Measurement of the Branching Fraction for the Decay $\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}$ Phys. Rev. D 108, 052001(2023)

NU

Why we study the charmonium decay

©Charmonium Ψ

$>J / \psi, \psi(3686)$: non-relativistic bound states of a charm and an anticharm quark (c \bar{c})
Test the properties of QCD
$>$ Ideal laboratory for the properties of the strong interaction using quantum chromodynamics (QCD)

Analysis strategy

©BESIII experiment

A symmetric electron positron collider running at tau-charm region BEPCII: Electron-positron colliders: accelerate the $\mathrm{e}^{+} e^{-}$ BESIII detector : Record the hit positions, momentum, energy of particles. High statistic Clean background!

©Cascade decay

$\psi(3686) \rightarrow \phi K_{S}^{0} K_{S}^{0}, \phi \rightarrow K^{+} K^{-}, K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$

OBranching fraction

$$
N_{\text {sig }}=N_{\psi(3686)} \times \mathcal{B}_{\text {inter }} \cdot \varepsilon \cdot \mathcal{B}_{\text {sig }}-\text { Our interested variables! }
$$

\Rightarrow We need to estimate
? ε : detection efficiency (MC simulations)
? $N_{s i g}$: signal yields in data, also need to consider the background contaminations.

OData sets

\checkmark Obtain signal yields : using (448.1 $\pm 2.9) \times 10^{6} \psi(3686)$ events
\checkmark Estimate the backgrounds
\checkmark Estimate the interference contributions between resonance \& non-resonant

Background estimation

OTwo sorts of backgrounds

$>$ 1. Same final states channel decayed from $\psi(3686)$
\checkmark Estimate them using the sideband method

$\pi^{+} \pi(a)$

(b)
©Two sorts of backgrounds
2. Decays from QED process
\checkmark Contributions of the continuum processes
\checkmark Weighted average method

$$
\overline{N_{\mathrm{QED}}}=108 \pm 5
$$

$\overline{E_{\text {CM }}(\mathrm{GeV})}$	$\mathcal{L}_{\text {cont. }}\left(\mathrm{pb}^{-1}\right)$	$N_{\text {net }}$	f_{c}	$N_{\text {QED }}$
3.508	183.64	32 ± 6	3.30	106 ± 20
3.510	181.79	28 ± 7	3.34	94 ± 23
3.539	25.50	7 ± 3	24.17	169 ± 72
3.553	42.56	10 ± 3	14.59	146 ± 44
3.554	27.24	1 ± 1	22.81	23 ± 23
3.650	43.88	14 ± 4	14.94	$209 \pm$
3.773	2931.80	465 ± 22	0.24	$112 \pm$

Interference effect

(2)Why we need to consider the interference?

- The total cross section of $e^{+} e^{-} \rightarrow \phi K_{S}^{0} K_{S}^{0}$ includes three parts
\Rightarrow Resonances ($\psi(3686)$), Continuum, interference term
$\sigma_{\text {tot }}(s)=\sigma_{\text {cont. }}(s)+\sigma_{\text {Res }}(s)+\sigma_{\text {inter }}(s)$
Strong decay via 3 gluons
$>$ Measure the line shape of $\sigma\left(e^{+} e^{-} \rightarrow \phi K_{S}^{0} K_{S}^{0}\right)$ in the vicinity of $\psi(3686)$
$>$ Obtain the relative phase φ from fitting to $\sigma\left(e^{+} e^{-} \rightarrow \phi K_{S}^{0} K_{S}^{0}\right)$
- Two solutions
\Rightarrow The fit yields two solution with the same $\frac{\chi^{2}}{n d f}=\frac{9.88}{6}$
$>$ However, the destructive solution can be excluded by the isospin symmetry. $\frac{\mathcal{B}\left(\psi \rightarrow \phi K_{S}^{0} K_{S}^{0}\right)}{\mathcal{B}\left(\psi \rightarrow \phi K^{+} K^{-}\right)}=\frac{1}{2}$
$>$ The constructive solution will be treated as physical solution.

