Nucleon Structure lattice QCD

Constantia Alexandrou

AQTIVATE European Joint Doctorate

MENU 2023 Mainz 16-20 October 2023

Outline

***Introduction**

- State-of-the-art lattice QCD simulations
- *** 3D structure of the nucleon**
 - First and second Mellin moments
 - Charges
 - ⇒ Axial form factors, arXiv: 2309.05774
 - ⇒Spin content of the nucleon
 - Direct computation of parton distributions

***Conclusions**

Quantum ChromoDynamics (QCD)

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_f \left(i\gamma^{\mu} D_{\mu} - m_f \right) \psi_f$$

*****Unique properties:

Fritzsch, Gell-Mann and Leutwyler, Phys. Lett. 47B (1973) 365

- ★ Confinement
- ★Asymptotic freedom
- \bigstar Mass generation via interaction

Lattice QCD provides an *ab initio* method to study a wide class of strong interaction phenomena

* Lattice QCD uses directly \mathcal{L}_{QCD} or the action $S_{QCD} = \int d^4x \, \mathcal{L}_{QCD}$

Lattice QCD

Simulations of lattice QCD

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{O}(D_f^{-1}[U], U) \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\mathrm{QCD}}[U]}$$

Simulation of gauge ensembles $\{U\}$:

$$P[U] = \frac{1}{Z} \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\text{QCD}}[U]}$$

Simulations of lattice QCD

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}[U] \mathcal{O}(D_f^{-1}[U], U) \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\mathrm{QCD}}[U]}$$

Simulation of gauge ensembles $\{U\}$:

$$P[U] = \frac{1}{Z} \left(\prod_{f=u,d,s,c} \operatorname{Det}(D_f[U]) \right) e^{-S_{\text{QCD}}[U]}$$

Gauge ensembles generated by ETMC

ded Twister

Gauge ensembles generated by ETMC

Results in this talk from the analysis of 3 physical point ensembles

- B-ensemble: 64³ x 128, a~0.08 fm
- C-ensemble: 80³x160, a~0.07 fm
- D-ensemble:96³x192, a~0.06 fm

hed Twisten

3D structure of the nucleon

* Understanding the 3D-structure of the nucleon from its fundamental constituents, the quarks and the gluons, is major goal of nuclear physics and a key aim of on-going experiments and the future EIC

*Lattice QCD can contribute towards this goal - many recent developments to compute Mellin moments but also directly parton distributions

EIC white paper, arXiv:1212.1701

Wigner distributions

Longitudinal momentum

 $k^+ = xP^+$

PDF

 $\rho(x, \vec{k}_T, \vec{b}_T)$

5-D correlations

Fransverse momentum

PDpartons

TMD

Transverse position

Generalised Parton Distributions (GPDs)

* High energy scattering processes: Factorization into a hard partonic subprocess, calculable in perturbation theory, and a universal non-perturbative parton distribution

Deeply Virtual Compton Scattering

* GPDs are light cone matrix elements

- D. Mueller *et al.*, Fortschr. Phys. 42, 101 (1994)
- A. V. Radyushkin, Phys. Lett. B380, 417 (1996), hep-ph/9604317
- A. V. Radyushkin, Phys. Lett. B385, 333 (1996), hep-ph/9605431
- A. V. Radyushkin, Phys. Rev. D56, 5524 (1997), hep-ph/9704207
- X. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249.
- X. Ji, Phys. Rev. D55, 7114 (1997), hep-ph/9609381
- X. Ji, J. Phys. G24, 1181 (1998), hep-ph/9807358

$$F_{\Gamma}(x,\xi,\tau) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle N(p') | \bar{\psi}(-z/2) \Gamma W(-z/2,z/2) \psi(z/2) | N(p) \rangle |_{z^{+}=0,\vec{z}=0}$$

- $\bullet \quad P^+ = \frac{p'^+ + p}{2}$
- $\tau = -Q^2 = (p' p)^2$
- $\xi = \frac{p^+ p'^+}{2P^+}$: skewness

 Γ structure defines 3 different types of GDPs

Computation of Mellin moments of GPDs

- * Light-cone matrix elements cannot be computed using a Euclidean lattice formulation of QCD
- * Expansion of light-cone operator leads to a tower of local twist-2 operators —> connected to moments that can be computed in lattice QCD

$$\mathcal{O}^{\mu_{1}...\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{unpolarized} \langle x^{n}\rangle_{q} = \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{\Delta q(x) = q^{\rightarrow} - q^{\leftarrow}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{helicity} \langle x^{n}\rangle_{\Delta q} = \int_{0}^{1} dx \, x^{n} \left[\Delta q(x) + (-1)^{n}\Delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q^{\rightarrow} - q^{\leftarrow}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\Delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}...\mu_{n}\}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}} + \bar{\psi}\phi^{\mu_{1}...\mu_{n}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{transversity} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{transversit} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}}\psi \xrightarrow{transversit} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{transversit} \left[\tilde{\mathcal{O}}^{\mu_{1}...\mu_{n}}\psi \xrightarrow{transversit} \langle x^{n}$$

Twist-2 PDFs

Computation of Mellin moments of GPDs

- * Light-cone matrix elements cannot be computed using a Euclidean lattice formulation of QCD
- * Expansion of light-cone operator leads to a tower of local twist-2 operators —> connected to moments that can be computed in lattice QCD

$$\mathcal{O}^{\mu_{1}...\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}iD^{\mu_{2}}...iD^{\mu_{n}}\}}\psi \xrightarrow{unpolarized} \langle x^{n}\rangle_{q} = \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{f_{1}(x,\mu^{2})} \bullet f_{1}(x,\mu^{2}) \bullet f_{1}(x,\mu^{2}$$

* Off-diagonal matrix elements yield moments of GPDs or the generalised form factors (GFFs) $\int_{-1}^{1} dx \, x^{n-1} H(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} A_{ni}(\tau) + \operatorname{mod}(n,2)(2\xi)^{n} C_{n0}(\tau) \right]$ $\int_{-1}^{1} dx \, x^{n-1} E(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} B_{ni}(\tau) - \operatorname{mod}(n,2)(2\xi)^{n} C_{n0}(\tau) \right]$

Twist-2 PDFs

Computation of Mellin moments of GPDs

- * Light-cone matrix elements cannot be computed using a Euclidean lattice formulation of QCD
- Expansion of light-cone operator leads to a tower of local twist-2 operators —> connected to moments that can be computed in lattice QCD

$$\mathcal{O}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma^{\{\mu_{1}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}}\psi \xrightarrow{unpolarized} \langle x^{n}\rangle_{q} = \int_{0}^{1} dx \, x^{n} \left[q(x) - (-1)^{n}\bar{q}(x)\right] \xrightarrow{\Delta q(x) = q^{\rightarrow} - q^{\leftarrow}} \left[\tilde{\mathcal{O}}^{\mu_{1}\dots\mu_{n}} = \bar{\psi}\gamma_{5}\gamma^{\{\mu_{1}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}}\psi \xrightarrow{helicity} \langle x^{n}\rangle_{\Delta q} = \int_{0}^{1} dx \, x^{n} \left[\Delta q(x) + (-1)^{n}\Delta\bar{q}(x)\right] \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\rho\mu_{1}\dots\mu_{n}}_{T} = \bar{\psi}\sigma^{\rho\{\mu_{1}iD^{\mu_{2}}\dots iD^{\mu_{n}}\}}\psi \xrightarrow{transversity} \langle x^{n}\rangle_{\delta q} = \int_{0}^{1} dx \, x^{n} \left[\delta q(x) - (-1)^{n}\delta\bar{q}(x)\right] \xrightarrow{h_{1}(x,\mu^{2})} \xrightarrow{\delta q(x) = q_{\perp} + q_{\perp}} \left[\tilde{\mathcal{O}}^{\rho\mu_{1}\dots\mu_{n}}_{T} + q_{\perp} + q_{\uparrow}, \quad \Delta q = q_{\downarrow} - q_{\uparrow}, \quad \delta q = q_{\intercal} + q_{\downarrow}$$

For off-diagonal matrix elements we obtain moments of GPDs or the generalised form factors (GFFs) direction of motion $\int_{-1}^{1} dx \, x^{n-1} H(x,\xi,\tau) = \sum_{i=0,2,\dots}^{n-1} \left[(2\xi)^{i} A_{ni}(\tau) + \operatorname{mod}(n,2)(2\xi)^{n} C_{n0}(\tau) \right]$ Ph. Hagler, Phys. Rept. 490 (2010) 49

$$\int_{-1}^{1} dx \, x^{n-1} E(x,\xi,\tau) = \sum_{i=0,2,\cdots}^{n-1} \left[(2\xi)^{i} B_{ni}(\tau) - \operatorname{mod}(n,2) (2\xi)^{n} C_{n0}(\tau) \right]$$

Special cases: n=1,2 for the nucleon

 n=1: τ=0 → charges g_V, g_A, g_T τ ≠ 0 → form factors: A₁₀(τ) = F₁(τ), B₁₀(τ) = F₂(τ), Ã₁₀(τ) = G_A(τ), B̃₁₀(τ) = G_p(τ)
n=2: generalised form factors: A₂₀(τ), B₂₀(τ), C₂₀(τ), Ã₂₀(τ), B̃₂₀(τ)

 $\langle x \rangle_q = A_{20}(0), \quad \langle x \rangle_{\Delta q} = \tilde{A}_{20}(0), \quad \langle x \rangle_{\delta q} = A_{20}^T(0) \text{ and } J_q = \frac{1}{2}[A_{20}(0) + B_{20}(0)] = \frac{1}{2}\Delta\Sigma_q + L_q$

* Spin and momentum sums: $\sum_{q} \left[\frac{1}{2}\Delta\Sigma_{q} + L_{q}\right] + J_{g} = \frac{1}{2}, \quad \sum_{q} \langle x \rangle_{q} + \langle x \rangle_{g} = 1$

Continuum results

• Axial charges extracted directly from the forward matrix element

With our two additional lattice spacings we expect more stability in the results and reduced errors at the continuum limit 16

Nucleon isovector charges

$$g_V = \langle 1 \rangle_{u-d}$$
$$g_A = \langle 1 \rangle_{\Delta u - \Delta d}$$
$$g_T = \langle 1 \rangle_{\delta u - \delta d}$$

- g_V= 1
- $g_A = 1.2723 \pm 0.0023$ (reproduce)
- $g_T = 0.53 \pm 0.25$ M. Radici and A. Bacchetta. PRL 120 (2018) 192001

Lattice QCD results on g_A consistent with experimental value

Nucleon isovector (u-d) tensor charge

*****Only connected contributions

rge $(\vec{x}_{\rm ins}, t_{\rm ins})$ $(\vec{x}_{\rm 0}, t_{\rm 0})$

*Precision results on the isovector tensor charge - input for phenomenology e.g. JAM3D-22 analysis

Phys.Rev.D 106 (2022) 3, 034014, arXiv:2205.00999

Flavor diagonal tensor charge

*Evaluate both connected and disconnected contributions

*Obtain flavor diagonal tensor charge for the first time in the continuum using only physical point ensembles - input for phenomenology

Only calculation in the continuum limit directly at the physical point

Precision era of lattice QCD for first Mellin moments including flavor diagonal

Electromagnetic form factors

Mainz results: D. Djukanovic et al., arXiv:2309.06590

Only one ensemble at physical pion mass —> chiral extrapolation needed

However, impressive accuracy

1.75 _1.50

 μ_M^n

Strangeness of the nucleon

Sea quark effects can be accurately determined for EM form factors —> provide precise input to experiments

B-ensemble: $64^3 \ge 128$, a~0.08 fm

Axial and pseudoscalar form factors

Extract from
$$\longrightarrow \langle N(p',s')|A_{\mu}|N(p,s)\rangle = \bar{u}_{N}(p',s') \Big[\gamma_{\mu}G_{A}(Q^{2}) - \frac{Q_{\mu}}{2m_{N}}G_{P}(Q^{2}) \Big] \gamma_{5}u_{N}(p,s)$$

lattice QCD $\longrightarrow \langle N(p',s')|P_{5}|N(p,s)\rangle = G_{5}(Q^{2})\bar{u}_{N}(p',s')\gamma_{5}u_{N}(p,s) \qquad q^{2}=-Q^{2}$

- * Chiral symmetry breaking leads to: $\partial^{\mu}A_{\mu} = F_{\pi}m_{\pi}\psi_{\pi}$ * Axial Ward-Takahashi identity leads to PCAC : $\partial^{\mu}A_{\mu} = 2m_q P$, $m_q = m_u = m_d$ * Takahashi identity leads to PCAC : $\partial^{\mu}A_{\mu} = 2m_q P$, $m_q = m_u = m_d$
- * Take nucleon matrix elements : $G_{A}(Q^{2}) - \frac{Q^{2}}{4m_{N}^{2}}G_{P}(Q^{2}) = \frac{m_{q}}{m_{N}}G_{5}(Q^{2})$ $G_{5}(Q^{2}) = \frac{F_{\pi}m_{\pi}^{2}}{m_{q}}\frac{G_{\pi NN}(Q^{2})}{m_{\pi}^{2} + Q^{2}} \quad \longleftarrow \text{ Goldberger-Treiman relation}$

Background

Extract from
$$\longrightarrow \left\langle N(p',s')|A_{\mu}|N(p,s)\right\rangle = \bar{u}_{N}(p',s')\left[\gamma_{\mu}G_{A}(Q^{2}) - \frac{Q_{\mu}}{2m_{N}}G_{P}(Q^{2})\right]\gamma_{5}u_{N}(p,s)$$

lattice QCD $\longrightarrow \left\langle N(p',s')|P_{5}|N(p,s)\right\rangle = G_{5}(Q^{2})\bar{u}_{N}(p',s')\gamma_{5}u_{N}(p,s) \qquad q^{2}=-Q^{2}$

***** Chiral symmetry breaking leads to: $\partial^{\mu}A_{\mu} = F_{\pi}m_{\pi}\psi_{\pi}$

 $\psi_{\pi} = \frac{2m_q P}{F_{-}m^2}$ * Axial Ward-Takahashi identity leads to PCAC : $\partial^{\mu}A_{\mu} = 2m_q P$, $m_q = m_u = m_d \leftarrow$

***** Take nucleon matrix elements :

$$G_A(Q^2) - \frac{Q^2}{4m_N^2}G_P(Q^2) = \frac{m_q}{m_N}G_5(Q^2)$$

 $G_5(Q^2) = \frac{F_{\pi}m_{\pi}^2}{m_{q}} \frac{G_{\pi NN}(Q^2)}{m_{\pi}^2 + Q^2} \quad \longleftarrow \text{ Goldberger-Treiman relation}$

***** Pion pole dominance:

$$G_{P}(Q^{2}) = \frac{4m_{N}^{2}}{Q^{2} + m_{\pi}^{2}}G_{A}(Q^{2})\Big|_{Q^{2} \to -m_{\pi}^{2}}$$
$$G_{A}(Q^{2}) = \frac{F_{\pi}}{m_{N}}G_{\pi NN}(Q^{2})\Big|_{Q^{2} \to -m_{\pi}^{2}}$$

* At the pion pole we get the pion nucleon coupling: $g_{\pi NN} \equiv G_{\pi NN} (Q^2 = -m_{\pi}^2)$

$$\lim_{Q^2 \to -m_{\pi}^2} (Q^2 + m_{\pi}^2) G_P(Q^2) = 4m_N F_{\pi} g_{\pi N N}$$

$$g_{\pi NN} = m_N G_A(-m_{\pi}^2)/F_{\pi} \xrightarrow{\mathbf{m}_{\pi} \to \mathbf{0}} \frac{m_N}{F_{\pi}} g_A$$
 and $\Delta_{GT} = 1 - \frac{g_A m_N}{g_{\pi NN} F_{\pi}}$ is the GT discrepancy

Results

Axial and induced pseudoscalar form factors

***** Dipole and z-expansion fits, various ranges \rightarrow model average using AIC

PCAC and pion pole dominance (PPD)

Continuum extrapolation using:

$$f(Q^2, a^2) = c_0 + c_1 Q^2 + c_2 a^2 + c_3 a^2 Q^2$$

***** Check PCAC and PPD relations

Low energy constant

Recent results on $G_A(Q^2)$ and $G_P(Q^2)$

D. Djukanovic et al. PRD 106, 074503 (2022), arXiv: 2207.03440

Comparison

*Very good agreement among lattice QCD results

Second Mellin moments

 $\text{ & Quark unpolarised moment } \mathcal{O}^{\mu\nu,q} = \bar{q}\gamma^{\{\mu}iD^{\nu\}}q$

Second Mellin moments

***** Quark unpolarised moment $\mathcal{O}^{\mu\nu,q} = \bar{q}\gamma^{\{\mu}iD^{\nu\}}q$

*****Gluon unpolarised moment $\mathcal{O}^{\mu\nu,g} = F^{\{\mu\rho}F^{\nu\}}_{\rho}$ Field strength tensor

Second Mellin moments

***** Quark unpolarised moment $\mathcal{O}^{\mu\nu,q} = \bar{q}\gamma^{\{\mu}iD^{\nu\}}q$

*****Gluon unpolarised moment $\mathcal{O}^{\mu\nu,g} = F^{\{\mu\rho}F^{\nu\}}_{\rho}$ Field strength tensor

Momentum and spin sums

Direct computation of parton distributions

• PDFs light-cone correlation matrix elements - cannot be computed on a Euclidean lattice

$$F_{\Gamma}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle N(p) | \bar{\psi}(-z/2) \Gamma W(-z/2, z/2) \psi(z/2) | N(p) \rangle |_{z^{+}=0, \vec{z}=0}$$

- Define spatial correlators e.g. along z³ and boost nucleon state to large momentum
 X. Ji, Phys. Rev. Lett. 110 (2013) 262002, arXiv:1305.1539
- Match to the infinite momentum frame using the matching kernel computed in perturbation theory (large momentum effective theory - LaMET)
- Allow momentum transfer —> generalised parton distributions

 $z^0 = t$

 Z^+

 z^3

Z-

Computation of quasi-PDFs

• Compute space-like matrix elements for boosted nucleon states and take the large boost limit

$$\tilde{F}_{\Gamma}(x, P_3, \mu) = 2P_3 \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-ixP_3 z} \langle P_3 | \overline{\psi}(0) \Gamma W(0, z) \psi(z) | P_3 \bigvee_{\text{Need to eliminate both UV and exponential divergences}} \text{Renormalise non-perturbatively, } \mathcal{I}_{(z,\mu)}$$

Match using LaMET

Perturbative kernel

$$\tilde{F}_{\Gamma}(x,P_3,\mu) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y},\frac{\mu}{yP_3}\right) F_{\Gamma}(y,\mu) + \mathcal{O}\left(\frac{m_N^2}{P_3^2},\frac{\Lambda_{\text{QCD}}^2}{P_3^2}\right)$$

X. Ji, Phys. Rev. Lett. 110 (2013) 262002, arXiv:1305.1539

Direct computation of PDFs (and GPDs)

• Compute space-like matrix elements for boosted nucleon states and take the large boost limit

 $\tilde{F}_{\Gamma}(x, P_3, \mu) = 2P_3 \int_{-\infty}^{\infty} \frac{dz}{4\pi} e^{-ixP_3 z} \langle P_3 | \overline{\psi}(0) \Gamma W(0, z) \psi(z) | P_3 \bigvee_{\text{Need to eliminate both UV and exponential divergences}} \text{Renormalise non-perturbatively, } \mathcal{Z}_{(z,\mu)}$

• Match using LaMET

Perturbative kernel

$$\tilde{F}_{\Gamma}(x, P_3, \mu) = \int_{-1}^{1} \frac{dy}{|y|} C\left(\frac{x}{y}, \frac{\mu}{yP_3}\right) F_{\Gamma}(y, \mu) + \mathcal{O}\left(\frac{m_N^2}{P_3^2}, \frac{\Lambda_{\text{QCD}}^2}{P_3^2}\right)$$

X. Ji, Phys. Rev. Lett. 110 (2013) 262002, arXiv:1305.1539

C.A. et al. (ETMC) Phys. Rev. Lett. 121, 112001 (2018)

Parton distribution functions can be computed directly in lattice QCD

Helicity distributions

C. A., M. Constantinou, K. Jansen, F. Manigrasso, Phys. Rev. Lett. 126 (2021) 10, 102003, arXiv:2009.13061 C.A., G. Iannelli, K. Jansen, F. Manigrasso, Phys. Rev. D 102 (2020) 9, 094508, arXiv:2007.13800

• Computation at the physical point is currently on-going

Unpolarized gluon PDF

*****Calculate the matrix elements of a spin-averaged nucleon for two gluon fields connected by a Wilson line *****Use Wilson flow to reduce ultraviolet fluctuations *****Pseudo-PDF approach with pion mass 358 MeV *****Calculate the matrix elements of a spin-averaged nucleon for two gluon fields connected by a Wilson line *****Use Wilson flow to reduce ultraviolet fluctuations *****Pseudo-PDF approach with pion mass 358 MeV

T. Khan, et al. (HadStruc Collaboration) Phys. Rev. D 101 (2021) 094516, 2107.08960

Conclusions

- Lattice QCD results produces known experimental values of e.g. nucleon axial charge, EM form factors, etc —> predict tensor charge, axial form factors
- (2) Lattice QCD provides accurate results on second Mellin moments that probe the distribution of spin among the quarks and gluons
- (3) Direct computation of PDFs, GPDs and TMDs providing a more complete picture of hadron structure is a very active field

HE YPR