# Measurement of the Branching Fraction for the Decay $\psi(3686) \rightarrow \phi K_S^0 K_S^0$ Phys. Rev. D **108**, 052001(2023)

NUE BEST

**Xiaoxuan Ding** (on behalf of BESIII experiment) Peking University, Institute of Physics, dingxx@stu.pku.edu.cn



# Why we study the charmonium decay

#### **Ocharmonium** $\Psi$

 $> J/\psi, \psi(3686)$ : non-relativistic bound states of a charm and an anticharm quark  $(c\bar{c})$ 

# **O**Test the properties of QCD

**Ideal laboratory** for the properties of the strong interaction using quantum chromodynamics (QCD)



im

P



# **Background estimation**

# Two sorts of backgrounds

Background

> 1. Same final states channel decayed from  $\psi(3686)$  $\checkmark$  Estimate them using the sideband method



#### Two sorts of backgrounds

> 2. Decays from QED process

✓ Contributions of the continuum processes ✓ Weighted average method

$$\overline{N_{\text{QED}}} = 108 \pm 5$$

| $E_{\rm CM}({\rm GeV})$ | $\mathcal{L}_{\text{cont.}}(\text{pb}^{-1})$ | $N_{ m net}$ | $f_{\rm c}$ | $N_{ m QED}$ |
|-------------------------|----------------------------------------------|--------------|-------------|--------------|
| 3.508                   | 183.64                                       | $32\pm 6$    | 3.30        | $106 \pm 20$ |
| 3.510                   | 181.79                                       | $28\pm7$     | 3.34        | $94 \pm 23$  |
| 3.539                   | 25.50                                        | $7\pm3$      | 24.17       | $169\pm72$   |
| 3.553                   | 42.56                                        | $10\pm3$     | 14.59       | $146\pm44$   |
| 3.554                   | 27.24                                        | $1\pm1$      | 22.81       | $23 \pm 23$  |
| 3.650                   | 43.88                                        | $14 \pm 4$   | 14.94       | $209\pm60$   |
| 3.773                   | 2931.80                                      | $465\pm22$   | 0.24        | $112 \pm 5$  |

# **Interference effect**

# Aim for this study

### **O**Test the 12% rule

 $\succ$  According to perturbative QCD, the relative ratio of  $\Psi$  decays to the same final states is expected to be a constant:

 $\mathcal{Q}_h = \frac{\mathcal{B}(\psi(3686) \to h)}{\mathcal{B}(J/\psi \to h)} \approx \frac{\mathcal{B}(\psi(3686) \to e^+e^-)}{\mathcal{B}(J/\psi \to e^+e^-)} \stackrel{\text{loc}}{=} 13.3 \%$ 

> Consistent well with many experiments result

#### $\odot \rho \pi$ puzzle

- $\succ$  Violation of the 12% rule was found in 1983.
- ➤ More experimental results are desired to test 12% rule!

 $\psi(3686) \rightarrow \phi K_S^0 K_S^0$  is observed for the first time !  $\stackrel{\text{\tiny{6}}}{=} \mathcal{B}(\psi(3686) \to \phi K_S^0 K_S^0) =$  $(3.53 \pm 0.20_{stat.} \pm 0.21_{svst.}) \times 10^{-5}$ 

Summary

# 12% rule is strongly violated !

Solution

Motivation

 $\mathcal{B}(J\psi \to \phi K_S^0 K_S^0) = 5.9 \pm 1.5 \times 10^{-4}$  $\mathcal{B}(\psi(3686) \to \phi K_S^0 K_S^0) = \bigcirc$ 

# **Analysis strategy**

# **OBESIII** experiment

A symmetric electron positron collider running at tau-charm region **Solution**  $\bigcirc$  **BEPCII**: Electron–positron colliders: accelerate the  $e^+e^-$ **COMPANIE** BESIII detector : Record the hit positions, momentum , energy of particles. High statistic Clean background! 🎉

Cascade decay

 $\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}, \phi \rightarrow K^{+} K^{-}, K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$ 

# **OBranching fraction**

 $N_{sig} = N_{\psi(3686)} \times \mathcal{B}_{inter} \cdot \varepsilon \cdot \mathcal{B}_{sig} \rightarrow 0$ ur interested variables!  $\Rightarrow$  We need to estimate

Compared with  $\mathcal{B}(J/\psi \to \phi K_S^0 K_S^0)$ ratio= $\frac{\mathcal{B}(\psi(3686) \to \phi K_S^0 K_S^0)}{\mathcal{B}(J\psi \to \phi K_S^0 K_S^0)} = 6.0 \pm 1.6\%$ 

- Why we need to consider the interference? > The total cross section of  $e^+e^- \rightarrow \phi K_S^0 K_S^0$
- includes three parts
- $\Rightarrow$  Resonances ( $\psi$ (3686)), Continuum, interference term

 $\sigma_{tot}(s) = \sigma_{cont.}(s) + \sigma_{Res}(s) + \sigma_{inter}(s)$ 





- > Measure the line shape of  $\sigma(e^+e^- \rightarrow \phi K_S^0 K_S^0)$  in the vicinity of  $\psi(3686)$ > Obtain the relative phase  $\varphi$  from fitting to  $\sigma(e^+e^- \rightarrow \phi K_S^0 K_S^0)$ **O** Two solutions
- > The fit yields two solution with the same  $\frac{\chi^2}{ndf} = \frac{9.88}{6}$

e

ect

eff

Linker exercity

- $\succ$  However, the destructive solution can be excluded by the isospin symmetry.  $\frac{\mathcal{B}(\psi \to \phi K_S^0 K_S^0)}{\mathcal{B}(\psi \to \phi K^+ K^-)} = \frac{1}{2}$
- ➤ The constructive solution will be treated as physical solution.



- ?  $\varepsilon$ : detection efficiency (MC simulations)
- ?  $N_{sig}$ : signal yields in data, also need to consider the background contaminations.

#### **O**Data sets

- ✓ Obtain signal yields : using  $(448.1 \pm 2.9) \times 10^6 \psi$  (3686) events
- ✓ Estimate the backgrounds
- ✓ Estimate the interference contributions between resonance & non-resonant

#### The 16th edition of the International Conference on Meson-Nucleon Physics and the Structure of the Nucleon