^{k} \hat{S}^{i} \hat{S}^{j} \\
& \left.-\frac{6 S(S+1)-2}{5}\left(\delta^{i j} \hat{S}^{k}+\delta^{i k} \hat{S}^{j}+\delta^{k j} \hat{S}^{i}\right)\right]
\end{aligned}
$$

n-rank irreducible tensors:

$$
Y_{n}^{i_{1} i_{2} \ldots i_{n}}\left(\Omega_{p}\right)=\frac{(-1)^{n}}{(2 n-1)!!} p^{n+1} \partial^{i_{1}} \partial^{i_{2}} \ldots \partial^{i_{n}} \frac{1}{p}
$$

spin-3/2 GFFs

Definition: (Cosyn et al, 2019)

$$
\left\langle\hat{T}_{a}^{\mu \nu}(0)\right\rangle=-\bar{u}^{\alpha^{\prime}}\left(p^{\prime}\right)\left[\frac{P^{\mu} P^{\nu}}{m}\left(g_{\alpha^{\prime} \alpha} F_{1,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{1,1}^{a}(t)\right)\right.
$$

$$
+\frac{\left(\Delta^{\mu} \Delta^{\nu}-g^{\mu \nu} \Delta^{2}\right)}{4 m}\left(g_{\alpha^{\prime} \alpha} F_{2,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{2,1}^{a}(t)\right)
$$

$$
+m g^{\mu \nu}\left(g_{\alpha^{\prime} \alpha} F_{3,0}^{a}(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{3,1}^{a}(t)\right)
$$

$$
+\frac{i}{2} \frac{\left(P^{\mu} \sigma^{\nu \rho}+P^{\nu} \sigma^{\mu \rho}\right) \Delta_{\rho}}{m}\left(\underset{\substack{\alpha^{\prime} \alpha \\ g_{4,0}^{a} \\ a}}{ }(t)-\frac{\Delta_{\alpha^{\prime}} \Delta_{\alpha}}{2 m^{2}} F_{4,1}^{a}(t)\right)
$$

$$
-\frac{1}{m}\left(\Delta^{\mu} g_{\alpha^{\prime}}^{\nu} \Delta_{\alpha}+\Delta^{\nu} g_{\alpha^{\prime}}^{\mu} \Delta_{\alpha}+\Delta^{\mu} g_{\alpha}^{\nu} \Delta_{\alpha^{\prime}}+\Delta^{\nu} g_{\alpha}^{\mu} \Delta_{\alpha^{\prime}}\right.
$$

$$
\left.-2 g^{\mu \nu} \Delta_{\alpha^{\prime}} \Delta_{\alpha}-g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu} \Delta^{2}-g_{\alpha^{\prime}}^{\nu} g_{\alpha}^{\mu} \Delta^{2}\right) F_{5,0}^{a}(t)
$$

$$
\left.+m\left(g_{\alpha^{\prime}}^{\mu} g_{\alpha}^{\nu}+g_{\alpha^{\prime}}^{\nu} g_{\alpha}^{\mu}\right) F_{6,0}^{a}(t)\right] u^{\alpha}(p, \sigma)
$$

Octupole operator:

$$
\begin{aligned}
\hat{O}^{i j k}= & \frac{1}{6}\left[\hat{S}^{i} \hat{S}^{j} \hat{S}^{k}+\hat{S}^{j} \hat{S}^{i} \hat{S}^{k}+\hat{S}^{k} \hat{S}^{j} \hat{S}^{i}\right. \\
& +\hat{S}^{j} \hat{S}^{k} \hat{S}^{i}+\hat{S}^{i} \hat{S}^{k} \hat{S}^{j}+\hat{S}^{k} \hat{S}^{i} \hat{S}^{j} \\
& \left.-\frac{6 S(S+1)-2}{5}\left(\delta^{i j} \hat{S}^{k}+\delta^{i k} \hat{S}^{j}+\delta^{k j} \hat{S}^{i}\right)\right]
\end{aligned}
$$

n-rank irreducible tensors:

$$
Y_{n}^{i_{1} i_{2} \ldots i_{n}}\left(\Omega_{p}\right)=\frac{(-1)^{n}}{(2 n-1)!!} p^{n+1} \partial^{i_{1}} \partial^{i_{2}} \ldots \partial^{i_{n}} \frac{1}{p}
$$

Gravitational multipole form factors

$$
\begin{aligned}
\mathcal{E}_{0}^{a}(t) & =F_{1,0}^{a}(t)+F_{3,0}^{a}(t)-\frac{t}{m^{2}} \frac{5}{12} F_{1,0}^{a}(t)+\cdots \\
\mathcal{E}_{2}^{a}(t) & =-\frac{1}{6} F_{1,0}^{a}(t)-\frac{1}{6} F_{1,1}^{a}(t)+\cdots \\
\mathcal{J}_{1}^{a}(t) & =\frac{1}{3} F_{4,0}^{a}(t)-\frac{1}{3} F_{6,0}^{a}(t)+\cdots \\
\mathcal{J}_{3}^{a}(t) & =-\frac{1}{6}\left[F_{4,0}^{a}(t)+F_{4,1}^{a}(t)\right]+\frac{t}{24 m^{2}} F_{4,1}^{a}(t) \\
\rightarrow \quad D_{0}^{a}(t) & =F_{2,0}^{a}(t)-\frac{16}{3} F_{5,0}^{a}(t)+\cdots \\
D_{2}^{a}(t) & =\frac{4}{3} F_{5,0}^{a}(t) \\
D_{3}^{a}(t) & =-\frac{1}{6} F_{2,0}^{a}(t)-\frac{1}{6} F_{2,1}^{a}(t)+\cdots
\end{aligned}
$$

Δ densities by SU(2) Skyrme model ${ }_{\text {kim }, ~ B D S, ~ 2020)}$

(energy/mass)

$\left\langle r_{E}^{2}\right\rangle=0.54 \mathrm{fm}^{2}(\mathrm{LO})$
$\left\langle r_{E}^{2}\right\rangle=0.57 \mathrm{fm}^{2}$ (NLO, Nucleon)
$\left\langle r_{E}^{2}\right\rangle=0.64 \mathrm{fm}^{2}(\mathrm{NLO}, \Delta)$
$\mathcal{Q}_{\sigma^{\prime} \sigma}^{i j}=-0.0181 Q_{\sigma^{\prime} \sigma}^{i j} \mathrm{GeV} \cdot \mathrm{fm}^{2}$
(spin)

(pressure \& shear forces: "mechanical")

$$
\begin{aligned}
& \left\langle r_{0}^{2}\right\rangle_{\text {mech }}=0.61 \mathrm{fm}^{2}(\mathrm{LO}) \\
& \left\langle r_{0}^{2}\right\rangle_{\text {mech }}=0.63 \mathrm{fm}^{2}(\mathrm{NLO}, \text { Nucleon }) \\
& \left\langle r_{0}^{2}\right\rangle_{\text {mech }}=0.85 \mathrm{fm}^{2}(\mathrm{NLO}, \Delta) \\
& \left\langle r_{3}^{2}\right\rangle_{\text {mech }}=0.33 \mathrm{fm}^{2}
\end{aligned}
$$

Δ GFFs/GMFFs by SU(2) Skyrme model ${ }_{(k i m, ~ b o s, ~ 2020)}$

large $-N_{c}$ behaviors: (GMFFs)

$$
\begin{array}{lll}
\mathcal{E}_{0}(t) \sim \mathcal{O}\left(N_{c}^{0}\right), & \mathcal{E}_{2}(t) \sim \mathcal{O}\left(N_{c}^{0}\right), & \mathcal{J}_{0}(t) \sim \mathcal{O}\left(N_{c}^{0}\right), \\
\mathcal{J}_{3}(t) \sim \mathcal{O}\left(N_{c}^{0}\right), \\
D_{0}(t) \sim \mathcal{O}\left(N_{c}^{2}\right), & D_{2}(t) \sim \mathcal{O}\left(N_{c}^{0}\right), & D_{3}(t) \sim \mathcal{O}\left(N_{c}^{2}\right)
\end{array}
$$

(Generalized) D-terms

$$
\begin{aligned}
& \left.\mathcal{D}_{0}^{\Delta}=-3.53<0 \text { (stable! }\right) \\
& \mathcal{D}_{0}^{N}=-3.63 \\
& \mathcal{D}_{2}=0 \\
& \mathcal{D}_{3}=-0.50
\end{aligned}
$$

QCD-Sum-Rule approach for spin-3/2 GFFs Denghan, Azizi, Ozdem, 2023

Model	\mathcal{D}_{0}^{Δ}	\mathcal{D}_{2}^{Δ}	\mathcal{D}_{3}^{Δ}	\mathcal{D}_{0}^{N}	$\left\langle r_{E}^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$
This Work	-2.71 ± 0.34	0.000 ± 0.002	-0.43 ± 0.06	-3.57 ± 0.46	0.67 ± 0.04
Skyrme model [52, 53]	-2.65	0	-0.38	-3.40	0.64
Skyrme model [54]	-3.53	0	-0.50	-3.63	0.64

TABLE III. A comparison of D-terms and mass radius obtained in the present study with those from other models.

Lattice QCD calculation for gluonic GFFs Pefkou, Hacerett, Shananana, 2022 2

$D_{g}<0 ?$

Δ in quark-diquark model ${ }_{F u, B 0 S, ~ D o n g, ~ 2022}$

Figure 6: Calculated GFFs of $F_{10,11,20,21,40,41,50}^{T}$ as functions of $-t$ for Δ.

With D-term $\quad D=0.986>0$
Quark model is too rough?

- $D_{\text {hydrogen }}>0$ Ji, Liu 2021, 2022 Not applicable to low-density objects?

ChPT actions for Δ in curved space-time Anharazi, Bobs, Epelbaum, Gegeila, MeiBner, 2022^{2}

Rarita-Schwinger fields: $\quad \Psi_{\mu}(x)=\sum_{s_{\Delta}} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{M_{\Delta}}{E}\left[b\left(\vec{p}, s_{\Delta}\right) u_{\mu}\left(\vec{p}, s_{\Delta}\right) e^{-i p \cdot x}+d^{\dagger}\left(\vec{p}, s_{\Delta}\right) v_{\mu}\left(\vec{p}, s_{\Delta}\right) e^{i p \cdot x}\right]$

Derivatives on fields:
$\pi \quad D_{\mu} U=\partial_{\mu} U-i r_{\mu} U+i U l_{\mu}$
$N \quad \vec{\nabla}_{\mu} \Psi=\partial_{\mu} \Psi+\frac{i}{2} \omega_{\mu}^{a b} \sigma_{a b} \Psi+\left(\Gamma_{\mu}-i v_{\mu}^{(s)}\right) \Psi$
$\Delta \quad \nabla_{\mu}^{i j} \Psi_{\nu}^{j}=\left[\delta^{i j} \partial_{\mu}+\delta^{i j} \Gamma_{\mu}-i \delta^{i j} v_{\mu}^{(s)}-i \epsilon^{i j k} \operatorname{Tr}\left(\tau^{k} \Gamma_{\mu}\right)+\frac{i}{2} \delta^{i j} \omega_{\mu}^{a b} \sigma_{a b}\right] \Psi_{\nu}^{j}-\Gamma_{\mu \nu}^{\alpha} \Psi_{\alpha}^{i}$

Spin connection: $\quad \omega_{\mu}^{a b}=-\frac{1}{2} g^{\nu \lambda} e_{\lambda}^{a}\left(\partial_{\mu} e_{\nu}^{b}-e_{\sigma}^{b} \Gamma_{\mu \nu}^{\sigma}\right)$
Christoffel symbol: $\Gamma_{\alpha \beta}^{\lambda}=\frac{1}{2} g^{\lambda \sigma}\left(\partial_{\alpha} g_{\beta \sigma}+\partial_{\beta} g_{\alpha \sigma}-\partial_{\sigma} g_{\alpha \beta}\right)$

Vielbein fields $e_{\mu}^{a}: \quad e_{\mu}^{a} e_{\nu}^{b} \eta_{a b}=g_{\mu \nu} \quad$ connects Lorentz indices μ and Dirac indices $a: \quad \gamma_{\mu} \equiv e_{\mu}^{a} \gamma_{a}$

ϵ-counting scheme (small scale expansion)

To calc delta matrix elements of order 3:

Pion mass $M:$	1	Loop momenta:	1
Derivatives on N or $\Delta:$	0	Pion lines:	-2
Masses $m_{\Delta}, m_{N}:$	0	Nucleon lines:	-1
$\delta=m_{\Delta}-m_{N}:$	1	Delta lines:	-1
Momentum transfer:	1	$L^{(N)}$ vertices :	N

Use EOMS(extended on-mass-shell) scheme to remove divergent parts and power counting violating pieces. Renormalization scale chosen as $\mu=m_{N}$.

a)

b)

f)

c)

g)

d)

h)

Actions Aharazin, Bos, Epelbaum, Gegelia, MeiBner, 202z

$$
\begin{aligned}
& S_{\pi}^{(2)}=\int d^{4} x \sqrt{-g}\left\{\frac{F^{2}}{4} g^{\mu \nu} \operatorname{Tr}\left(D_{\mu} U\left(D_{\nu} U\right)^{\dagger}\right)+\frac{F^{2}}{4} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right\} \\
& S_{\pi \mathrm{N}}^{(1)}=\int d^{4} x \sqrt{-g}\left\{\bar{\Psi} i \gamma^{\mu} \stackrel{\leftrightarrow}{\nabla}_{\mu} \Psi-m \bar{\Psi} \Psi+\frac{g_{A}}{2} \bar{\Psi} \gamma^{\mu} \gamma_{5} u_{\mu} \Psi\right\} \\
& S_{\pi \Delta}^{(1)}=-\int d^{4} x \sqrt{-g}\left[g^{\mu \nu} \bar{\Psi}_{\mu}^{i} i \gamma^{\alpha} \stackrel{\nabla}{\nabla}_{\alpha} \Psi_{\nu}^{i}-m_{\Delta} g^{\mu \nu} \bar{\Psi}_{\mu}^{i} \Psi_{\nu}^{i}-g^{\lambda \sigma}\left(\bar{\Psi}_{\mu}^{i} i \gamma^{\mu} \stackrel{\rightharpoonup}{\nabla}_{\lambda} \Psi_{\sigma}^{i}+\bar{\Psi}_{\lambda}^{i} i \gamma^{\mu} \stackrel{\rightharpoonup}{\nabla}_{\sigma} \Psi_{\mu}^{i}\right)\right. \\
& +i \bar{\Psi}_{\mu}^{i} \gamma^{\mu} \gamma^{\alpha} \gamma^{\nu} \stackrel{\leftrightarrow}{\nabla}_{\alpha} \Psi_{\nu}^{i}+m_{\Delta} \bar{\Psi}_{\mu}^{i} \gamma^{\mu} \gamma^{\nu} \Psi_{\nu}^{i}+\frac{g_{1}}{2} g^{\mu \nu} \bar{\Psi}_{\mu}^{i} u_{\alpha} \gamma^{\alpha} \gamma_{5} \Psi_{\nu}^{i}+\frac{g_{2}}{2} \bar{\Psi}_{\mu}^{i}\left(u^{\mu} \gamma^{\nu}+u^{\nu} \gamma^{\mu}\right) \gamma_{5} \Psi_{\nu}^{i} \\
& \left.+\frac{g_{3}}{2} \bar{\Psi}_{\mu}^{i} u_{\alpha} \gamma^{\mu} \gamma^{\alpha} \gamma_{5} \gamma^{\nu} \Psi_{\nu}^{i}\right] \\
& \text { - Off-shell parameter } A=-1 \\
& \text { - LECs } g_{2}=g_{3}=-g_{1} \\
& S_{\pi N \Delta}^{(1)}=-\int d^{4} x \sqrt{-g} g_{\pi N \Delta} \bar{\Psi}_{\mu, i}\left(g^{\mu \nu}-\gamma^{\mu} \gamma^{\nu}\right) u_{\nu, i} \Psi+\text { H.c. } \\
& S_{\pi \Delta, a}^{(2)}=\int d^{4} x \sqrt{-g} a_{1} \bar{\Psi}_{\mu}^{i} \Theta^{\mu \alpha}(z)\left\langle\chi_{+}\right\rangle g_{\alpha \beta} \Theta^{\beta \nu}\left(z^{\prime}\right) \Psi_{\nu}^{i}
\end{aligned}
$$

Actions Aharazin, Bos, Epebbaum, Gegelia, MeiBrer, 2022

Riemann tensor: $\quad R_{\sigma \mu \nu}^{\rho}=\partial_{\mu} \Gamma_{\nu \sigma}^{\rho}-\partial_{\nu} \Gamma_{\mu \sigma}^{\rho}+\Gamma_{\mu \lambda}^{\rho} \Gamma_{\nu \sigma}^{\lambda}-\Gamma_{\nu \lambda}^{\rho} \Gamma_{\mu \sigma}^{\lambda}$
Ricci tensor:

$$
R_{\mu \nu}=R_{\mu \lambda \nu}^{\lambda}
$$

Ricci scalar:

$$
R=g^{\mu \nu} R_{\mu \lambda \nu}^{\lambda}
$$

$$
\begin{aligned}
S_{\pi \Delta, b}^{(2)} & =\int d^{4} x \sqrt{-g}\left[h_{1} R g^{\alpha \beta} \bar{\Psi}_{\alpha}^{i} \Psi_{\beta}^{i}+h_{2} R \bar{\Psi}_{\alpha}^{i} \gamma^{\alpha} \gamma^{\beta} \Psi_{\beta}^{i}+i h_{3} R\left(g^{\alpha \lambda} \bar{\Psi}_{\alpha}^{i} \gamma^{\beta} \vec{\nabla}_{\lambda} \Psi_{\beta}^{i}-g^{\beta \lambda} \bar{\Psi}_{\alpha}^{i} \gamma^{\alpha} \overleftarrow{\nabla_{\lambda}} \Psi_{\beta}^{i}\right)\right. \\
& +h_{4} R^{\mu \nu} \bar{\Psi}_{\mu}^{i} \Psi_{\nu}^{i}+2 i h_{5} R^{\mu \nu} g^{\alpha \beta} \bar{\Psi}_{\alpha}^{i} \gamma_{\mu} \stackrel{\leftrightarrow}{\nabla}_{\nu} \Psi_{\beta}^{i}+i h_{6} R^{\mu \nu} g^{\alpha \beta}\left(\bar{\Psi}_{\alpha}^{i} \gamma_{\mu} \vec{\nabla}_{\beta} \Psi_{\nu}^{i}-\bar{\Psi}_{\nu}^{i} \gamma_{\mu} \overleftarrow{\nabla}_{\beta} \Psi_{\alpha}^{i}\right) \\
& +i h_{7} R^{\mu \nu}\left(\bar{\Psi}_{\alpha}^{i} \gamma^{\alpha} \vec{\nabla}_{\mu} \Psi_{\nu}^{i}-\bar{\Psi}_{\nu}^{i} \gamma^{\alpha} \overleftarrow{\nabla}_{\mu} \Psi_{\alpha}^{i}\right)+h_{8} R^{\mu \nu}\left(\bar{\Psi}_{\alpha}^{i} \gamma^{\alpha} \gamma_{\mu} \Psi_{\nu}^{i}+\bar{\Psi}_{\nu}^{i} \gamma_{\mu} \gamma^{\alpha} \Psi_{\alpha}^{i}\right) \\
& +i h_{9} R^{\mu \nu}\left(\bar{\Psi}_{\kappa}^{i} \gamma^{\kappa} \gamma^{\alpha} \gamma_{\mu} \vec{\nabla}_{\nu} \Psi_{\alpha}^{i}-\bar{\Psi}_{\alpha}^{i} \gamma_{\mu} \gamma^{\alpha} \gamma^{\kappa} \overleftarrow{\nabla}_{\nu} \Psi_{\kappa}^{i}\right)+i h_{10} R^{\mu \nu \alpha \beta} \bar{\Psi}_{\alpha}^{i} \sigma_{\mu \nu} \Psi_{\beta}^{i} \\
& +i\left[h_{11} R^{\mu \nu \alpha \beta}+h_{12} R^{\mu \alpha \nu \beta}\right]\left(\bar{\Psi}_{\alpha}^{i} \gamma_{\mu} \vec{\nabla}_{\nu} \Psi_{\beta}^{i}-\bar{\Psi}_{\beta}^{i} \gamma_{\mu} \overleftarrow{\nabla}_{\nu} \Psi_{\alpha}^{i}\right)+h_{13} R^{\mu \alpha \nu \beta} \bar{\Psi}_{\alpha}^{i} \gamma_{\mu} \gamma_{\nu} \Psi_{\beta}^{i} \\
& \left.+i\left[h_{14} R^{\mu \nu \alpha \beta}+h_{15} R^{\mu \alpha \nu \beta}\right]\left(\bar{\Psi}_{\kappa}^{i} \gamma^{\kappa} \gamma_{\mu} \gamma_{\nu} \vec{\nabla}_{\alpha} \Psi_{\beta}^{i}-\bar{\Psi}_{\beta}^{i} \gamma_{\nu} \gamma_{\mu} \gamma^{\kappa} \overleftarrow{\nabla}_{\alpha} \Psi_{\kappa}^{i}\right)\right]
\end{aligned}
$$

1, EMT surface terms DO matters! (Recall the spin-0 case. Hudson,Schweitzer, 2017)
2, Absorb power-counting violating terms

EMT vertices Alharazin, BDS, Epelbaum, Gegegie, Meibner, 2022^{2}
Actions in curved space-time: $\quad S=\int d^{4} x \sqrt{-g} \mathcal{L}$
Calc EMT: $\quad T_{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta S_{\mathrm{m}}}{\delta g^{\mu \nu}} \Rightarrow T_{\mu \nu}=\frac{1}{2 e}\left[\frac{\delta S}{\delta e^{a \mu}} e_{\nu}^{a}+\frac{\delta S}{\delta e^{a \nu}} e_{\mu}^{a}\right]$

EMTs:

$$
\begin{aligned}
T_{\pi, \mu \nu}^{(2)}= & \frac{F^{2}}{4} \operatorname{Tr}\left(D_{\mu} U\left(D_{\nu} U\right)^{\dagger}\right)-\frac{\eta_{\mu \nu}}{2}\left\{\frac{F^{2}}{4} \operatorname{Tr}\left(D^{\alpha} U\left(D_{\alpha} U\right)^{\dagger}\right)+\frac{F^{2}}{4} \operatorname{Tr}\left(\chi U^{\dagger}+U \chi^{\dagger}\right)\right\}+(\mu \leftrightarrow \nu) \\
T_{\pi N, \mu \nu}^{(1)}= & \frac{i}{2} \bar{\Psi} \gamma_{\mu} \stackrel{\leftrightarrow}{D}_{\nu} \Psi+\frac{g_{A}}{4} \bar{\Psi} \gamma_{\mu} \gamma_{5} u_{\nu} \Psi-\frac{\eta_{\mu \nu}}{2}\left(\bar{\Psi} i \gamma^{\alpha} \stackrel{\leftrightarrow}{D}_{\alpha} \Psi-m \bar{\Psi} \Psi+\frac{g_{A}}{2} \bar{\Psi} \gamma^{\alpha} \gamma_{5} u_{\alpha} \Psi\right) \\
& +(\mu \leftrightarrow \nu) \\
T_{\pi N \Delta, \mu \nu}^{(1)}= & \frac{1}{2} g_{\pi N \Delta} \eta_{\mu \nu}\left[\bar{\Psi}_{\alpha}^{i} u_{i}^{\alpha} \Psi+\bar{\Psi} u_{i}^{\alpha} \Psi_{\alpha}^{i}-\bar{\Psi}_{\alpha}^{i} \gamma^{\alpha} \gamma^{\beta} u_{\beta}^{i} \Psi-\bar{\Psi} \gamma^{\beta} \gamma^{\alpha} u_{\beta}^{i} \Psi_{\alpha}^{i}\right] \\
& -g_{\pi N \Delta}\left(\bar{\Psi}_{\mu}^{i} u_{\nu}^{i} \Psi+\bar{\Psi} u_{\nu}^{i} \Psi_{\mu}^{i}\right)
\end{aligned}
$$

GFFs at Tree order Alharazin, Bos, Epelbaum, Gegelia, Meibner, 2022

$$
\begin{aligned}
& F_{1,0, \text { tree }}(t)=1-\frac{t}{m_{\Delta}^{2}}+\frac{t\left(2 h_{5} m_{\Delta}+2 h_{10}-h_{13}\right)}{m_{\Delta}}-\frac{\left(-2 h_{6}+2 h_{11}+h_{12}\right) t^{2}}{2 m_{\Delta}^{2}}, \\
& F_{1,1, \text { tree }}(t)=-4-4 m_{\Delta}\left(h_{12} m_{\Delta}-2 h_{10}+h_{13}\right)+\left(4 h_{6}-2\left(2 h_{11}+h_{12}\right)\right) t
\end{aligned}
$$

GFFs at One-Loop order $(t=0)$

$$
\begin{aligned}
F_{1,0, \text { loop }}(0)= & 0 \\
F_{1,1, \text { loop }}(0)= & -\frac{5 g_{1}^{2} m_{N}(3 \pi M-49 \delta)}{648 \pi^{2} F^{2}}+\frac{g_{\pi N \Delta}^{2} m_{N}}{144 \pi^{2} F^{2}\left(M^{2}-\delta^{2}\right)}\left(-53 \delta^{3}+24 \delta\left(M^{2}-\delta^{2}\right) \ln \frac{M}{m_{N}}\right. \\
& +24 i \pi \delta^{2} \sqrt{\delta^{2}-M^{2}}-12 i \pi M^{2} \sqrt{\delta^{2}-M^{2}} \\
& \left.+12\left(M^{2}-2 \delta^{2}\right) \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}+53 \delta M^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Slopes of the GFFs: $F_{i, j}(t)=F_{i, j}(0)+s_{F_{i, j}} t+\mathcal{O}\left(t^{2}\right)$

$$
\begin{aligned}
s_{F_{1,0}} & =\frac{g_{1}^{2}(8 \delta-255 \pi M)}{10368 \pi^{2} F^{2} m_{N}}+\frac{g_{\pi N \Delta}^{2}}{576 \pi^{2} F^{2} m_{N}\left(M^{2}-\delta^{2}\right)}\left(25 \delta\left(\delta^{2}-M^{2}\right)+24 \delta\left(\delta^{2}-M^{2}\right) \ln \frac{M}{m_{N}}\right. \\
& \left.-12 i \pi\left(2 \delta^{2}-M^{2}\right) \sqrt{\delta^{2}-M^{2}}-12\left(M^{2}-2 \delta^{2}\right) \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}\right)+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

Long-range behavior of local spatial densities Ahnarazi, Bos, Epelbaum, Gegeila, Meibner, 2023

Energy densities:

$$
\begin{array}{ll}
\rho_{0}^{E}(r)=\frac{25 g_{1}^{2}}{1536 F^{2} m_{\Delta}} \frac{1}{r^{6}}-\frac{10 g_{1}^{2}}{81 \pi^{2} F^{2} m_{\Delta}^{2}} \frac{1}{r^{7}}+\mathcal{O}\left(\frac{1}{r^{8}}\right) & \rho_{0}^{E}(r)>0 \\
\rho_{2}^{E}(r)=\frac{35 g_{1}^{2}}{6144 F^{2} m_{\Delta}} \frac{1}{r^{6}}+\frac{35 g_{1}^{2}}{162 \pi^{2} F^{2} m_{\Delta}^{2}} \frac{1}{r^{7}}+\mathcal{O}\left(\frac{1}{r^{8}}\right) &
\end{array}
$$

Spin densities:

$$
\begin{aligned}
& \rho_{1}^{J}(r)=\frac{5 g_{1}^{2}}{162 \pi^{2} F^{2} m_{\Delta}} \frac{1}{r^{5}}-\frac{125 g_{1}^{2}}{3072 F^{2} m_{\Delta}^{2}} \frac{1}{r^{6}}+\mathcal{O}\left(\frac{1}{r^{7}}\right) \\
& \rho_{3}^{J}(r)=-\frac{625 g_{1}^{2}}{24576 F^{2} m_{\Delta}^{2}} \frac{1}{r^{6}}+\frac{5 g_{1}^{2}}{54 \pi^{2} F^{2} m_{\Delta}^{3}} \frac{1}{r^{7}}+\mathcal{O}\left(\frac{1}{r^{8}}\right)
\end{aligned}
$$

Pressure \& shear force densities:

$$
\begin{aligned}
p_{0}(r) & =-\frac{25 g_{1}^{2}}{2304 F^{2} m_{\Delta}} \frac{1}{r^{6}}-\frac{75 g_{1}^{2}}{1024 F^{2} m_{\Delta}^{3}} \frac{1}{r^{8}}+\mathcal{O}\left(\frac{1}{r^{9}}\right), \\
s_{0}(r) & =\frac{5 g_{1}^{2}}{96 F^{2} m_{\Delta}} \frac{1}{r^{6}}+\frac{15 g_{1}^{2}}{64 F_{0}^{2} m_{\Delta}^{3}} \frac{1}{r^{8}}+\mathcal{O}\left(\frac{1}{r^{8}}\right)
\end{aligned}
$$

Note: delta resonances are unstable particles, our expressions satisfy the general stability conditions. It agrees with the observation by other approaches.

Summary and Outlook

1. Parameterization of the matrix elements of EMT defines GFFs, which relate to the fundamental properties, mass, spin, D-term.
2. D-terms for particles with different spins are discussed.
3. Spin-3/2 GFFs are calculated in different approaches, Skyme model, Lattice QCD (gluon part), QCD-sum-rules.
4. But their predictions are quit different and it motivate us to carry out the ChPT calculation. Still one need more input data to fix the LECs to obtain the GFFs and its D-term. Lattice QCD calculation for spin 3/2 quark GFFs are excepted.
5. ChPT calculation for $N-\Delta$ gravitational transition FFs is on-going.

Thanks for your attention!

Backup

Generalized parton distributions (GPDs) of spin-3/2 Fu, Bos, Dong 2022, 2023

Vector matrix elements:

$$
\begin{aligned}
V_{\lambda^{\prime} \lambda} & =\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x(P \cdot z)}\left\langle p^{\prime}, \lambda^{\prime}\right| \bar{\psi}(-z / 2) \not \hbar \psi(z / 2)|p, \lambda\rangle\right|_{z^{+}=0, \mathbf{z}=\mathbf{0}} \\
& =-\bar{u}_{\alpha^{\prime}}\left(p^{\prime}, \lambda^{\prime}\right) \mathcal{H}^{\alpha^{\prime} \alpha}(x, \xi, t) u_{\alpha}(p, \lambda)
\end{aligned}
$$

8 independent unpolarized GPDs:

$$
\begin{aligned}
\mathcal{H}^{\alpha^{\prime} \alpha} & =H_{1} g^{\alpha^{\prime} \alpha}+H_{2} \frac{P^{\alpha^{\prime}} P^{\alpha}}{M^{2}}+H_{3} \frac{n^{\left[\alpha^{\prime}\right.} P^{\alpha]}}{P \cdot n}+H_{4} \frac{M^{2} n^{\alpha^{\prime}} n^{\alpha}}{(P \cdot n)^{2}}+H_{5} \frac{M g^{\alpha^{\prime} \alpha} \not n}{P \cdot n} \\
& +H_{6} \frac{P^{\alpha^{\prime}} P^{\alpha} \not \not n}{M P \cdot n}+H_{7} \frac{M n^{\left[\alpha^{\prime}\right.} P^{\alpha]} \not \nsim}{(P \cdot n)^{2}}+H_{8} \frac{M^{3} n^{\alpha^{\prime}} n^{\alpha} \not \not n}{(P \cdot n)^{3}}
\end{aligned}
$$

quark \rightarrow gluon

$$
\begin{aligned}
\bar{\psi} \gamma^{\mu} \psi \rightarrow & F^{\beta^{\prime} \mu} F_{\mu}{ }^{\beta} \\
\bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rightarrow & F^{\beta^{\prime} \mu} \tilde{F}_{\mu}{ }^{\beta} \\
& \tilde{F}^{\alpha \beta}=\frac{1}{2} \epsilon^{\alpha \beta \gamma \delta} F_{\gamma \delta}
\end{aligned}
$$

Sum rules for spin-3/2 GPDs

Mellin moments for deriving sum-rules:

$$
\begin{aligned}
& \left(P^{+}\right)^{n+1} \int \mathrm{~d} x x^{n} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left[\bar{q}\left(-\frac{1}{2} z\right) \gamma^{+} q\left(\frac{1}{2} z\right)\right]_{z^{+}=0, z=0} \\
& =\left.\left(i \frac{\mathrm{~d}}{\mathrm{~d} z^{-}}\right)^{n}\left[\bar{q}\left(-\frac{1}{2} z\right) \gamma^{+} q\left(\frac{1}{2} z\right)\right]\right|_{z=0}=\bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{\partial^{+}}\right)^{n} q(0)
\end{aligned}
$$

- Δ GPDs \leftrightarrow EM FFs

$$
\begin{aligned}
& M \int_{-1}^{1} \mathrm{~d} x H_{i}(x, \xi, t)=G_{i}(t) \quad \text { with } \quad i=1,2,5,6, \\
& M \int_{-1}^{1} \mathrm{~d} x \tilde{H}_{i}(x, \xi, t)=\xi \tilde{G}_{i}(t) \quad \text { with } \quad i=1,2, \\
& M \int_{-1}^{1} \mathrm{~d} x \tilde{H}_{i}(x, \xi, t)=\tilde{G}_{i}(t) \quad \text { with } \quad i=5,6, \\
& M \int_{-1}^{1} \mathrm{~d} x H_{j}(x, \xi, t)=M \int_{-1}^{1} \mathrm{~d} x \tilde{H}_{j}(x, \xi, t)=0 \\
& \text { with } \quad j=3,4,7,8 .
\end{aligned}
$$

${ }^{n} \rightarrow 1$

$$
\begin{aligned}
& M \int_{-1}^{1} \mathrm{~d} x x H_{1}(x, \xi, t)=F_{1,0}^{T}(t)+\xi^{2} F_{2,0}^{T}(t)-2 F_{4,0}^{T}(t), \\
& M \int_{-1}^{1} \mathrm{~d} x x H_{2}(x, \xi, t)=2 F_{1,1}^{T}(t)+2 \xi^{2} F_{2,1}^{T}(t)-4 F_{4,1}^{T}(t), \\
& M \int_{-1}^{1} \mathrm{~d} x x H_{3}(x, \xi, t)=8 \xi F_{5,0}^{T}(t), \\
& M \int_{-1}^{1} \mathrm{~d} x x H_{4}(x, \xi, t)=\frac{2 t}{M^{2}} F_{5,0}^{T}(t)+2 F_{6,0}^{T}(t), \\
& M \int_{-1}^{1} \mathrm{~d} x x H_{5}(x, \xi, t)=2 F_{4,0}^{T}(t), \\
& M \int_{-1}^{1} \mathrm{~d} x x H_{6}(x, \xi, t)=4 F_{4,1}^{T}(t), \\
& M \int_{-1}^{1} \mathrm{~d} x x H_{i}(x, \xi, t)=0, \quad \text { with } \quad i=7,8 .
\end{aligned}
$$

Free massive vector particle

- Proca Lagrangian + a non-minimal term (?):
$S_{\text {grav }}=\int d^{4} x \sqrt{-g}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}+\frac{1}{2} h R A_{\mu} A^{\mu}\right) \longrightarrow$

Holstein, 2006; Polyakov, BDS, 2019
Table II: The free theory values of the total EMT FFs.

EMT FFs	$\mathcal{E}_{0}(t)$	$\mathcal{E}_{2}(t)$	$\mathcal{J}(t)$	$\mathcal{D}_{0}(t)$	$\mathcal{D}_{2}(t)$	$\mathcal{D}_{3}(t)$
free theory	1	0	1	$\frac{1}{3}-4 h$	-1	0

- all GFFs are t-independent: free of interaction
- $D_{\rho} \leq 0 \stackrel{?}{\leftrightarrow} h \geq \frac{1}{12}$: seems NOT allowed ...

Free massive vector particle

Holstein, 2006; Polyakov, BDS, 2019

Table II: The free theory values of the total EMT FFs.

- Proca Lagrangian + a non-minimal term (?):

$$
S_{\text {grav }}=\int d^{4} x \sqrt{-g}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}+\frac{1}{2} h R A_{\mu} A^{\mu}\right) \longrightarrow
$$

EMT FFs	$\mathcal{E}_{0}(t)$	$\mathcal{E}_{2}(t)$	$\mathcal{J}(t)$	$\mathcal{D}_{0}(t)$	$\mathcal{D}_{2}(t)$	$\mathcal{D}_{3}(t)$
free theory	1	0	1	$\frac{1}{3}-4 h$	-1	0

- conformal transformation: (Dabrowski, 2009)

$$
\begin{aligned}
& \tilde{g}_{\mu \nu}(x)=\Omega^{2}(x) g_{\mu \nu}(x), \quad \widetilde{m}=\Omega^{-1} m \\
& \widetilde{A}_{\mu}=A_{\mu}, \quad \widetilde{A}^{\mu}=\tilde{g}^{\mu \nu} \widetilde{A}_{\nu}=\Omega^{-2} A^{\mu} \\
& \widetilde{U}_{\mu \nu}=U_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu}
\end{aligned}
$$

- all GFFs are t-independent: free of interaction
- $D_{\rho} \leq 0 \stackrel{?}{\leftrightarrow} h \geq \frac{1}{12}$: seems NOT allowed ...
- choices of S : conformal invariance (Cl) (or not)

$$
\begin{aligned}
& S_{\text {grav }}^{0}=\int d^{4} x \sqrt{-g}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}\right), \quad(\mathrm{CI}) \\
& S_{\text {grav }}=\int d^{4} x \sqrt{-g}\left(-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} m^{2} A_{\mu} A^{\mu}+\frac{1}{2} h R A_{\mu}^{2}\right), \quad(\text { not CI for } h \neq 0) \quad \longrightarrow \text { Ricci scalar term breaks CI! } \\
& S_{\text {grav }}^{2}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} A_{\mu} \square A_{\mu}-\frac{1}{2} A_{\mu} \nabla^{\mu} \nabla^{\nu} A_{\nu}+\frac{1}{2} m^{2} A_{\mu}^{2}\right), \quad(\text { not CI }) \\
& S_{\text {grav }}^{3}=\int d^{4} x \sqrt{-g}\left(\frac{1}{2} A_{\mu} \square A_{\mu}-\frac{1}{2} A_{\mu} \nabla^{\mu} \nabla^{\nu} A_{\nu}+\frac{1}{2} m^{2} A_{\mu}^{2}-\frac{1}{2} R_{\mu \nu} A^{\mu} A^{\nu}\right), \quad\left(\mathrm{CI} \text { and give same } D_{0} \text { as } S_{\text {grav }}^{0}!\right)
\end{aligned}
$$

- Riemann tensor $R_{\mu \nu \rho \sigma}$, Weyl tensor $C_{\mu \nu \rho \sigma}$, etc., but NO suitable mass-dim-4 terms!

One-Loop contributions to GFFs

Δ (Rarita-Schwinger) fields

Isospin doublet spin 3/2 field:

$$
\Psi_{\mu}(x)=\sum_{s_{\Delta}} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{M_{\Delta}}{E}\left[b\left(\vec{p}, s_{\Delta}\right) u_{\mu}\left(\vec{p}, s_{\Delta}\right) e^{-i p \cdot x}+d^{\dagger}\left(\vec{p}, s_{\Delta}\right) v_{\mu}\left(\vec{p}, s_{\Delta}\right) e^{i p \cdot x}\right]
$$

Attaching an additional isovector index $i=1,2,3$ to it and use the subsidiary condition:

$$
\tau^{i} \Psi_{\mu}^{i}(x)=0
$$

to eliminate two degrees of freedom.
For the three isospin doublets we use the representation

$$
\begin{aligned}
\Psi_{\mu}^{1} & =\frac{1}{\sqrt{2}}\left[\Delta^{++}-\frac{1}{\sqrt{3}} \Delta^{0}, \frac{1}{\sqrt{3}} \Delta^{+}-\Delta^{-}\right]_{\mu}^{T} \\
\Psi_{\mu}^{2} & =-\frac{i}{\sqrt{2}}\left[\Delta^{++}+\frac{1}{\sqrt{3}} \Delta^{0}, \frac{1}{\sqrt{3}} \Delta^{+}+\Delta^{-}\right]_{\mu}^{T} \\
\Psi_{\mu}^{3} & =\sqrt{\frac{2}{3}}\left[\Delta^{+}, \Delta^{0}\right]_{\mu}^{T}
\end{aligned}
$$

$p(r)$ and $s(r)$, normal/tangential force, stability conditions

- Force acting on the area element $d \mathbf{S}=\mathbf{d S}_{\mathbf{r}} \hat{\mathbf{e}}_{\mathbf{r}}+\mathbf{d} \mathbf{S}_{\theta} \hat{\mathbf{e}}_{\theta}+\mathbf{d} \mathbf{S}_{\phi} \hat{\mathbf{e}}_{\phi}$ - (Panteleeva, Polyakov 2020)

$$
\begin{array}{ll}
\frac{d F_{r}}{d S_{r}}=\delta_{\sigma^{\prime} \sigma}\left(p_{0}(r)+\frac{2}{3} s_{0}(r)\right)+\hat{Q}_{\sigma^{\prime} \sigma}^{r r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)+p_{3}(r)+\frac{2}{3} s_{3}(r)\right), \quad \longrightarrow \quad \text { Normal force } \\
\frac{d F_{\theta}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\theta r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \frac{d F_{\phi}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\phi r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \longrightarrow \quad \text { Tangential forces }
\end{array}
$$

$p(r)$ and $s(r)$, normal/tangential force, stability conditions

- Force acting on the area element $d \mathbf{S}=\mathbf{d} \mathbf{S}_{\mathbf{r}} \hat{\mathbf{e}}_{\mathbf{r}}+\mathbf{d} \mathbf{S}_{\theta} \hat{\mathbf{e}}_{\theta}+\mathbf{d} \mathbf{S}_{\phi} \hat{\mathbf{e}}_{\boldsymbol{\phi}}$ - (Panteleeva, Polyakov 2020)

$$
\begin{array}{ll}
\frac{d F_{r}}{d S_{r}}=\delta_{\sigma^{\prime} \sigma}\left(p_{0}(r)+\frac{2}{3} s_{0}(r)\right)+\hat{Q}_{\sigma^{\prime} \sigma}^{r r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)+p_{3}(r)+\frac{2}{3} s_{3}(r)\right), \quad \longrightarrow \quad \text { Normal force } \\
\frac{d F_{\theta}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\theta r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \frac{d F_{\phi}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\phi r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \longrightarrow \quad \text { Tangential forces }
\end{array}
$$

- Stability condition (von Laue 1911): $\int d^{3} r p_{n}(r)=0$
- Local stability condition :
(unpolarized / spherically symmetric hadron) (Polyakov \& Schweitzer, 2018)
- D-term(unp): $\mathcal{D}_{0}=m \int d^{3} r r^{2} p_{0}(r)=-\frac{4}{15} m \int d^{3} r r^{2} s_{0}(r) \leq 0$

$p(r)$ and $s(r)$, normal/tangential force, stability conditions

- Force acting on the area element $d \mathbf{S}=\mathbf{d} \mathbf{S}_{\mathbf{r}} \hat{\mathbf{e}}_{\mathbf{r}}+\mathbf{d} \mathbf{S}_{\theta} \hat{\mathbf{e}}_{\theta}+\mathbf{d} \mathbf{S}_{\phi} \hat{\mathbf{e}}_{\boldsymbol{\phi}}$ - (Panteleeva, Polyakov 2020)

$$
\begin{aligned}
& \frac{d F_{r}}{d S_{r}}=\delta_{\sigma^{\prime} \sigma}\left(p_{0}(r)+\frac{2}{3} s_{0}(r)\right)+\hat{Q}_{\sigma^{\prime} \sigma}^{r r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)+p_{3}(r)+\frac{2}{3} s_{3}(r)\right), \quad \longrightarrow \quad \text { Normal force } \\
& \frac{d F_{\theta}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\theta r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \frac{d F_{\phi}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\phi r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \longrightarrow \quad \text { Tangential forces }
\end{aligned}
$$

- Stability condition (von Laue 1911): $\int d^{3} r p_{n}(r)=0$
- Local stability condition :
(unpolarized / spherically symmetric hadron) (Polyakov \& Schweitzer, 2018)

- D-term(unp): $\mathcal{D}_{0}=m \int d^{3} r r^{2} p_{0}(r)=-\frac{4}{15} m \int d^{3} r r^{2} s_{0}(r) \leq 0$

Equilibrium relation $\left(\partial_{\mu} \hat{T}^{\mu \nu}=0\right): \frac{2}{3} \frac{d s_{n}(r)}{d r}+2 \frac{s_{n}(r)}{r}+\frac{d p_{n}(r)}{d r}=0$

$p(r)$ and $s(r)$, normal/tangential force, stability conditions

- Force acting on the area element $d \mathbf{S}=\mathbf{d S}_{\mathbf{r}} \hat{\mathbf{e}}_{\mathbf{r}}+\mathbf{d} \mathbf{S}_{\theta} \hat{\mathbf{e}}_{\theta}+\mathbf{d S}_{\phi} \hat{\mathbf{e}}_{\phi}$ - (Panteleeva, Polyakov 2020)

$$
\begin{array}{ll}
\frac{d F_{r}}{d S_{r}}=\delta_{\sigma^{\prime} \sigma}\left(p_{0}(r)+\frac{2}{3} s_{0}(r)\right)+\hat{Q}_{\sigma^{\prime} \sigma}^{r r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)+p_{3}(r)+\frac{2}{3} s_{3}(r)\right), \quad \rightarrow \quad \text { Normal force } \\
\frac{d F_{\theta}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\theta r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \frac{d F_{\phi}}{d S_{r}}=\hat{Q}_{\sigma^{\prime} \sigma}^{\phi r}\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right), \quad \rightarrow \text { Tangential forces }
\end{array}
$$

- Stability condition (von Laue 1911): $\int d^{3} r p_{n}(r)=0$
- Local stability condition :
(unpolarized / spherically symmetric hadron) (Polyakov \& Schweitzer, 2018)

$$
\left.\frac{d F_{r}}{d S_{r}}\right|_{\text {unp }}=p_{0}(r)+\frac{2}{3} s_{0}(r) \geq 0
$$

- D-term(unp): $\mathcal{D}_{0}=m \int d^{3} r r^{2} p_{0}(r)=-\frac{4}{15} m \int d^{3} r r^{2} s_{0}(r) \leq 0$

Equilibrium relation $\left(\partial_{\mu} \hat{T}^{\mu \nu}=0\right): \frac{2}{3} \frac{d s_{n}(r)}{d r}+2 \frac{s_{n}(r)}{r}+\frac{d p_{n}(r)}{d r}=0$

$p_{0}(r)$ in Skyrme model (Kim, BDS, 2021)

GFFs at One-Loop order $(t=0)$

$$
\begin{aligned}
F_{1,0, \text { loop }}(0) & =0 \\
F_{1,1, \text { loop }}(0) & =-\frac{5 g_{1}^{2} m_{N}(3 \pi M-49 \delta)}{648 \pi^{2} F^{2}} \\
& +\frac{g_{\pi N \Delta}^{2} m_{N}}{144 \pi^{2} F^{2}\left(M^{2}-\delta^{2}\right)}\left(-53 \delta^{3}+24 \delta\left(M^{2}-\delta^{2}\right) \ln \frac{M}{m_{N}}+24 i \pi \delta^{2} \sqrt{\delta^{2}-M^{2}}-12 i \pi M^{2} \sqrt{\delta^{2}-M^{2}}\right. \\
& \left.+12\left(M^{2}-2 \delta^{2}\right) \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}+53 \delta M^{2}\right)+\mathcal{O}\left(\epsilon^{2}\right), \\
F_{2,0, \text { loop }}(0) & =-\frac{g_{1}^{2} m_{N}(25 \pi M-1068 \delta)}{2160 \pi^{2} F^{2}} \\
& +\frac{g_{\pi N \Delta}^{2} m_{N}\left(29 \delta+48 \delta \ln \frac{M}{m_{N}}-48 i \pi \sqrt{\delta^{2}-M^{2}}+48 \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}\right)}{288 \pi^{2} F^{2}}+\mathcal{O}\left(\epsilon^{2}\right), \\
F_{2,1, \text { loop }}(0) & =-\frac{g_{1}^{2} m_{N}^{3}}{54 \pi F^{2} M}+\frac{g_{\pi N \Delta}^{2} M m_{N}^{3} \sqrt{\frac{\delta^{2}}{M^{2}}-1}\left(\ln \left(\sqrt{\frac{\delta^{2}}{M^{2}}-1}+\frac{\delta}{M}\right)-i \pi\right)}{15 \pi^{2} F^{2}\left(M^{2}-\delta^{2}\right)}+\mathcal{O}\left(\epsilon^{0}\right), \\
F_{4,0, \text { loop }}(0) & =0, \\
F_{4,1, \text { loop }}(0) & =\frac{5 g_{\pi N \Delta}^{2} m_{N}^{2}}{576 \pi^{2} F^{2}}+\frac{235 g_{1}^{2} m_{N}^{2}}{2592 \pi^{2} F^{2}}+\mathcal{O}(\epsilon), \\
F_{5,0, \text { loop }}(0) & =-\frac{g_{1}^{2} m_{N}(150 \pi M-3323 \delta)}{25920 \pi^{2} F^{2}} \\
& +\frac{g_{\pi N \Delta}^{2} m_{N}\left(5 \delta+2 \delta \ln \frac{M}{m_{N}}-2 i \pi \sqrt{\delta^{2}-M^{2}}+2 \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}\right)}{96 \pi^{2} F^{2}}+\mathcal{O}\left(\epsilon^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
s_{F_{1,0}} & =\frac{g_{1}^{2}(8 \delta-255 \pi M)}{10368 \pi^{2} F^{2} m_{N}} \\
& +\frac{g_{\pi N \Delta}^{2}}{576 \pi^{2} F^{2} m_{N}\left(M^{2}-\delta^{2}\right)}\left(25 \delta\left(\delta^{2}-M^{2}\right)+24 \delta\left(\delta^{2}-M^{2}\right) \ln \frac{M}{m_{N}}-12 i \pi\left(2 \delta^{2}-M^{2}\right) \sqrt{\delta^{2}-M^{2}}\right. \\
& \left.-12\left(M^{2}-2 \delta^{2}\right) \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}\right)+\mathcal{O}\left(\epsilon^{2}\right), \\
s_{F_{1,1}} & =\frac{g_{1}^{2} m_{N}}{432 \pi F^{2} M}+\frac{g_{\pi N \Delta}^{2} m_{N}\left(\delta^{3}+M^{2}\left(-\delta+i \pi \sqrt{\delta^{2}-M^{2}}\right)-M^{2} \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}\right)}{120 \pi^{2} F^{2}\left(M^{2}-\delta^{2}\right)^{2}}+\mathcal{O}\left(\epsilon^{0}\right), \\
s_{F_{2,0}} & =-\frac{g_{1}^{2} m_{N}}{108 \pi F^{2} M}+\frac{g_{\pi N \Delta}^{2} m_{N}\left(\ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}-i \pi\right)}{60 \pi^{2} F^{2} \sqrt{\delta^{2}-M^{2}}}+\mathcal{O}\left(\epsilon^{0}\right), \\
s_{F_{2,1}} & =\frac{g_{\pi N \Delta}^{2} m_{N}^{3}\left(-\delta^{3}+M^{2}\left(\delta-i \pi \sqrt{\delta^{2}-M^{2}}\right)+M^{2} \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}\right)}{140 \pi^{2} F^{2} M^{2}\left(M^{2}-\delta^{2}\right)^{2}}-\frac{g_{1}^{2} m_{N}^{3}}{504 \pi F^{2} M^{3}}+\mathcal{O}\left(\epsilon^{-2}\right), \\
s_{F_{4,0}} & =\frac{g_{\pi N \Delta}^{2}\left(163 \delta^{2}-96\left(M^{2}-\delta^{2}\right) \ln \frac{M}{m_{N}}-96 i \pi \delta \sqrt{\delta^{2}-M^{2}}+96 \delta \sqrt{\delta^{2}-M^{2}} \ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}-163 M^{2}\right)}{4608 \pi^{2} F^{2}\left(M^{2}-\delta^{2}\right)} \\
& +\frac{g_{1}^{2}\left(877-150 \ln \frac{M}{m_{N}}\right)}{25920 \pi^{2} F^{2}}+\mathcal{O}(\epsilon), \\
s_{F_{4,1}} & =0+\mathcal{O}\left(\epsilon^{-1}\right), \\
s_{F_{5,0}} & =\frac{g_{1}^{2} m_{N}}{3456 \pi F^{2} M}+\frac{g_{\pi N \Delta}^{2} m_{N}\left(\ln \frac{\delta+\sqrt{\delta^{2}-M^{2}}}{M}-i \pi\right)}{960 \pi^{2} F^{2} \sqrt{\delta^{2}-M^{2}}}+\mathcal{O}\left(\epsilon^{0}\right) .
\end{aligned}
$$

Epelbaum, Gegelia, Lange, Meißner, Polyakov, PRL 2022

Localized Wave Packet

Heisenberg-picture:

$$
|\Phi, \mathbf{X}, s\rangle=\int \frac{d^{3} p}{\sqrt{2 E(2 \pi)^{3}}} \phi(s, \mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}|p, s\rangle
$$

Localized Wave Packet

Heisenberg-picture:

Normalization in ZAMF:
(Zero Average Momentum Frame)
$|\Phi, \mathbf{X}, s\rangle=\int \frac{d^{3} p}{\sqrt{2 E(2 \pi)^{3}}} \phi(s, \mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}|p, s\rangle$
$\int d^{3} p|\phi(s, \mathbf{p})|^{2}=1$

Localized Wave Packet

Heisenberg-picture:

Normalization in ZAMF:
(Zero Average Momentum Frame)
$|\Phi, \mathbf{X}, s\rangle=\int \frac{d^{3} p}{\sqrt{2 E(2 \pi)^{3}}} \phi(s, \mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}|p, s\rangle$
$\int d^{3} p|\phi(s, \mathbf{p})|^{2}=1$

Spherically Sym \& Dimensionless: $\quad \phi(\mathbf{p})=R^{3 / 2} \tilde{\phi}(R \mathbf{p})$

Localized Wave Packet

Heisenberg-picture:

Normalization in ZAMF:
(Zero Average Momentum Frame)

$$
|\Phi, \mathbf{X}, s\rangle=\int \frac{d^{3} p}{\sqrt{2 E(2 \pi)^{3}}} \phi(s, \mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}|p, s\rangle
$$

$$
\int d^{3} p|\phi(s, \mathbf{p})|^{2}=1
$$

Spherically Sym \& Dimensionless: $\quad \phi(\mathbf{p})=R^{3 / 2} \tilde{\phi}(R \mathbf{p})$

EM parameterization: $\quad\left\langle p_{f}, s^{\prime}\right| J_{\mu}\left|p_{i}, s\right\rangle=-\bar{u}^{\beta}\left(p_{f}, s^{\prime}\right)\left[\frac{P_{\mu}}{m}\left(g_{\alpha \beta} F_{1,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}^{V}\left(q^{2}\right)\right)\right.$
(spin-3/2)

$$
\left.+\frac{i}{2 m} \sigma_{\mu \rho} q^{\rho}\left(g_{\alpha \beta} F_{2,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}^{V}\left(q^{2}\right)\right)\right] u^{\alpha}\left(p_{i}, s\right)
$$

Localized Wave Packet

Heisenberg-picture:

Normalization in ZAMF:
(Zero Average Momentum Frame)

$$
|\Phi, \mathbf{X}, s\rangle=\int \frac{d^{3} p}{\sqrt{2 E(2 \pi)^{3}}} \phi(s, \mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{X}}|p, s\rangle
$$

$$
\int d^{3} p|\phi(s, \mathbf{p})|^{2}=1
$$

Spherically Sym \& Dimensionless: $\quad \phi(\mathbf{p})=R^{3 / 2} \tilde{\phi}(R \mathbf{p})$

EM parameterization: $\quad\left\langle p_{f}, s^{\prime}\right| J_{\mu}\left|p_{i}, s\right\rangle=-\bar{u}^{\beta}\left(p_{f}, s^{\prime}\right)\left[\frac{P_{\mu}}{m}\left(g_{\alpha \beta} F_{1,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}^{V}\left(q^{2}\right)\right)\right.$
(spin-3/2)

$$
\left.+\frac{i}{2 m} \sigma_{\mu \rho} q^{\rho}\left(g_{\alpha \beta} F_{2,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}^{V}\left(q^{2}\right)\right)\right] u^{\alpha}\left(p_{i}, s\right)
$$

Localize:

$$
\begin{aligned}
j_{\phi}^{\mu}\left(s^{\prime}, s, \mathbf{r}\right) & \equiv\left\langle\Phi, \mathbf{X}, s^{\prime}\right| \hat{J}^{\mu}(\mathbf{x}, 0)|\Phi, \mathbf{X}, s\rangle \\
& =-\int \frac{d^{3} P d^{3} q}{(2 \pi)^{3} \sqrt{4 E E^{\prime}}} \bar{u}^{\beta}\left(P+\frac{q}{2}, \sigma^{\prime}\right)\left[\frac{P_{\mu}}{m}\left(g_{\alpha \beta} F_{1,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}^{V}\left(q^{2}\right)\right)\right. \\
& \left.+\frac{i}{2 m} \sigma_{\mu \rho} q^{\rho}\left(g_{\alpha \beta} F_{2,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}^{V}\left(q^{2}\right)\right)\right] u^{\alpha}\left(P-\frac{q}{2}, \sigma\right) \phi\left(\mathbf{P}-\frac{\mathbf{q}}{2}\right) \phi^{\star}\left(\mathbf{P}+\frac{\mathbf{q}}{2}\right) e^{-i \mathbf{q} \cdot \mathbf{r}}
\end{aligned}
$$

$\mathbf{P} \equiv \mathbf{Q} / R, \quad R \rightarrow 0 \quad$ Only large \mathbf{P} region contributes $:$

Localized Wave Packet

Heisenberg-picture:

$$
|\Phi, \mathbf{X}, s\rangle=\int \frac{d^{3} p}{\sqrt{2 E(2 \pi)^{3}}} \phi(s, \mathbf{p}) e^{-i \mathbf{p} \cdot \mathbf{x}}|p, s\rangle
$$

Normalization in ZAMF:
(Zero Average Momentum Frame)

$$
\int d^{3} p|\phi(s, \mathbf{p})|^{2}=1
$$

Spherically Sym \& Dimensionless: $\quad \phi(\mathbf{p})=R^{3 / 2} \tilde{\phi}(R \mathbf{p})$

EM parameterization: $\quad\left\langle p_{f}, s^{\prime}\right| J_{\mu}\left|p_{i}, s\right\rangle=-\bar{u}^{\beta}\left(p_{f}, s^{\prime}\right)\left[\frac{P_{\mu}}{m}\left(g_{\alpha \beta} F_{1,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}^{V}\left(q^{2}\right)\right)\right.$
(spin-3/2)

$$
\left.+\frac{i}{2 m} \sigma_{\mu \rho} q^{\rho}\left(g_{\alpha \beta} F_{2,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}^{V}\left(q^{2}\right)\right)\right] u^{\alpha}\left(p_{i}, s\right)
$$

Localize:

$$
\begin{aligned}
j_{\phi}^{\mu}\left(s^{\prime}, s, \mathbf{r}\right) & \equiv\left\langle\Phi, \mathbf{X}, s^{\prime}\right| \hat{J}^{\mu}(\mathbf{x}, 0)|\Phi, \mathbf{X}, s\rangle \\
& =-\int \frac{d^{3} P d^{3} q}{(2 \pi)^{3} \sqrt{4 E E^{\prime}}} \bar{u}^{\beta}\left(P+\frac{q}{2}, \sigma^{\prime}\right)\left[\frac{P_{\mu}}{m}\left(g_{\alpha \beta} F_{1,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}^{V}\left(q^{2}\right)\right)\right. \\
& \left.+\frac{i}{2 m} \sigma_{\mu \rho} q^{\rho}\left(g_{\alpha \beta} F_{2,0}^{V}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}^{V}\left(q^{2}\right)\right)\right] u^{\alpha}\left(P-\frac{q}{2}, \sigma\right) \phi\left(\mathbf{P}-\frac{\mathbf{q}}{2}\right) \phi^{\star}\left(\mathbf{P}+\frac{\mathbf{q}}{2}\right) e^{-i \mathbf{q} \cdot \mathbf{r}}
\end{aligned}
$$

$\mathbf{P} \equiv \mathbf{Q} / R, \quad R \rightarrow 0 \quad$ Only large \mathbf{P} region contributes $:$
"Naive" Breit Frame is problematic:
first $m \rightarrow \infty$ then $R \rightarrow 0$

Pressure and Shear Forces

$$
\begin{array}{rlrl}
\tilde{t}_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right) \longrightarrow \begin{array}{ll}
p_{0}(r) & =\tilde{v}_{0}(r)-\frac{1}{6 m^{2}} \partial^{2} w_{0}(r),
\end{array} & s_{0}(r)=-\frac{1}{2 m^{2}} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{0}(r), \\
p_{2}(r) & =0, & s_{2}(r)=0, \\
p_{3}(r) & =m^{2} \tilde{v}_{1}(r)-\frac{1}{6} \partial^{2} w_{1}(r), & s_{3}(r)=-\frac{1}{2} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{1}(r),
\end{array}
$$

Pressure and Shear Forces

$$
\begin{array}{rlrl}
\tilde{t}_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right) \longrightarrow \begin{array}{ll}
p_{0}(r) & =\tilde{v}_{0}(r)-\frac{1}{6 m^{2}} \partial^{2} w_{0}(r),
\end{array} & s_{0}(r)=-\frac{1}{2 m^{2}} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{0}(r), \\
p_{2}(r) & =0, & s_{2}(r)=0, \\
p_{3}(r) & =m^{2} \tilde{v}_{1}(r)-\frac{1}{6} \partial^{2} w_{1}(r), & s_{3}(r)=-\frac{1}{2} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{1}(r),
\end{array}
$$

Conservation of EMT:

$$
\begin{aligned}
\left.\partial_{\mu} t_{\phi}^{\mu \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=\left.\partial_{0} t_{\phi}^{0 \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}+\left.\partial_{i} t_{\phi}^{i \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=0 . \\
\text { Breit Frame only has 2nd term }
\end{aligned}
$$

Pressure and Shear Forces

$$
\begin{array}{rlrl}
\tilde{t}_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right) \longrightarrow \begin{array}{ll}
p_{0}(r) & =\tilde{v}_{0}(r)-\frac{1}{6 m^{2}} \partial^{2} w_{0}(r),
\end{array} & s_{0}(r)=-\frac{1}{2 m^{2}} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{0}(r), \\
p_{2}(r) & =0, & s_{2}(r)=0, \\
p_{3}(r) & =m^{2} \tilde{v}_{1}(r)-\frac{1}{6} \partial^{2} w_{1}(r), & s_{3}(r)=-\frac{1}{2} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{1}(r),
\end{array}
$$

Conservation of EMT:

$$
\left.\partial_{\mu} t_{\phi}^{\mu \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=\left.\partial_{0} t_{\phi}^{0 \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}+\left.\partial_{i} t_{\phi}^{i \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=0
$$

Differential eqs:

$$
p_{n}^{\prime}(r)+\frac{2}{3} s_{n}^{\prime}(r)+\frac{2}{r} s_{n}(r)=h_{n}^{\prime}(r), \quad \text { with } n=0,2,3,
$$

Pressure and Shear Forces

$$
\begin{array}{rlrl}
\tilde{t}_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right) \longrightarrow \begin{array}{ll}
p_{0}(r) & =\tilde{v}_{0}(r)-\frac{1}{6 m^{2}} \partial^{2} w_{0}(r),
\end{array} & s_{0}(r)=-\frac{1}{2 m^{2}} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{0}(r), \\
p_{2}(r) & =0, & s_{2}(r)=0, \\
p_{3}(r) & =m^{2} \tilde{v}_{1}(r)-\frac{1}{6} \partial^{2} w_{1}(r), & s_{3}(r)=-\frac{1}{2} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{1}(r),
\end{array}
$$

Conservation of EMT:

$$
\left.\partial_{\mu} t_{\phi}^{\mu \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=\left.\partial_{0} t_{\phi}^{0 \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}+\left.\partial_{i} t_{\phi}^{i \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=0 .
$$

Differential eqs:

$$
p_{n}^{\prime}(r)+\frac{2}{3} s_{n}^{\prime}(r)+\frac{2}{r} s_{n}(r)=h_{n}^{\prime}(r), \quad \text { with } n=0,2,3,
$$

von Laue stability condition: $\int d^{3} r p_{n}(r)=0, \quad$ with $n=0,2,3$, as long as $\lim _{q_{\perp}^{2} \rightarrow 0}\left(q_{\perp}^{2}\right)^{\delta} F_{2,0}\left(-q_{\perp}^{2}\right)=0$ and $\lim _{q_{\perp}^{2} \rightarrow 0}\left(q_{\perp}^{2}\right)^{\delta} F_{2,1}\left(-q_{\perp}^{2}\right)=0$, for $\delta>0$.

Pressure and Shear Forces

$$
\begin{array}{rlrl}
\tilde{t}_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right) \longrightarrow \begin{array}{ll}
p_{0}(r) & =\tilde{v}_{0}(r)-\frac{1}{6 m^{2}} \partial^{2} w_{0}(r),
\end{array} & s_{0}(r)=-\frac{1}{2 m^{2}} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{0}(r), \\
p_{2}(r) & =0, & s_{2}(r)=0, \\
p_{3}(r) & =m^{2} \tilde{v}_{1}(r)-\frac{1}{6} \partial^{2} w_{1}(r), & s_{3}(r)=-\frac{1}{2} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{1}(r),
\end{array}
$$

Conservation of EMT:

$$
\left.\partial_{\mu} t_{\phi}^{\mu \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=\left.\partial_{0} t_{\phi}^{0 \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}+\left.\partial_{i} t_{\phi}^{i \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=0 .
$$

Differential eqs:

$$
p_{n}^{\prime}(r)+\frac{2}{3} s_{n}^{\prime}(r)+\frac{2}{r} s_{n}(r)=h_{n}^{\prime}(r), \quad \text { with } n=0,2,3,
$$

von Laue stability condition: $\int d^{3} r p_{n}(r)=0$, with $n=0,2,3$, as long as $\lim _{q_{\perp}^{2} \rightarrow 0}\left(q_{\perp}^{2}\right)^{\delta} F_{2,0}\left(-q_{\perp}^{2}\right)=0$ and $\lim _{q_{\perp}^{2} \rightarrow 0}\left(q_{\perp}^{2}\right)^{\delta} F_{2,1}\left(-q_{\perp}^{2}\right)=0$, for $\delta>0$.

Generalized D-terms: $\quad \mathcal{D}_{n}=-\frac{4}{15} m^{2} \int \mathrm{~d}^{3} r r^{2} s_{n}(r)=m^{2} \int d^{3} r r^{2}\left[p_{n}(r)-h_{n}(r)\right], \quad$ with $n=0,2,3$.

Pressure and Shear Forces

$$
\begin{array}{rlrl}
\tilde{t}_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right) \longrightarrow \begin{array}{ll}
p_{0}(r) & =\tilde{v}_{0}(r)-\frac{1}{6 m^{2}} \partial^{2} w_{0}(r),
\end{array} & s_{0}(r)=-\frac{1}{2 m^{2}} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{0}(r), \\
p_{2}(r) & =0, & s_{2}(r)=0, \\
p_{3}(r) & =m^{2} \tilde{v}_{1}(r)-\frac{1}{6} \partial^{2} w_{1}(r), & s_{3}(r)=-\frac{1}{2} r \frac{d}{d r} \frac{1}{r} \frac{d}{d r} w_{1}(r),
\end{array}
$$

Conservation of EMT:

$$
\left.\partial_{\mu} t_{\phi}^{\mu \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=\left.\partial_{0} t_{\phi}^{0 \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}+\left.\partial_{i} t_{\phi}^{i \nu}\left(s^{\prime}, s, \mathbf{r}, t\right)\right|_{t=0}=0 .
$$

Differential eqs:

von Laue stability condition: $\int d^{3} r p_{n}(r)=0, \quad$ with $n=0,2,3$,
as long as $\lim _{q_{\perp}^{2} \rightarrow 0}\left(q_{\perp}^{2}\right)^{\delta} F_{2,0}\left(-q_{\perp}^{2}\right)=0$ and $\lim _{q_{\perp}^{2} \rightarrow 0}\left(q_{\perp}^{2}\right)^{\delta} F_{2,1}\left(-q_{\perp}^{2}\right)=0$, for $\delta>0$.

Generalized D-terms: $\quad \mathcal{D}_{n}=-\frac{4}{15} m^{2} \int \mathrm{~d}^{3} r r^{2} s_{n}(r)=m^{2} \int d^{3} r r^{2}\left[p_{n}(r)-h_{n}(r)\right], \quad$ with $n=0,2,3$.

Internal forces: $\quad \frac{d F_{r}}{d S_{r}}=N_{\phi, R, 2}\left[\left(p_{0}(r)+\frac{2}{3} s_{0}(r)\right) \delta_{s^{\prime} s}+\left(p_{2}(r)+\frac{2}{3} s_{2}(r)\right) \hat{Q}_{s^{\prime} s}^{r r}+\ldots, \quad \frac{d F_{\theta}}{d S_{r}}=\ldots, \quad \frac{d F_{\varphi}}{d S_{r}}=\ldots\right.$

EMT densities

Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022
Freese, Miller, 2022
Panteleeva, Epelbaum, Gegelia, Meißner, 2022

$$
\begin{align*}
t_{\phi}^{\mu \nu}(\mathbf{r}) & \equiv\left\langle\Phi, \mathbf{X}, s^{\prime}\right| \hat{T}^{\mu \nu}(\mathbf{x}, 0)|\Phi, \mathbf{X}, s\rangle \\
& =-\int \frac{d^{3} P d^{3} q}{(2 \pi)^{3} \sqrt{4 E E^{\prime}}} \bar{u}^{\beta}\left(P+\frac{q}{2}, \sigma^{\prime}\right)\left[\frac{P_{\mu} P_{\nu}}{m}\left(g_{\alpha \beta} F_{1,0}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}\left(q^{2}\right)\right)\right. \\
& +\frac{q_{\mu} q_{\nu}-\eta_{\mu \nu} q^{2}}{4 m}\left(g_{\alpha \beta} F_{2,0}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}\left(q^{2}\right)\right)+\frac{i}{2} \frac{\left(P_{\mu} \sigma_{\nu \rho}+P_{\nu} \sigma_{\mu \rho}\right) q^{\rho}}{m}\left(g_{\alpha \beta} F_{4,0}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{4,1}\left(q^{2}\right)\right) \\
& -\frac{1}{m}\left(g_{\nu \beta} q_{\mu} q_{\alpha}+g_{\mu \beta} q_{\nu} q_{\alpha}+g_{\nu \alpha} q_{\mu} q_{\beta}+g_{\mu \alpha} q_{\nu} q_{\beta}-2 g_{\mu \nu} q_{\alpha} q_{\beta}\right. \\
& \left.\left.-g_{\mu \beta} g_{\nu \alpha} q^{2}-g_{\nu \beta} g_{\mu \alpha} q^{2}\right) F_{5,0}\left(q^{2}\right)\right] u^{\alpha}\left(P-\frac{q}{2}, \sigma\right) \phi\left(\mathbf{P}-\frac{\mathbf{q}}{2}\right) \phi^{\star}\left(\mathbf{P}+\frac{\mathbf{q}}{2}\right) e^{-i \mathbf{q} \cdot \mathbf{r}} . \tag{21}
\end{align*}
$$

EMT densities

$$
\begin{align*}
t_{\phi}^{\mu \nu}(\mathbf{r}) & \equiv\left\langle\Phi, \mathbf{X}, s^{\prime}\right| \hat{T}^{\mu \nu}(\mathbf{x}, 0)|\Phi, \mathbf{X}, s\rangle \\
& =-\int \frac{d^{3} P d^{3} q}{(2 \pi)^{3} \sqrt{4 E E^{\prime}}} \bar{u}^{\beta}\left(P+\frac{q}{2}, \sigma^{\prime}\right)\left[\frac{P_{\mu} P_{\nu}}{m}\left(g_{\alpha \beta} F_{1,0}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{1,1}\left(q^{2}\right)\right)\right. \\
& +\frac{q_{\mu} q_{\nu}-\eta_{\mu \nu} q^{2}}{4 m}\left(g_{\alpha \beta} F_{2,0}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{2,1}\left(q^{2}\right)\right)+\frac{i}{2} \frac{\left(P_{\mu} \sigma_{\nu \rho}+P_{\nu} \sigma_{\mu \rho}\right) q^{\rho}}{m}\left(g_{\alpha \beta} F_{4,0}\left(q^{2}\right)-\frac{q_{\alpha} q_{\beta}}{2 m^{2}} F_{4,1}\left(q^{2}\right)\right) \\
& -\frac{1}{m}\left(g_{\nu \beta} q_{\mu} q_{\alpha}+g_{\mu \beta} q_{\nu} q_{\alpha}+g_{\nu \alpha} q_{\mu} q_{\beta}+g_{\mu \alpha} q_{\nu} q_{\beta}-2 g_{\mu \nu} q_{\alpha} q_{\beta}\right. \\
& \left.\left.-g_{\mu \beta} g_{\nu \alpha} q^{2}-g_{\nu \beta} g_{\mu \alpha} q^{2}\right) F_{5,0}\left(q^{2}\right)\right] u^{\alpha}\left(P-\frac{q}{2}, \sigma\right) \phi\left(\mathbf{P}-\frac{\mathbf{q}}{2}\right) \phi^{\star}\left(\mathbf{P}+\frac{\mathbf{q}}{2}\right) e^{-i \mathbf{q} \cdot \mathbf{r}} . \tag{21}
\end{align*}
$$

Using multipole expansion:

$$
\begin{align*}
& t_{\phi}^{00}\left(s^{\prime}, s, \mathbf{r}\right)=N_{\phi, R} \int \frac{d^{3} q}{(2 \pi)^{3}} e^{-i \mathbf{q} \cdot \mathbf{r}} \int d^{2} \hat{n}\left\{\mathcal{E}_{0}\left(q_{\perp}^{2}\right) \delta_{s^{\prime} s}+\left[\mathcal{E}_{1}\left(q_{\perp}^{2}\right) \hat{n}^{k} \hat{n}^{l}+\mathcal{E}_{2}\left(q_{\perp}^{2}\right) \frac{q_{\perp}^{k} q_{\perp}^{l}}{m^{2}}\right] \hat{Q}_{s^{\prime} s}^{k l}\right\}, \tag{22a}\\
& t_{\phi}^{0 i}\left(s^{\prime}, s, \mathbf{r}\right)=i N_{\phi, R} \int \frac{d^{3} q}{(2 \pi)^{3}} e^{-i \mathbf{q} \cdot \mathbf{r}} \int d^{2} \hat{n}\left\{\left[\mathcal{C}_{0}\left(q_{\perp}^{2}\right) \epsilon^{k l n} \hat{n}^{l} \hat{n}^{i}+\mathcal{C}_{1}\left(q_{\perp}^{2}\right) \epsilon^{i l n}\left(\delta^{k l}-\hat{n}^{k} \hat{n}^{l}\right)\right] \frac{q_{\perp}^{n}}{m} \hat{S}_{s^{\prime} s}^{k}\right. \\
& +\left[\left(\mathcal{C}_{2}\left(q_{\perp}^{2}\right) \hat{n}^{t} \hat{n}^{z}+\mathcal{C}_{3}\left(q_{\perp}^{2} \frac{q_{\perp}^{t} q_{\perp}^{z}}{m^{2}}\right) \epsilon^{k l n} \hat{n}^{l} \hat{n}^{i}\right.\right. \\
& \left.\left.+\left(\mathcal{C}_{4}\left(q_{\perp}^{2}\right) \hat{n}^{t} \hat{n}^{z}+\mathcal{C}_{5}\left(q_{\perp}^{2}\right) s \frac{q_{\perp}^{t} q_{\perp}^{z}}{m^{2}}\right) \epsilon^{i l n}\left(\delta^{k l}-\hat{n}^{k} \hat{n}^{l}\right)\right] \frac{q_{\perp}^{n}}{m} \hat{O}_{s^{\prime} s}^{k t z}\right\}, \tag{22b}\\
& t_{\phi}^{i j}\left(s^{\prime}, s, \mathbf{r}\right)=t_{\phi, 0}^{i j}\left(s^{\prime}, s, \mathbf{r}\right)+t_{\phi, 2}^{i j}\left(s^{\prime}, s, \mathbf{r}\right), \tag{22c}\\
& \text { internal pressure \& shear forces } \\
& \text { (needs higher order contributions) }
\end{align*}
$$

$$
\begin{align*}
\rho_{0}^{E}(r) & =\frac{25 g_{1}^{2}}{1536 F^{2} m_{\Delta}} \frac{1}{r^{6}}-\frac{10 g_{1}^{2}}{81 \pi^{2} F^{2} m_{\Delta}^{2}} \frac{1}{r^{7}}+\mathcal{O}\left(\frac{1}{r^{8}}\right), \tag{51}\\
\rho_{2}^{E}(r) & =\frac{35 g_{1}^{2}}{6144 F^{2} m_{\Delta}} \frac{1}{r^{6}}+\frac{35 g_{1}^{2}}{162 \pi^{2} F^{2} m_{\Delta}^{2}} \frac{1}{r^{7}}+\mathcal{O}\left(\frac{1}{r^{8}}\right), \tag{52}\\
\rho_{1}^{J}(r) & =\frac{5 g_{1}^{2}}{162 \pi^{2} F^{2} m_{\Delta}} \frac{1}{r^{5}}-\frac{125 g_{1}^{2}}{3072 F^{2} m_{\Delta}^{2}} \frac{1}{r^{6}}+\mathcal{O}\left(\frac{1}{r^{7}}\right), \tag{53}\\
\rho_{3}^{J}(r) & =-\frac{625 g_{1}^{2}}{24576 F^{2} m_{\Delta}^{2}} \frac{1}{r^{6}}+\frac{5 g_{1}^{2}}{54 \pi^{2} F^{2} m_{\Delta}^{3}} \frac{1}{r^{7}}+\mathcal{O}\left(\frac{1}{r^{8}}\right), \tag{54}\\
p_{0}(r) & =-\frac{25 g_{1}^{2}}{2304 F^{2} m_{\Delta}} \frac{1}{r^{6}}-\frac{75 g_{1}^{2}}{1024 F^{2} m_{\Delta}^{3}} \frac{1}{r^{8}}+\mathcal{O}\left(\frac{1}{r^{9}}\right), \tag{55}\\
s_{0}(r) & =\frac{5 g_{1}^{2}}{96 F^{2} m_{\Delta}} \frac{1}{r^{6}}+\frac{15 g_{1}^{2}}{64 F^{2} m_{\Delta}^{3}} \frac{1}{r^{8}}+\mathcal{O}\left(\frac{1}{r^{8}}\right), \tag{56}\\
p_{3}(r) & =\frac{85 g_{1}^{2} m_{\Delta}}{221184 F^{2}} \frac{1}{r^{4}}-\frac{155 g_{1}^{2}}{196608 F^{2} m_{\Delta}} \frac{1}{r^{6}}+\mathcal{O}\left(\frac{1}{r^{8}}\right), \tag{57}\\
s_{3}(r) & =-\frac{25 g_{1}^{2} m_{\Delta}}{9216 F^{2}} \frac{1}{r^{4}}+\frac{15 g_{1}^{2}}{4096 F^{2} m_{\Delta}} \frac{1}{r^{6}}+\mathcal{O}\left(\frac{1}{r^{8}}\right) . \tag{58}
\end{align*}
$$

general stability conditions: $\quad \rho_{0}^{E}(r)>0$ and $\frac{2}{3} s_{0}(r)+p_{0}(r)>0$

Note: necessary but not sufficient for a system to be stable

