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1. Introduce GFFs and D-term
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3.  ChPT results for GFFs & Local spatial densities
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Proton electromagnetic Form Factors:

Ji  1995 &1997;

Polyakov, 1999, 2003

mass

spin

D-term

t → 0

external

properties

“internal”

property

“Druck”= pressure

(a = q, g)

Proton EMT FFs (ie: gravitational form factors GFFs):

Dirac FF Pauli FF

Sachs FFs charge
t → 0

magnetic 


moment

Charge density in Breit frame:

Charge radius:

2P = (p′￼+ p) = (2E, 0⃗)
Δ = (p′￼− p) = (0, ⃗Δ)
t = Δ2

3+1

✤ Free fermion:  : interaction!  Hudson & Schweitzer, 2018Dfermion = 0 → ≠ 0



• Energy(mass) densities


       


Interpretation: Static EMT
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• Spin density


          

(Kim, BDS, 2020)

• Pressure and shear forces: (“mechanical properties”) 

     (Polyakov, BDS, 2019, Panteleeva, Polyakov, 2020)


       

• Definition in Breit frame (Polyakov, 2003)


        


See Panteleeva’s talk for 

novel definitions of local densities 

• Radii: (energy, spin, mechanical) 

• Local stability condition & -terms: 


     (Polyakov & Schweitzer, 2018)

D

Fn(r)

Ft(r)

Epelbaum, Gegelia, Lange, Meißner, Polyakov, PRL 2022

Panteleeva, Epelbaum, Gegelia, Meißner, 2023

Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2023
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spin-0 GFFs and its D-term

Definition: 2+1

Kobzarev & Okun 1962; Pagels 1966;

Free Klein-Gordon field (no interaction): Callan, Coleman, Jackiw 1970


Collins, 1976,  

Hudson & Schweitzer, 2017



4

spin-0 GFFs and its D-term

Definition: 2+1

Kobzarev & Okun 1962; Pagels 1966;

Free Klein-Gordon field (no interaction): Callan, Coleman, Jackiw 1970


Collins, 1976,  

Hudson & Schweitzer, 2017

Action in cured spacetime with conformal symmetry requires a non-minimal coupling term:

Generate one “improvement term” in EMT (not vanish in flat limit) 
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spin-0 GFFs and its D-term

Definition: 2+1

Kobzarev & Okun 1962; Pagels 1966;

Free Klein-Gordon field (no interaction):

• Even infinitesimally small interactions can 


    drastically impact D-term


• Cannot arbitrarily add “total derivatives” to 


    the EMT


•  removes UV divergences up to three 


    loops in dimensional regularization
h

Callan, Coleman, Jackiw 1970


Collins, 1976,  

Hudson & Schweitzer, 2017

Action in cured spacetime with conformal symmetry requires a non-minimal coupling term:

Generate one “improvement term” in EMT (not vanish in flat limit) 



spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)
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6 conserving 


3 non-conserving



spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)
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Spin operators:

(for )S = 1

Polyakov & Schweitzer, 2018

6 conserving 


3 non-conserving



spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)
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Spin operators:

(for )S = 1

Polyakov & Schweitzer, 2018

Multipole expansion: (Polyakov, BDS, 2019)


     

6 conserving 


3 non-conserving



spin-1 GFFs

Definition: (Holstein, 2006; Cosyn et al, 2019; Polyakov, BDS, 2019)
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Gravitational multipole form factors 

Spin operators:

(for )S = 1

Polyakov & Schweitzer, 2018

Multipole expansion: (Polyakov, BDS, 2019)


     

6 conserving 


3 non-conserving



spin-3/2 GFFs

Definition: (Cosyn et al, 2019)
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Rarita-Schwinger spinor:


7 conserving 


3 non-conserving

(spin)



spin-3/2 GFFs

Definition: (Cosyn et al, 2019)
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Rarita-Schwinger spinor:


7 conserving 


3 non-conserving

Octupole operator:

-rank irreducible tensors:n
(spin)



spin-3/2 GFFs

Definition: (Cosyn et al, 2019)
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Rarita-Schwinger spinor:


7 conserving 


3 non-conserving

Octupole operator:

-rank irreducible tensors:n
(spin)

Multipole expansion: (Kim, BDS, 2020)


     



spin-3/2 GFFs

Definition: (Cosyn et al, 2019)
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Rarita-Schwinger spinor:


7 conserving 


3 non-conserving

Octupole operator:

-rank irreducible tensors:n
(spin)

Multipole expansion: (Kim, BDS, 2020)


     

Gravitational multipole form factors 



 densities by SU(2) Skyrme model (Kim, BDS, 2020)Δ
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 GFFs/GMFFs by SU(2) Skyrme model (Kim, BDS, 2020)Δ
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QCD-Sum-Rule approach for spin-3/2 GFFs Dehghan, Azizi, Özdem, 2023

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10

F 1
,0

(Q
2 )

Q2[GeV2]

s0 = 2.9 GeV2

s0 = 3.1 GeV2

s0 = 3.3 GeV2

-4
-3.5

-3
-2.5

-2
-1.5

-1
-0.5

 0

 0  2  4  6  8  10
F 2

,0
(Q

2 )

Q2[GeV2]

s0 = 2.9 GeV2

s0 = 3.1 GeV2

s0 = 3.3 GeV2

-0.16
-0.14
-0.12

-0.1
-0.08
-0.06
-0.04
-0.02

 0

 0  2  4  6  8  10

F 5
,0

(Q
2 )

Q2[GeV2]

s0 = 2.9 GeV2

s0 = 3.1 GeV2

s0 = 3.3 GeV2



10

Lattice QCD calculation for gluonic GFFs Pefkou, Hackett, Shanahan, 2022

Dg < 0 ?
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 in quark-diquark model Fu, BDS, Dong, 2022
Δ

With D-term ? •   Ji, Liu 2021, 2022


      Not applicable to low-density objects?
Dhydrogen > 0

Quark model is too rough？ 
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ChPT actions for  in curved space-time Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022Δ

Δ

N

π

Spin connection:

Christoffel symbol:

Vielbein fields :ea
μ connects Lorentz indices  and Dirac indices : μ a

Rarita-Schwinger fields:

Derivatives on fields:
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a) b) c) d)

e) f) g) h)

counting scheme (small scale expansion) Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022ϵ−

To calc delta matrix elements of order :3

Loop momenta:   1 


Pion lines:         


Nucleon lines:   


Delta lines:        


 vertices :      

−2
−1
−1

L(N ) N

Pion mass :                


Derivatives on  or :  


Masses :            


:                 1


Momentum transfer:    1

M 1
N Δ 0

mΔ, mN 0
δ = mΔ − mN

Use EOMS(extended on-mass-shell) scheme to remove divergent parts 


and power counting violating pieces. Renormalization scale chosen as .  μ = mN
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Actions Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022

• Off-shell parameter 


• LECs 

A = − 1
g2 = g3 = − g1
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Actions Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022

Riemann tensor:

Ricci tensor:

Ricci scalar:

1, EMT surface terms DO matters! (Recall the spin-0 case. Hudson,Schweitzer, 2017)


2, Absorb power-counting violating terms

Chiral order = 2
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EMT vertices Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022

Actions in curved space-time:

Calc EMT:

EMTs:
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GFFs at Tree order Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022

GFFs at One-Loop order ( )t = 0

Slopes of the GFFs:
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Long-range behavior of local spatial densities Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2023

Energy densities:

Spin densities:

Pressure & shear force densities:

Note: delta resonances are unstable particles, our expressions satisfy the general 

stability conditions. It agrees with the observation by other approaches. 
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Thanks for your attention!

Summary and Outlook

1. Parameterization of the matrix elements of EMT defines GFFs, which relate to the fundamental 

properties, mass, spin, -term. 


2. -terms for particles with different spins are discussed. 


3. Spin-3/2 GFFs are calculated in different approaches, Skyme model, Lattice QCD (gluon part), 

QCD-sum-rules. 


4. But their predictions are quit different and it motivate us to carry out the ChPT calculation. Still one 

need more input data to fix the LECs to obtain the GFFs and its -term. Lattice QCD calculation 

for spin 3/2 quark GFFs are excepted. 


5. ChPT calculation for  gravitational transition FFs is on-going.

D

D

D

N − Δ



Backup
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Generalized parton distributions (GPDs) of spin-3/2 Fu, BDS, Dong 2022, 2023

k − ∆
2

k + ∆
2

q q′

p = P − ∆
2 p′ = P + ∆

2

GPD

8 independent unpolarized GPDs: 

Vector matrix elements:

quark gluon
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Sum rules for spin-3/2 GPDs

•  GPDs  GFFsΔ ↔•  GPDs  EM FFsΔ ↔

Mellin moments for deriving sum-rules:

n → 1
n → 0



Free massive vector particle

23

• Proca Lagrangian + a non-minimal term (?): 


           

• all GFFs are -independent:  free of interaction


•  : seems NOT allowed …

t

Dρ ≤ 0 ?↔ h ≥
1
12

Holstein, 2006; Polyakov, BDS, 2019



Free massive vector particle
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• Proca Lagrangian + a non-minimal term (?): 


           

• all GFFs are -independent:  free of interaction


•  : seems NOT allowed …

t

Dρ ≤ 0 ?↔ h ≥
1
12

Holstein, 2006; Polyakov, BDS, 2019

Ricci scalar term breaks CI !

•  Riemann tensor , Weyl tensor , etc., but NO suitable mass-dim-4 terms!Rμνρσ Cμνρσ

• choices of : conformal invariance (CI) (or not)S

• conformal transformation: (Dabrowski, 2009) 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One-Loop contributions to GFFs
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 (Rarita-Schwinger) fieldsΔ
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For the three isospin doublets we use the representation

Isospin doublet spin 3/2 field:

Attaching an additional isovector index i = 1,2,3 to it and use the subsidiary condition:  

to eliminate two degrees of freedom. 



Fn(r)

Ft(r)

 and , normal/tangential force, stability conditionsp(r) s(r)

• Force acting on the area element 


        

dS = dSr ̂er + dSθ ̂eθ + dSϕ ̂eϕ

26

Normal force


Tangential forces

• (Panteleeva, Polyakov 2020)



Fn(r)

Ft(r)

 and , normal/tangential force, stability conditionsp(r) s(r)

• Force acting on the area element 


        

dS = dSr ̂er + dSθ ̂eθ + dSϕ ̂eϕ

26

Normal force


Tangential forces

• Stability condition (von Laue 1911):   

• Local stability condition : 


    (unpolarized / spherically symmetric hadron)

• -term(unp): D

(Polyakov & Schweitzer, 2018)

• (Panteleeva, Polyakov 2020)
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26

Normal force


Tangential forces

Equilibrium relation ( ): ∂μ
̂Tμν = 0

 (Goeke, et al, 2007)

• Stability condition (von Laue 1911):   

• Local stability condition : 


    (unpolarized / spherically symmetric hadron)

• -term(unp): D

(Polyakov & Schweitzer, 2018)

• (Panteleeva, Polyakov 2020)
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Normal force


Tangential forces

Equilibrium relation ( ): ∂μ
̂Tμν = 0

 (Goeke, et al, 2007)

• Stability condition (von Laue 1911):   

• Local stability condition : 


    (unpolarized / spherically symmetric hadron)

• -term(unp): D

(Polyakov & Schweitzer, 2018)

 in Skyrme model 

(Kim, BDS, 2021)
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GFFs at One-Loop order ( )t = 0



28

Slopes of the GFFs
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Localized Wave Packet

2

To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:

|�,X, si =

Z
d
3
pp

2E(2⇡)3
�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition

Z
d
3
p |�(s,p)|2 = 1 . (3)

To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:

hpf , s
0
|Jµ|pi, si = �ū

�(pf , s
0)

"
Pµ

m

⇣
g↵�F

V
1,0(q

2)�
q↵q�

2m2
F

V
1,1(q

2)
⌘

+
i

2m
�µ⇢q

⇢
⇣
g↵�F

V
2,0(q

2)�
q↵q�

2m2
F

V
2,1(q

2)
⌘#

u
↵(pi, s) , (5)

where P = (pi+pf )/2, q = pf�pi. In terms of these variables, the energies are given as E = (m2+P2
�P·q+q2

/4)1/2

and E
0 = (m2 +P2 +P · q+ q2

/4)1/2. The spinors of the spin-3/2 states are defined as follows:

u
µ(p, s) =

X

�,�

h1�,
1

2
�|

3

2
sie

µ(p,�)u(p,�) ,

e
µ(p,�) =

✓
ê� · p

m
, ê� +

p(ê� · p)

m(p0 +m)

◆
,

u(p,�) =
p
p0 +m

✓
��,

� · p

p0 +m
��

◆T

, (6)

where h1�, 1
2�|

3
2si are the pertinent Clebsh-Gordon coe�cients and

ê+ = �
1
p
2
(1, i, 0) , ê0 = (0, 0, 1) , ê� =

1
p
2
(1,�i, 0) . (7)

The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by

j
µ
�(s

0
, s, r) ⌘ h�,X, s

0
|Ĵ

µ(x, 0)|�,X, si

= �

Z
d
3
P d

3
q

(2⇡)3
p
4EE0

ū
�
⇣
P +

q

2
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0
⌘"
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P �
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2
,�

⌘
�

✓
P�

q

2

◆
�
?

✓
P+

q

2

◆
e
�iq·r

, (8)

where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV

1,0(q
2), FV

1,1(q
2), FV

2,0(q
2) and F

V
2,1(q

2) decay for large q
2 as 1/q2, 1/q4, 1/q3, 1/q5 (or faster),

Heisenberg-picture:

Epelbaum, Gegelia, Lange, Meißner, Polyakov, PRL 2022

Panteleeva, Epelbaum, Gegelia, Meißner, 2022

Alharazin, BDS, Epelbaum, Gegelia, Meißner, 2022
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�(pf , s
0)

"
Pµ

m

⇣
g↵�F

V
1,0(q

2)�
q↵q�

2m2
F

V
1,1(q

2)
⌘

+
i

2m
�µ⇢q

⇢
⇣
g↵�F

V
2,0(q

2)�
q↵q�

2m2
F

V
2,1(q

2)
⌘#

u
↵(pi, s) , (5)

where P = (pi+pf )/2, q = pf�pi. In terms of these variables, the energies are given as E = (m2+P2
�P·q+q2

/4)1/2

and E
0 = (m2 +P2 +P · q+ q2

/4)1/2. The spinors of the spin-3/2 states are defined as follows:

u
µ(p, s) =

X

�,�

h1�,
1

2
�|

3

2
sie

µ(p,�)u(p,�) ,

e
µ(p,�) =

✓
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(1, i, 0) , ê0 = (0, 0, 1) , ê� =
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:

|�,X, si =

Z
d
3
pp

2E(2⇡)3
�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition

Z
d
3
p |�(s,p)|2 = 1 . (3)

To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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2), FV

2,0(q
2) and F

V
2,1(q

2) decay for large q
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions
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�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV

1,0(q
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2) decay for large q
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where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:

|�,X, si =
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pp

2E(2⇡)3
�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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p |�(s,p)|2 = 1 . (3)

To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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2E(2⇡)3
�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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p |�(s,p)|2 = 1 . (3)

To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
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ū
�
⇣
P +

q

2
,�

0
⌘"

Pµ

m

⇣
g↵�F

V
1,0(q

2)�
q↵q�

2m2
F

V
1,1(q

2)
⌘

+
i

2m
�µ⇢q

⇢
⇣
g↵�F

V
2,0(q

2)�
q↵q�

2m2
F

V
2,1(q

2)
⌘#

u
↵
⇣
P �

q

2
,�

⌘
�

✓
P�

q

2

◆
�
?

✓
P+

q

2

◆
e
�iq·r

, (8)

where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
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where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
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Z
d
3
p |�(s,p)|2 = 1 . (3)

To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
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where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:

hpf , s
0
|Jµ|pi, si = �ū
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ê+ = �
1
p
2
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
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sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions
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where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
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(1, i, 0) , ê0 = (0, 0, 1) , ê� =
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
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of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
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�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
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�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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2) decay for large q
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions
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where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system
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hpf , s
0
|Jµ|pi, si = �ū
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, ê� +
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions
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�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
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�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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�(pf , s
0)

"
Pµ

m

⇣
g↵�F

V
1,0(q

2)�
q↵q�

2m2
F

V
1,1(q

2)
⌘

+
i

2m
�µ⇢q

⇢
⇣
g↵�F

V
2,0(q

2)�
q↵q�

2m2
F

V
2,1(q

2)
⌘#

u
↵(pi, s) , (5)
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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Heisenberg-picture:
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:
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�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:

|�,X, si =
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2E(2⇡)3
�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition
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To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
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�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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ê� · p

m
, ê� +
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where h1�, 1
2�|

3
2si are the pertinent Clebsh-Gordon coe�cients and
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The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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2) decay for large q
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EM parameterization:
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To define the spatial densities via the matrix elements of local operators we use normalizable Heisenberg-picture
states written in terms of wave packets as follows:

|�,X, si =

Z
d
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pp

2E(2⇡)3
�(s,p) e�ip·X

|p, si, (2)

where the parameters X are interpreted as the coordinates of the center of the charge or mass distribution, corre-
sponding to the operator under consideration, and the profile function satisfies the normalization condition

Z
d
3
p |�(s,p)|2 = 1 . (3)

To define the density distributions of the system we use spherically symmetric wave packets and profile functions
of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions

�(p) = R
3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system

can be parameterized in terms of four form factors, see Ref. [31] for a review. We use here the notation of Ref. [32]:
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ê+ = �
1
p
2
(1, i, 0) , ê0 = (0, 0, 1) , ê� =
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where r = x�X. By applying the method of dimensional counting of Ref. [33], the leading contributions in Eq. (8)
for R ! 0 can be obtained without specifying the form of the form-factors and the profile function �(|p|). Provided
that the form factors FV
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of which �(s,p) = �(p) = �(|p|) are also spin-independent. The average of the three-momentum of the system
vanishes in states corresponding to such packets, thus they describe the system in the ZAMF. For our calculations it
is convenient to define dimensionless profile functions
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3/2

�̃(Rp) , (4)

where R specifies the size of the wave packet. Small values of R correspond to sharp localization of the packet.
The matrix elements of the electromagnetic current operator between momentum eigenstates of a spin-3/2 system
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1
p
2
(1,�i, 0) . (7)

The Dirac spinors are normalized as ū(p, s0)u(p, s) = 2m �s0s. The matrix element of the electromagnetic current
operator in localized states is given by

j
µ
�(s

0
, s, r) ⌘ h�,X, s

0
|Ĵ
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where S = 3/2 is the spin of the system.
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where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s
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linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂

kl
s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:
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2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
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where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:
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ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
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where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:
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ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
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�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Breit Frame only has 2nd term

Conservation of EMT:
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂

iv
s0sY

jv
2 + Q̂

jv
s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂

kl
s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
r
d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

"
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

#
,

ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d
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◆
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�
�s0s + Q̂
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s0sa3 (r)

+Q̂
kl
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✓
�
ij

3
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d
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◆
a4 (r)� �
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Q̂
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
2
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Q̂
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Q̂
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s0sY
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2

⌘
r
d

dr

1

r

d
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�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d
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◆
w0 (r) �s0s

+
1

2m2
Q̂
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s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂
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2 � �
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2

i

�
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s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
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d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
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ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2
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+
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,
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4
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4m4q2
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. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Breit Frame only has 2nd term

Conservation of EMT:
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂

iv
s0sY

jv
2 + Q̂

jv
s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂
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s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
r
d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

"
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
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2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

#
,

ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
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✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?
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⇥
�2F2,0(�q

2
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2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
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�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
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�
q
4
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◆
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2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].



8

It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂
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s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d
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s0sa3 (r)

+Q̂
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✓
�
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dr
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�
, (34)

t
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�,2(s

0
, s, r) = N�,R,2
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�

1

2m2

✓
�
ij

3
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2 r

d
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1

r

d
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w0 (r) �s0s

+
1
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Q̂
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s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d
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◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂
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s0s + 2s2(r)
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s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
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d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as
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. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =
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3
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�
, h2 (r) = 0,
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◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0
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�
= 0 and limq2?!0
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��
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2
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�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr
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2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Breit Frame only has 2nd term

Conservation of EMT:

von Laue stability condition:

8

It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂

iv
s0sY

jv
2 + Q̂

jv
s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂

kl
s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
r
d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

"
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

#
,

ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Differential eqs:
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂

iv
s0sY

jv
2 + Q̂

jv
s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂

kl
s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
r
d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

"
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

#
,

ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Breit Frame only has 2nd term

Conservation of EMT:

von Laue stability condition:
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂

iv
s0sY

jv
2 + Q̂

jv
s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂

kl
s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
r
d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

"
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

#
,

ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].

Generalized D-terms:
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Differential eqs:
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂

iv
s0sY

jv
2 + Q̂

jv
s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂

ij
s0s + 2s2(r)

h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �

ij
Q̂

kl
s0sY

kl
2

i

�
1

m2
Q̂

kl
s0s@k@l

h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1

2m2
r
d

dr

1

r

d

dr
w0 (r) ,

p2(r) = 0, s2(r) = 0,

p3(r) = m
2
ṽ1 (r)�

1

6
@
2
w1 (r) , s3(r) = �

1

2
r
d

dr

1

r

d

dr
w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as

w0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

"
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

#
,

ṽ0 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
2
?

2m2

◆
F2,0(�q

2
?) +

q
2
?

6m2

⇥
�2F2,0(�q

2
?) + F2,1(�q

2
?)

⇤
�

q
4
?

12m4
F2,1(�q

2
?)

�
,

w1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r q

2
?

2m2q2

✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
,

ṽ1 (r) =

Z
d
2
n̂d

3
q

(2⇡)3
e
�i~q·~r

✓
�

q
4
?

4m4q2

◆✓
2

3
�

q
2
?

2q2

◆
F2,0(�q

2
?) +

1

2

✓
1

3
+

q
2
?

3m2
�

q
2
?
q2

�
q
4
?

4m2q2

◆
F2,1(�q

2
?)

�
. (38)

2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

Breit Frame only has 2nd term

Conservation of EMT:

von Laue stability condition:
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].

+… ,Internal forces:
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to

@µt
µ⌫
� (s0, s, r, t)|t=0 = @0t

0⌫
� (s0, s, r, t)|t=0 + @it

i⌫
� (s0, s, r, t)|t=0 = 0. (39)

Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],

p
0
n(r) +

2

3
s
0
n(r) +

2

r
sn(r) = h

0
n (r) , with n = 0, 2, 3, (40)

where

h0 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2m2
W0

�
q
2
?
�
, h2 (r) = 0,

h3 (r) =

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂
(q · n̂)2

2q2


W1

�
q
2
?
� ✓

1�
3q2?
2q2

◆
+W2

�
q
2
?
� q

2
?

2m2

✓
3q2?
q2

� 1

◆�
, (41)

with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
d
3
r pn(r) = 0, with n = 0, 2, 3, (42)

as long as limq2?!0

�
q
2
?
��

F2,0

�
�q

2
?
�
= 0 and limq2?!0

�
q
2
?
��

F2,1

�
�q

2
?
�
= 0, for � > 0.

The dimensionless constants (generalized D-terms) are defined by

Dn = �
4

15
m

2

Z
d3r r2sn(r) = m

2

Z
d
3
r r

2 [pn (r)� hn (r)] , with n = 0, 2, 3. (43)

Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows

dFr

dSr
= N�,R,2

"✓
p0(r) +

2

3
s0(r)

◆
�s0s +

✓
p2(r) +

2

3
s2(r)

◆
Q̂

rr
s0s (44)

�
1

m2
Q̂

rr
s0s

✓
r
d

dr

1

r

d

dr

✓
p3(r) +

2

3
s3(r)

◆
+ s3(r)

2

r2

◆#
, (45)

dF✓

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

✓r
s0s �

2

m2
Q̂

✓r
s0s

d

dr

s3(r)

r

�
, (46)

dF'

dSr
= N�,R,2

✓
p2(r) +

2

3
s2(r)

◆
Q̂

'r
s0s �

2

m2
Q̂

'r
s0s

d

dr

s3(r)

r

�
. (47)

Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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where S = 3/2 is the spin of the system.

Finally, for the ijth components we obtain

t
ij
�,0(s

0
, s, r) = N�,R

⇢
a1 (r) �

ij
�

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a2 (r)

�
�s0s + Q̂

ij
s0sa3 (r)

+Q̂
kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
a4 (r)� �

ij
Q̂

kl
s0s@k@la5 (r)

�


2

3
Q̂

ij
s0s@

2 +
⇣
Q̂
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s0sY
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2 + Q̂
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s0sY

iv
2

⌘
r
d

dr

1

r

d

dr

�
a6 (r)

�
, (34)

t
ij
�,2(s

0
, s, r) = N�,R,2

⇢
�

1

2m2

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w0 (r) �s0s

+
1

2m2
Q̂

kl
s0s@k@l

✓
�
ij

3
@
2 + Y

ij
2 r

d

dr

1

r

d

dr

◆
w1 (r)

�

+�
ij
h
v0 (r) �s0s � Q̂

kl
s0s@k@l v1 (r)

i�
, (35)

where the coe�cient functions a(r), w(r) and v(r) are given in the appendix.
To obtain the pressure and shear force densities we consider a conserved EMT and take the part of t̃ij�,2(s

0
, s, r)

linear in R (where the tilde means only conserved EMTs are considered), which we parametrize as follows [35]:

t̃
ij
�,2(s

0
, s, r) = N�,R,2

(
p0(r)�

ij
�s0s + s0(r)Y

ij
2 �s0s + p2(r)Q̂
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h
Q̂

ik
s0sY

kj
2 + Q̂

jk
s0sY

ki
2 � �
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i

�
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h
p3(r)�

ij + s3(r)Y
ij
2

i)
, (36)

where p0(r) and s0(r) are the pressure and shear force densities also appearing in the spherically symmetric hadrons,
respectively, p2(r), p3(r) correspond to the quadrupole pressure densities, and s2(r), s3(r) are the quadrupole shear
force densities.2 Comparing Eqs. (36) and (35) we obtain for the pressure and shear forces the following results:

p0(r) = ṽ0 (r)�
1

6m2
@
2
w0 (r) , s0(r) = �

1
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r
d
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1
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p2(r) = 0, s2(r) = 0,
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6
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w1 (r) , (37)

where the coe�cient functions w(r) and ṽ(r) are given as
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2
Another equivalent parametrization is given in Ref. [36], where the normal and tangential forces can be defined in a compact way.

However, it has been shown that the parametrization of Ref. [35] has advantages in studying the mechanical structure, whenever

performing an Abel transformation is involved [25].

Generalized D-terms:

8

It is clear from Eqs. (37) and (38) that the pressure and shear forces are expressed in terms of F2,0 and F2,1 only.3

Below we obtain the di↵erential equation for the pressure and shear forces that follows from the conservation
of the EMT. In that case, we have to make our matrix element in Eq. (20) time-dependent, i.e. we substitute
e
�iq·r

7! e
iq0t�iq·r. The conservation of the EMT leads to
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Notice that @0 and |t=0 do not commute, i.e. to obtain @0t
0⌫
� (s0, s, r, t)|t=0 we first take the derivative of t0⌫� (s0, s, r),

then put t = 0 and after that perform the expansion around R = 0. Since we are interested in the pressure and shear
forces, we consider the case with ⌫ = j and keep all contributions linear in R. We obtain the following di↵erential
equation, adhering to the notation of Ref. [35],
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with r = |r|, and the coe�cient functions W0,1,2(q2?) are given in the Appendix. In contrast, there are no hn(r) terms
in Eq. (40) in the case of the Breit-frame because of the absence of the temporal dependence in t

0⌫ component (due
to q

0 = 0).
The pressure densities pn(r) comply with the von Laue stability condition

Z
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r pn(r) = 0, with n = 0, 2, 3, (42)
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The dimensionless constants (generalized D-terms) are defined by
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Note that the above definition di↵ers from that of the Breit-frame case [36] by the hn (r) terms.

The spherical components of the internal forces (dFr, dF✓ and dF') acting on the radial area element (dS =
dSrêr + dS✓ê✓ + dS'ê') are expressed as follows
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Notice that for an unpolarized spin-3/2 hadron, the normal force acting on the radial area element (dFr/dSr) is solely
due to p0(r) +

2
3s0(r).

3
Notice that the feature p2 = s2 = 0 is not identical with the result of the large Nc limit for baryons in the chiral soliton model as

obtained in Ref. [36], where another parameterization of the pressure and shear forces is used. This can be easily checked by converting

the pressure and shear forces in Eq. (37) to the notations used in Ref. [36].
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5

where in case of a conserved EMT the form factors F3,0(t), F3,1(t) and F6,0(t) vanish. The matrix element of the
EMT in localized states is written as
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The matrix elements of the EMT in the localized states with R ! 0 can be obtained analogously to the electro-
magnetic case. As we will see below, the leading order contributions to t

00
� (r) and t

0i
� (r) are of the order of 1/R,

and the t
ij
� (r) terms need to be treated di↵erently from the others, when expanding in R. The reason for that is

that, the components of tij� (r), unlike t
00
� (r) and t

0i
� (r), which contain only information about the energy and spin

densities, respectively, encode information about the internal pressure and shear forces as well as about the motion
of the system [26, 30]. That is, tij� (r) needs to be decomposed to a component t

ij
�,0(r) that describes the motion of

the system as whole, and a component that encodes information about pressure and shear forces tij�,2(r). Therefore,
after expanding in R, we keep the leading order contribution of each of these terms. The resulting expressions have
the form:
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Ô
ktz
s0s

)
, (22b)
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and the coe�cient functions Ei, Ci,Wi and Ui are given in the appendix and further,
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5

where in case of a conserved EMT the form factors F3,0(t), F3,1(t) and F6,0(t) vanish. The matrix element of the
EMT in localized states is written as
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The matrix elements of the EMT in the localized states with R ! 0 can be obtained analogously to the electro-
magnetic case. As we will see below, the leading order contributions to t

00
� (r) and t

0i
� (r) are of the order of 1/R,

and the t
ij
� (r) terms need to be treated di↵erently from the others, when expanding in R. The reason for that is

that, the components of tij� (r), unlike t
00
� (r) and t

0i
� (r), which contain only information about the energy and spin

densities, respectively, encode information about the internal pressure and shear forces as well as about the motion
of the system [26, 30]. That is, tij� (r) needs to be decomposed to a component t

ij
�,0(r) that describes the motion of

the system as whole, and a component that encodes information about pressure and shear forces tij�,2(r). Therefore,
after expanding in R, we keep the leading order contribution of each of these terms. The resulting expressions have
the form:
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and the coe�cient functions Ei, Ci,Wi and Ui are given in the appendix and further,
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5

where in case of a conserved EMT the form factors F3,0(t), F3,1(t) and F6,0(t) vanish. The matrix element of the
EMT in localized states is written as
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The matrix elements of the EMT in the localized states with R ! 0 can be obtained analogously to the electro-
magnetic case. As we will see below, the leading order contributions to t

00
� (r) and t

0i
� (r) are of the order of 1/R,

and the t
ij
� (r) terms need to be treated di↵erently from the others, when expanding in R. The reason for that is

that, the components of tij� (r), unlike t
00
� (r) and t

0i
� (r), which contain only information about the energy and spin

densities, respectively, encode information about the internal pressure and shear forces as well as about the motion
of the system [26, 30]. That is, tij� (r) needs to be decomposed to a component t

ij
�,0(r) that describes the motion of

the system as whole, and a component that encodes information about pressure and shear forces tij�,2(r). Therefore,
after expanding in R, we keep the leading order contribution of each of these terms. The resulting expressions have
the form:
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and the coe�cient functions Ei, Ci,Wi and Ui are given in the appendix and further,
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Using multipole expansion:




motion of system
∼ 1/R      
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The matrix elements of the EMT in the localized states with R ! 0 can be obtained analogously to the electro-
magnetic case. As we will see below, the leading order contributions to t

00
� (r) and t

0i
� (r) are of the order of 1/R,

and the t
ij
� (r) terms need to be treated di↵erently from the others, when expanding in R. The reason for that is

that, the components of tij� (r), unlike t
00
� (r) and t

0i
� (r), which contain only information about the energy and spin

densities, respectively, encode information about the internal pressure and shear forces as well as about the motion
of the system [26, 30]. That is, tij� (r) needs to be decomposed to a component t

ij
�,0(r) that describes the motion of

the system as whole, and a component that encodes information about pressure and shear forces tij�,2(r). Therefore,
after expanding in R, we keep the leading order contribution of each of these terms. The resulting expressions have
the form:

t
00
� (s0, s, r) = N�,R

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂

(
E0(q

2
?) �s0s +


E1(q

2
?) n̂

k
n̂
l + E2(q

2
?)

q
k
?q

l
?

m2

�
Q̂

kl
s0s

)
, (22a)

t
0i
� (s0, s, r) = iN�,R

Z
d
3
q

(2⇡)3
e
�iq·r

Z
d
2
n̂

(
⇥
C0(q

2
?) ✏

kln
n̂
l
n̂
i + C1(q

2
?) ✏

iln
�
�
kl
� n̂

k
n̂
l
�⇤ q

n
?
m

Ŝ
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where t = q
2. Using the above results we obtain the following long-range behavior for the densities derived in the
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Notice that while the delta resonances are unstable particles, our expressions satisfy the general stability conditions
of Ref. [6], i.e. ⇢E0 (r) > 0 and 2

3s0(r)+ p0(r) > 0. This result is in agreement with the observation of Ref. [6] that the
general stability conditions are necessary but not su�cient for a system to be stable.

V. SUMMARY AND CONCLUSIONS

In this work we applied the novel definition of local spatial densities using sharply localized wave packets [21] to
spin-3/2 systems. Matrix elements of the electromagnetic current and the energy-momentum tensor in the ZAMF were
considered and integral representations of associated spatial densities in terms of form factors were derived. Following
Ref. [11], the corresponding expressions in the Breit-frame were obtained by first expanding the integrands in inverse
powers of the mass of the system and then taking the limit of sharply localized wave packets. This corresponds
to considering packet sizes that are much larger than the Compton wavelength of the system. To apply the new
definition as well as the Breit-frame formulas one needs to take the packet sizes much smaller than any length scales
characterizing internal structure of the system. This makes clear that the Breit-frame spatial densities cannot be used
for systems whose Compton wavelengths and the radii have comparable sizes [11]. However, the novel definition used
here does not impose any lower bound on the size of the wave packet and therefore can be applied to any systems.

Considering the spatial components of the matrix elements of the EMT we obtained the expressions of the pressure
and the shear forces inside the spin 3/2-systems. We also obtained a di↵erential equation satisfied by these quantities
due to the conservation of the EMT.
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