The MESA physics programme

High-intensity low-energy electron accelerator in Mainz

Sören Schlimme

via zoom

Institute for Nuclear Physics Johannes Gutenberg University Mainz

apologies for my absence today

and please don't mind my neighborhood

The MESA physics programme

High-intensity low-energy electron accelerator in Mainz

Sören Schlimme

Institute for Nuclear Physics Johannes Gutenberg University Mainz

MENU 2023:

The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

October 16-20, 2023

Mainz, Germany https://indico.him.uni-mainz.de/event/171/

- MESA: Energy Recovery Linac
- P2: Parity-violating electron scattering
- DarkMESA: Beam dump experiment
- MAGIX: Multi-purpose experiment

Mainz Microtron

Electron accelerators in Mainz

New 1966++ Mainz University Electron Linac (MUELL) ~80-300 MeV, pulsed beam

Upgrade 1972++ Mainz Linear Accelerator Improving System (MALAISE) Enhancement of the energy resolution

New 1990++ Mainz Microtron (MAMI-B) Three-staged racetrack microtron cascade ~180-855 MeV, cw beam

Upgrade 2007++ Harmonic double-sided microtron (MAMI-C) Energy increase to ~1600 MeV

New 2024++ Mainz Energy-recovering Superconducting Accelerator (MESA) Double-sided Multi Turn Energy Recovery Linac (ERL) ~20-155 MeV, high-intensity cw beam

Electron accelerators in Mainz

New 1966++ Mainz University Electron Linac (MUELL) ~80-300 MeV, pulsed beam

Upgrade 1972++ Mainz Linear Accelerator Improving System (MALAISE) Enhancement of the energy resolution

New 1990++ Mainz Microtron (MAMI-B) Three-staged racetrack microtron cascade ~180-855 MeV, cw beam

Upgrade 2007++ Harmonic double-sided microtron (MAMI-C) Energy increase to ~1600 MeV

New 2024++ Mainz Energy-recovering Superconducting Accelerator (MESA) Double-sided Multi Turn Energy Recovery Linac (ERL) ~20-155 MeV, high-intensity cw beam

MUELL and MALAISE

MESA

Let's build MESA 1/6

Electron Linear Accelerator (Linac)

Let's build MESA 2/6

Multi Turn Linac

Let's build MESA 3/6

Double-sided Multi Turn Linac

Let's build MESA 4/6

Let's build MESA 5/6

Double-sided Multi Turn Energy Recovery Linac

with internal target experiment

thin target - don't disturb the beam too much for 'ERL recollection'...

→ minimal effects from E-loss and multi-scattering → high resolution
 high beam intensity → large luminosity

Sören Schlimme (JGU Mainz)

Double-sided Multi Turn Energy Recovery Linac

- with internal target experiment
- with extracted beam experiment
 - and beam dump experiment

Obviously, great experimental opportunities!

MAGIX when beneficial:

- extracted beam mode, including beam dump
 - useful at the early stage of the accelerator
 - possibility to use thicker targets

MESA: Mainz Energy-Recovering Superconducting Accelerator

MESA EB-mode: P2

Parity Violating Electron Scattering

P2 - Parity violation experiments

- · Superconducting solenoid
- Integrating Cherenkov detector ring
- Tracking detectors
- LH2 target or solid state targets

<u>Physics programme at P2</u>

Hydrogen at forward angles:

 $A_{PV} \rightarrow Q_W(p) \rightarrow sin^2 \theta_W \rightarrow BSM \text{ physics}?$

main objective: precise measurement of the weak mixing angle θ_W as a test for physics beyond the SM

next talk:

Physics programme at P2

• Hydrogen at forward angles: $A_{PV} \rightarrow Q_W(p) \rightarrow \sin^2 \theta_W \rightarrow BSM$ physics?

Hydrogen + Deuterium at <u>backward</u> angles:
 A_{PV} → axial FF + strange contribution to magnetic FF

Hadronic structure of proton sizable at not-so-small Q²

 $\sin^2 \theta_W \approx rac{1-Q_W}{4}$ Proton structure - << 1 at small Q²

 $A_{\rm PV} = \frac{G_{\rm F}Q^2}{4\sqrt{2}\pi\alpha_{\rm em}} \left(Q_{\rm W} - F(Q^2)\right)$

Carbon:

 $A_{PV} \rightarrow Q_W(^{12}C) = -24 \sin^2 \theta_W$ Complementary sensitivity to BSM physics

M. Thiel *et al.*, J.Phys.G 46 (2019)

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2021

2023-10-19

18

big beam dump function: stop all particles

The MESA physics programme (MENU 2021

19

<u>Physics at DarkMESA:</u> Light dark matter searches

Some say:

22

- Speculation that dark matter might be "light" has gained interest
- Related: idea of rich but unexplored *dark sector*, which communicates with SM through one (or more) dark mediator particles

coupling: e.g. through kinetic mixing

nothing

found

yet.

Light dark matter searches at DarkMESA

DarkMESA - detector stages

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

2023-10-19

DarkMESA - expected sensitivity

The DarkMESA Experiment – Maik Biroth (presentation - Tuesday)

Search for Light Dark Matter with the DarkMESA Experiment

– Saskia Plura (poster - Wednesday)

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

Possibility to probe other DM

models using same data set,

e.g., ALPs

- P2 / MREX: Several highly prestigious physics objectives
- DarkMESA: A highly specialized search experiment

complement: **versatile and flexible electron scattering experiment**

Multi-purpose experiment MAGIX

<u>Mainz Gas Injection Target Experiment</u>

Sören Schlimme (JGU Mainz)

Multi-purpose experiment MAGIX

<u>Mainz Gas Injection Target Experiment</u>

Sören Schlimme (JGU Mainz)

Multi-purpose experiment MAGIX

typical target (LH2)

- background from target foils
- large energy loss straggling and multiple small angle scattering
- target length acceptance issues

<u>Mainz Gas Injection Target Experiment</u>

MAGIX: MAinz Gas Injection target eXperiment

 P2/DM-EB mode:
 ~155 MeV,
 150 μA

 MX-EB mode:
 20-105 MeV,
 <150 μA</td>

 ERL mode:
 30-105 MeV,
 10000 μA

Sören Schlimme (JGU Mainz)

MAGIX: MAinz Gas Injection target eXperiment

 P2/DM-EB mode:
 ~155 MeV,
 150 μA

 MX-EB mode:
 20-105 MeV,
 <150 μA</td>

 ERL mode:
 30-105 MeV,
 10000 μA

Sören Schlimme (JGU Mainz)

STARPORT Spectrometer Setup

Electron/positron detection, magnet system, optics

• **quadrupole** followed by two 45° **dipoles**

• double-focusing with a horizontal focal plane (FP)

Sören Schlimme (JGU Mainz)

Additional recoil detectors

Sören Schlimme (JGU Mainz)

Maik Biroth

The MESA physics programme (MENU 2023)

35

The MAGIX Physics Programme

[...], the Mainz Gas Injection Target Experiment (**MAGIX**) is a multipurpose spectrometer for a precise determination of the **proton charge radius** and **dark matter searches**.

https://science.osti.gov/-/media/np/nsac/pdf/202310/October-4-LRP-Report.pdf
<u>Physics at MAGIX:</u> <u>Structure of nucleons and nuclei</u>

use point-like, structure-less electron

to study structure of nucleons and nuclei

measure e.m. form factors, extract charge radii, join the proton radius puzzle club

Proton radius puzzle

discrepancy between different determinations of the proton radius

13 years later, experts still disagree.

Th. Walcher, arXiv:2304.07035 [physics.atom-ph] (2023)

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

Proton radius puzzle

discrepancy between different determinations of the proton radius

plan: comprehensive data set of unpolarized cross-section measurements

- measurements at lower Q² (~beam energy)
- significant background reduction (gas-jet target)

$$\left\langle r_{p}^{2}
ight
angle =-6\hbar^{2}\left.rac{\mathrm{d}G_{\mathrm{E}}}{\mathrm{d}Q^{2}}
ight|_{Q^{2}=0}$$

unconsidered effects, new physics, experimental / analysisedicated, issues ?! call for data improved data

scattering experiments, *e* and μ , *each with different beam / systematics*:

ton

The MAGIX jet target at

A1

proton FF measurements

AWESOME SINCE

ZUL

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

2023-10-19

40

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

2023-10-19

41

Electric proton form factor at MAGIX

Coverage from $Q^2 = 1 \cdot 10^{-5}$ to 0.03 GeV² \Rightarrow proton radius!

H. Merkel

Beyond proton charge radius

 $r_{\rm M}, r_{\rm Zemach}$

 $A(Q^2), B(Q^2), r_d$ spin $1 \rightarrow 3$ elastic e.m. FFs expensive

³He

spin $1/2 \rightarrow 2$ elastic e.m. FFs ultra-expensive

⁴He

Significant improvement of existing data is possible at IoN momentum transfers

Beyond proton charge radius

 $r_{\rm M}, r_{\rm Zemach}$

 $A(Q^2), B(Q^2), r_d$ spin $1 \rightarrow 3$ elastic e.m. FFs expensive

³He

spin $1/2 \rightarrow 2$ elastic e.m. FFs ultra-expensive

4He

spin $0 \rightarrow 1$ elastic e.m. FFs, $r_{^{4}\text{He}}$ almost boring...

Significant improvement of existing data is possible at low momentum transfers

elastic, elastic, elastic...

INELASTIC SCATTERING

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

2023-10-19

Physics within a nucleus

can, in principle, be derived

 based on QCD (theory of strong interaction between quarks - mediated by gluons) limited direct applicability: non-perturbative in low-E regime; → lattice-QCD (promising tool)

Quarks N' Gluons

atomic nucleus

Physics within a nucleus

can, in principle, be derived

 based on QCD (theory of strong interaction between quarks - mediated by gluons) limited direct applicability: non-perturbative in low-E regime; → lattice-QCD (promising tool)

can be described

- using traditional / phenomenological potentials (CD-Bonn, Argonne V18, Nijmegen I+II, ...)
 - protons, neutrons as degrees of freedom
 - drawbacks: difficult to assign theoretical errors, implement gauge and chiral symmetry, ...
 - connection to QCD not obvious at all

non-relativistic system of nucleons, interacting via nuclear forces

atomic nucleus

Physics within a nucleus

can, in principle, be derived

 based on QCD (theory of strong interaction between quarks - mediated by gluons) limited direct applicability: non-perturbative in low-E regime; → lattice-QCD (promising tool)

can be described

- using traditional / phenomenological potentials (CD-Bonn, Argonne V18, Nijmegen I+II, ...)
 - protons, neutrons as degrees of freedom
 - drawbacks: difficult to assign theoretical errors, implement gauge and chiral symmetry, ...
 - connection to QCD not obvious at all

can be derived

- using Chiral Effective Field Theory (χΕFT)
 - protons, neutrons, pions as effective DOF
 - starts from most general Lagrangian consistent with all symmetries & conservation laws of QCD
 - power counting scheme, that specifies which terms are required at a desired accuracy
 - predictive low-energy theory, various applications

non-relativistic system of nucleons, interacting via nuclear forces

atomic

nucleus

Physics within a nucleus

can, in principle, be derived

 based on QCD (theory of strong interaction between quarks - mediated by gluons) limited direct applicability: non-perturbative in low-E regime; → lattice-QCD (promising tool)

can be described

- using traditional / phenomenological potentials (CD-Bonn, Argonne V18, Nijmegen I+II, ...)
 - protons, neutrons as degrees of freedom
 - drawbacks: difficult to assign theoretical errors, implement gauge and chiral symmetry, ...
 - connection to QCD not obvious at all

can be derived

- using Chiral Effective Field Theory (χΕFT)
 - protons, neutrons, pions as effective DOF
 - starts from most general Lagrangian consistent with all symmetries & conservation laws of QCD
 - power counting scheme, that specifies which terms are required at a desired accuracy
 - predictive low-energy theory, various applications
 - With great power comes great responsibility: test the theory in the low energy regime

study the excitation of light nuclei with e.m. probe

non-relativistic system of nucleons, interacting via nuclear forces

atomic nucleus

<u>Helium - inclusive</u>

⁴He: benchmark nucleus for our understanding of the **nuclear forces** and the **few-body methods** used to solve the Schrödinger equation

PHYSICAL REVIEW LETTERS 130, 152502 (2023)

Editors' Suggestion

Featured in Physics

Measurement of the α-Particle Monopole Transition Form Factor Challenges Theory: A Low-Energy Puzzle for Nuclear Forces?

S. Kegel[®],¹ P. Achenbach[®],¹ S. Bacca[®],^{1,2} N. Barnea[®],³ J. Beričič,⁴ D. Bosnar[®],⁵ L. Correa,^{6,1} M. O. Distler[®],¹ A. Esser,¹ H. Fonvieille,⁶ I. Friščić[®],⁵ M. Heilig,¹ P. Herrmann,¹ M. Hoek[®],¹ P. Klag,¹ T. Kolar[®],^{7,4} W. Leidemann[®],^{8,9} H. Merkel[®],¹ M. Mihovilovič,^{1,4} J. Müller,¹ U. Müller[®],¹ G. Orlandini[®],^{8,9} J. Pochodzalla[®],¹ B. S. Schlimme[®],¹ M. Schoth,¹ F. Schulz,¹ C. Sfienti[®],^{1,*} S. Širca[®],^{7,4} R. Spreckels,¹ Y. Stöttinger,¹ M. Thiel[®],¹ A. Tyukin,¹ T. Walcher[®],¹ and A. Weber¹

Helium - inclusive

transition FF: ground state (0⁺) to first excited state (0⁺)

Ideal conditions at $M \land G X! \Rightarrow low-q$ measurement

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

Helium - inclusive

Few-body systems: key reactions

	reaction	objection
 <i>d</i> breakup 	D(e,e'), D(e,e'p)	polarizabilities \rightarrow nucl. structure corr. in muonic atoms
 ³He inclusive 	³ He(e,e')	el. FF, radius, structure functions, <i>R_L</i>
• ³ He exclusive	³ He(<i>e</i> , <i>e</i> ' <i>p/d</i>) <i>d/p</i>	MEC, 3NF
 ⁴He exclusive 	4He(<i>e,e'p/d</i>)	dσ/dΩ,
 ⁴He inclusive 	⁴ He(e,e')	el. FF, radius, structure functions, <i>R_L</i> , 3NF
• ⁴ He monopole	⁴ He(<i>e,e'</i>) ⁴ He*	transition FF, 3NF, Ε, Γ, r _{Tr} , R _{Tr}
 ¹²C Hoyle 	¹² C(e,e') ¹² C*	transition FF,, \leftrightarrow cluster EFT
 ¹⁶O inclusive 	¹⁶ O(e,e')	<i>R</i> _{<i>L</i>} , Coulomb sum rule ↔ coupled-cluster theory
 ⁴⁰Ar inclusive 	⁴⁰ Ar(e,e')	structure functions ↔ e4v

 perform measurements on key reactions to study different aspects of few-body systems

supply high-precision data for benchmarking and calibration of theory

Physics at MAGIX:

Study of reaction cross sections of astrophysical interest

To model stars and explain the element abundances accurately, precise cross-section estimates are required Cross section measurements in the lab:

- particle energies of interest are small
- often tiny cross sections
- often dominated by background

Stellar nucleosynthesis

Helium burning of a main sequence star:

 $3lpha \longrightarrow {}^{12}{
m C} + 2\gamma$ triple-alpha process

 $^{12}{
m C}+lpha\longrightarrow {}^{16}{
m O}+\gamma$ radiative alpha particle capture by

a carbon nucleus

competition for the alphas \rightarrow C / O - ratio

- 3α-process is known
- ${}^{12}C + \alpha \rightarrow {}^{16}O + y$: one of most important reactions to describe nucleosynthesis in burning of a star
- Outcome of competition determines ¹²C / ¹⁶O ratio dominant role in subsequent processes + nuclear abundances!

Alpha-particle capture by a carbon nucleus

- Data available down to 1 MeV
 - best data: underground laboratories, e.g. LUNA (Gran Sasso)
- Needed:
 - σ at the 'Gamow peak', $E_{c.m.}$ = 300 keV (T = 2.108 K)
- extrapolation \rightarrow theory dependence

Measurement of the time reversed reaction at MAGIX

10⁻² 10-4 study ${}^{12}C(\alpha, \gamma){}^{16}O$ α-capture process 10⁻⁶ by ${
m ^{16}O(\gamma, lpha)^{12}C}$ ~time reversed reaction [parn parn 10-10 10⁻⁸ (the cross-sections are directly related) ь compare I. Friščić, T. W. Donnelly, R. G. Milner, 10-12 available data 10-14 - Time reversal \rightarrow gain of 50× in CS $^{16}O(v,\alpha)^{12}C$ 10-16 $^{12}C(\alpha,\gamma)^{16}O$ (spin weight and phase space) 0.5 1 2 0.3 E_{c.m.}

No y-beam, but electrons:

 $^{16}\mathrm{O}(e,e'\alpha)^{12}\mathrm{C}$ $\Leftrightarrow {}^{16}\mathrm{O}(\gamma^*,\alpha){}^{12}\mathrm{C}$

kinematics: quasi-real photon, $\gamma^* \approx \gamma$

[MeV]

Sensitivity

The MESA physics programme (MENU 2023)

Sören Schlimme (JGU Mainz)

57

2023-10-19

<u>Study of reaction cross sections of</u> <u>astrophysical interest - key reactions</u>

use the **time-reversed technique** to measure cross-sections of various **radiative alpha, proton,** and **neutron capture reactions**

- ¹²C (α,γ)¹⁶O
 ²⁴Mg(α,γ)²⁸Si
 ²⁴Mg(γ,α)²⁰Ne
 C/O ratio (holy grail of astroparticle physics)
 significant within silicon-burning phase in late evolution
 of massive stars prior to core collapse
- ¹⁵N(p,γ)¹⁶O key process in CNO cycle; benchmark reaction
 d(p,y)³He rate of deuterium burning, primordial deuterium abundance
- ⁸⁶Rb(n,y)⁸⁷Rb
 ⁸⁶Rb: branching point in the s-process within massive AGB stars
 ²⁰⁴Tl(n,y)²⁰⁵Tl
 ²⁰⁴Tl: branching point in the s-process

"versatile and flexible electron scattering experiment"

Physics at MAGIX:

Dark sector searches

Í

Dark sector searches at MAGIX

Search for Light Dark Matter

few events / very few SM background contributions

Dark sector searches at MAGIX

Search for Light Dark Matter

DP cannot decay to LDM particles if mass of DM is too large. May decay to lepton pairs (here: e+e-).

Dark sector searches at MAGIX

Search for Light Dark Matter

few events / very few SM background contributions

DP cannot decay to LDM particles if mass of DM is too large. May decay to lepton pairs (here: e+e-). **Complementary investigations:**

Search for Dark Photons

visible decay

look for DP decay to SM particles

two free parameters (kinetic mixing model):

- $m_{\gamma'}$: mass of the dark photon
- ϵ : mixing parameter

parameterizes strength of the coupling of DP to ordinary SM matter: $\epsilon^2 = \alpha'/\alpha$ (α the QED fine structure constant)

few events / significant SM background contributions

Dark Photon - Visible Decay

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

A sharp peak (limited by

resolution) in the measured

on a large but smooth

background dominated by

irreducible QED background and accidental coincidences.

invariant mass spectrum, sitting

Dark Photon - Visible Decay: Expected sensitivity

two free parameters (kinetic mixing model):

- $m_{\gamma'}$: mass of the dark photon
- *e*: mixing parameter

parameterizes strength of the coupling of DP to ordinary SM matter: $\epsilon^2 = \alpha'/\alpha$ (α the QED fine structure constant)

Competitive sensitivity in an interesting parameter range

e.g., X17 particle:

signal anomaly in excited ⁸Be, ⁴He, and ¹²C atomic transitions \Rightarrow vector boson candidate with mass around 17 MeV, $\epsilon^2 - 10^{-7}$

⁸Be: A.J. Krasznahorkay *et al.*, Phys. Rev. Lett. 116 (2016) 042501 ⁴He: A.J. Krasznahorkay *et al.*, arXiv:1910.10459v1 (2019) [nucl-ex] ¹²C: A.J. Krasznahorkay *et al.*, Phys. Rev. C 106 (2022) L061601

Great Competition

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

We are the first to find it there Spectacular!

We are the first to find it there Spectacular!

We are not the first to find it there

Verify the discovery, study the reaction mechanism, ...

We are the first to find it there Spectacular!

We are not the first to find it there

Verify the discovery, study the reaction mechanism, ...

We are the first to not find it there At least we were the first!

We are the first to find it there Spectacular!

We are not the first to find it there

Verify the discovery, study the reaction mechanism, ...

We are the first to not find it there At least we were the first!

We are not the first to not find it

Sören Schlimme (JGU Mainz)

The MESA physics programme (MENU 2023)

2023-10-19

69

Different search strategies

- (a) just discussed
- (b) small coupling or mass \rightarrow long-lived dark photon $l_{\text{decay}} \approx 1.5 \,\text{mm} \left(\frac{E_{\text{beam}}}{55 \,\text{MeV}}\right) \cdot \left(\frac{10^{-4}}{\varepsilon}\right)^2 \cdot \left(\frac{17 \,\text{MeV}/c^2}{m_{\gamma'}}\right)^2$
 - \rightarrow displaced vertex move target outside spectrometer acceptance \rightarrow increase S/N ratio
- (c) missing mass of electron+nucleus: DP detection independent of favorite decay channel (e.g. $\overline{\chi}\chi$)
- (d) recent studies: enhanced sensitivity on a *neutron target* (motivated by 'X17 couplings')
 - C. J. G. Mommers and M. Vanderhaeghen, arXiv:2307.02181 [hep-ph]
- (e) complemented by DarkMESA's direct DM search

MESA – Electron Energy Recovery Linac

- up to 105 MeV and \geq 1000 μ A (ERL)
- up to 155 MeV and 150 µA (EB)

Exciting experimental program in nuclear, hadron and particle physics

P2 – Parity Violation Experiments

- prec. meas. of $\sin^2\theta_W$ / search for physics beyond the SM
- axial FF + strange contribution to magnetic FF
- neutron skin thickness of lead

DarkMESA – Beam Dump Experiment

 quest for dark matter and other exotic particles

MAGIX – Versatile Electron Scattering Experiment

- Structure of Nucleons and Nuclei
- Few-Body Systems
- Nuclear Astrophysics
- Dark Sector Searches

First experiments Q1/2025

Sören Schlimme (JGU Mainz)

S

U

Μ

Μ

R

The MESA physics programme (MENU 2023)

https://www.mesa.uni-mainz.de

