

Hadron Spectroscopy at LHCb

Zan Ren^{*}

(On behalf of the LHCb collaboration)

*School of Physical Sciences, University of Chinese Academy of Sciences

Oct 17, 2023 @ Mainz, Germany

Background review

- QCD shows non-perturbative behavior at the energy scale of nuclei and hadrons.
 - Spectroscopy is the powerful tool to understand QCD at this energy scale. Experimental results will be important to test the relevant theories.
- Spectroscopy of conventional hadrons (mesons and baryons) enriched in the past decades.
- Exotics are predicted since 1960s, but first observed until 2003.
 - In the last 20 years, many new exotic candidates have been discovered in e^+e^- collision and hadron collision experiments.

Hadrons discovered by LHCb

Results shown in this talk

- Only limited (more recent) published analyses are covered by this talk.
- Conventional hadrons

Exotics

- New excited Ω_c^0 states:
 - $\Omega_c(3327)^0, \Omega_c(3185)^0$
- New excited Ξ_b^0 states:
 - $\Xi_b(6095)^0, \Xi_b(6087)^0$
- arXiv:2307.13399, Accepted by PRL
- New *b*-baryon decay mode
 - Observation & BF measurement of $\Xi_b^- \to \Lambda_b^0 \pi^-$

PRD108 (2023) 072002

PRL131 (2023)131902

• New pentaquark candidate:

• $P_{\psi s}^{\Lambda}(4338)^0$

PRL131 (2023) 031901

- New tetraquark candidates:
 - $T^{\theta}_{\psi s1}(4000)^{0}$ • $T^{a}_{c\bar{s}0}(2900)^{++/0}$

PRL131 (2023) 131901

PRL131 (2023) 041902

Results not specially included in this talk

- About new measurements of the decay properties of established hardon states, or products of the corresponding exotic states research.
 - Observation of $\Omega_c^0 \to \Omega^- K^+ / \Xi^- \pi^+$ and precision Ω_c^0 mass measurement arXiv:2308.08512
 - Obs. & BF of $\Lambda_h^0 \to \Lambda_c^+ \overline{D}^{(*)0} K^-$ and $\Lambda_h^0 \to \Lambda_c^+ D_s^{*-}$
 - Obs. & BF of $\Xi_h^0 \to \Xi_c^+ D_s^{*-}$ and $\Xi_h^- \to \Xi_c^0 D_s^-$

See Marian Stahl's talk in the parallel session

- arXiv:2308.00587 • Observation of $B_{(s)}^0 \rightarrow D_{s1}(2536)^{\mp} K^{\pm}$
- Obs. & BF of $B^+ \to I/\psi \eta' K^+$ JHEP08(2023)174
- Observation of $B_s^0 \to \chi_{c1}(3872)\pi^+\pi^-$ JHEP07(2023)084
- PWA of $D^+_{(s)} \rightarrow \pi^+ \pi^- \pi^+$ ($\omega(782)$ contribution is found) JHEP07(2023)204
- Observation of $B^0 \rightarrow p\bar{p}p\bar{p}$ decays PRL131 (2023) 091901
- New naming convention for exotics is submitted by LHCb (LHCb-PUB-2022-013).

LHCb detector

• Single-arm, forward. Specifically designed for heavy-flavour physics.

> Excellent tracking and vertexing $\sigma(p)/p < 1\% @ \epsilon_{\text{track}} > 96\%$ $\sigma(IP) = (15 + 29/p_T) \mu m$

\succ Excellent PID

 $\epsilon_{\text{PID}}(K) \approx 95\% \text{ @ MisID}(\pi \to K) \approx 5\%$ $\epsilon_{\text{PID}}(\mu) \approx 97\% \text{ @ MisID}(\pi \to \mu) \approx 3\%$

JINST3 (2008) S08005 IJMPA 30 (2015) 1530022

Oct 17, 2023

Zan Ren @MENU 2023

New excited Ω_c^0 states

• Five narrow Ω_c^{0*} states observed in Run1. \Rightarrow updated with Run1&2 data

- Confirmed the Run 1 results.
- Two broader states, namely $\Omega_c(3185)^0$ and $\Omega_c(3327)^0$, are observed for the first time.

New excited Ω_c^0 states

 $3118.98 \pm 0.12 \ ^{+0.09}_{-0.23} \pm 0.23$

 $3185.1 \pm 1.7 \ ^{+7.4}_{-0.9} \pm 0.2$

 $3327.1 \pm 1.2 \ ^{+0.1}_{-1.3} \pm 0.2$

3000

3100

 $14 F^{\times 10^3}$

12

10

Candidates / (5 MeV)

Two broader states, namely $\Omega_{c}(3185)^{0}$ and $\Omega_{c}(3327)^{0}$, are observed for the first time.

3500

LHCb

5.7 fb⁻¹

3400

 $\stackrel{+}{\underline{z}^{0}} m(\overline{z}_{c}^{+}K^{-}) [MeV]$

(b)

3300

٠

- Mass and width are measured
- Near $\Xi^0 D^{*0}$ and $\Xi_c^+ K^$ thresholds

Oct 17, 2023

 $\Omega_{c}(3065)^{0}$

 $\Omega_{c}(3090)^{0}$

 $\Omega_{c}(3119)^{0}$

 $\Omega_{c}(3185)^{0}$

 $\Omega_{c}(3327)^{0}$

 $50 \pm 7 \, {}^{+10}_{-20}$

 $20 \pm 5 + \tilde{13}$

New excited Ξ_b^0 states

- The ground state $\Xi_b^{0/-}$ was reconstructed by combining $\Xi_c^{+/0}$ with π^- or $\pi^-\pi^+\pi^-$.
- Then combined with another pion $\Rightarrow \Xi_b^{*0}$ or $\Xi_b'^{-}/\Xi_b^{*-}$

• Finally combined it with the second opposite-charged pion

- $\Xi_b(6100)^-$ (observed by CMS) is confirmed by LHCb with significance >12 σ .
- First observation of $\Xi_b(6087)^0$ and $\Xi_b(6095)^0$:
 - Significance >10 σ (and 8 σ).
 - · Decay properties are measured.
 - Maybe P-wave states coupling to the *b* quark to give a pair of states with $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^-$

State	Observ	. Value (MeV)	-
$\overline{\Xi_b(6100)^-}$	Q_0	$23.6 \pm 0.11 \pm 0.02$	irmed
	Γ	$0.94 \pm 0.30 \pm 0.08$	innea
	m_0	$6099.74 \pm 0.11 \pm 0.02 \pm 0.6 \ (\Xi_b^-)$	
$\Xi_b(6087)^0$	Q_0	$16.20 \pm 0.20 \pm 0.06$	
	Γ	$2.43 \pm 0.51 \pm 0.10$	
	m_0	$6087.24 \pm 0.20 \pm 0.06 \pm 0.5 \ (\Xi_b^0)$	
$\Xi_{b}(6095)^{0}$	Q_0	$24.32 \pm 0.15 \pm 0.03$	ew 🔽
	Γ	$0.50 \pm 0.33 \pm 0.11$	
	m_0	$6095.36 \pm 0.15 \pm 0.03 \pm 0.5 \ (\Xi_b^0)$	_

Observation & BF measurement of $\Xi_b^- \to \Lambda_b^0 \pi^-$

• A previous LHCb study using Run 1 dataset shows an evidence for the strangeness-changing weak decay $\Xi_b^- \rightarrow \Lambda_b^0 \pi^-$. \Rightarrow Updated with Run 2 dataset. PRL115 (2015) 241801

- Using the independent $f_{\Xi_b^-}/f_{\Lambda_b^0}$ measurement from PRD 99 (2019) 052006, the BF is determined as:
 - Consistent with predictions from

 $\mathcal{B}ig(\Xi_b^- o \Lambda_b^0 \pi^-ig) = (0.89 \pm 0.10 \pm 0.07 \pm 0.29)\%$

- some diquark model : H.Y. Cheng et.al. JHEP03(2016)028
- current algebra approaches: e.g., PLB 750. (2015) 653
- duality: e.g., PRD 93 (2016) 034020

Zan Ren @MENU 2023

Observation of $P_{\psi s}^{\Lambda}(4338)^0$

PRL131 (2023) 031901

- The mass of pentaquarks is found to be close to charm-baryon and charm-meson threshold.
 - The interpretation as hadronic *molecular-state* is one of the popular theories.

Oct 17, 2023

Zan Ren @MENU 2023

Tree-level Feynman diagram for $B^+ \rightarrow J/\psi \overline{\Lambda} p$ decay 1

Observation of $P_{\psi s}^{\Lambda}(4338)^0$

PRL131 (2023) 031901

- Start from the K^* model: $K^*_{2,3,4}$ and NR($\Lambda \bar{p}$) can't describe the data well.
- Nominal model: NR($\Lambda \bar{p}$), NR($J/\psi \bar{p}$) and $P_{\psi s}^{\Lambda}$ significantly improve the likelihood.

- $P_{\psi s}^{\Lambda}(4338)^{0}$ is observed for the first time with significance >10 σ (w.r.t. to the non- $P_{\psi s}^{\Lambda^{0}}$ hypo).
 - Minimal quark component: *cc̄uds*
 - The first observation of a hidden-charm pentaquark candidate with strangeness.
 - $J^P = \frac{1}{2}^-$ preferred. BW mass and width are reported.
 - Close to $\Xi_c^+ D^-$ threshold and J^P consistent with S-wave $\Xi_c \overline{D}$ molecular state.

 $M(P_{\psi s}^{\Lambda}) = 4338.2 \pm 0.7 \pm 0.4 MeV$ $\Gamma(P_{\psi s}^{\Lambda}) = 7.0 \pm 1.2 \pm 1.3 MeV$

Evidence of $T_{\psi s1}^{\theta}(4000)^0$

PRL127 (2021) 082001

- $T_{\psi s1}^{\theta}(4000)^+$ and $T_{\psi s1}(4220)^+$ are observed in $B^+ \rightarrow J/\psi \phi K^+$ decays.
 - Searching for their isospin partners to identify the full SU(3) nonet that involves ⁷₂ ⁹₂.
 The B⁰ → J/ψφK⁰_S decay is an ideal process to search for that states due to ⁸₂.
 - the isospin symmetry.
 - Simultaneous fit is performed to $B^0 \to J/\psi \phi K_S^0$ and the $B^+ \to J/\psi \phi K^+$ samples.

- Evidence of a $J/\psi K_S^0$ structure with a significance of 4σ is seen.
- Denoted as $T_{\psi s1}^{\theta}(4000)^0 (c\bar{c}d\bar{s})$, which likely to be the isospin partner of $T_{\psi s1}^{\theta}(4000)^+$ (*ccus*).

 $M(T_{\psi s1}^{\theta}(4000)^{0}) = 3991_{-10-17}^{+12+9} \text{ MeV}$ $\Gamma(T_{\psi s1}^{\theta}(4000)^{0}) = 105^{+29+17}_{-25-23} \text{ MeV}$ $\Delta M = -12^{+11+6}_{-10-4} \text{ MeV}$

Observation of $T^{a}_{c\bar{s}0}(2900)^{++}$ and $T^{a}_{c\bar{s}0}(2900)^{0}$

PRD108 (2023) 012017 PRL131 (2023) 041902

- Exotics composed of four different quark types attracts great interest in studies of hadron spectroscopy.
 PRL125 (2020) 242001 PRD102 (2020) 112003
 - $X_0(2900)$ and $X_1(2900)$, with quark component $cs\bar{u}\bar{d}$, are observed in $B^+ \to D^+ D^- K^+$ decay.
 - Search for tetraquark candidates, with quark component $c\bar{s}u\bar{d}$ or $c\bar{s}\bar{u}d$, can be performed in $B^+ \rightarrow D^- D_s^+ \pi^+$ and $B^0 \rightarrow \overline{D}^0 D_s^+ \pi^-$ decays.
 - A combined amplitude analysis of the $B^+ \to D^- D_s^+ \pi^+$ and $B^0 \to \overline{D}{}^0 D_s^+ \pi^-$ decays is performed.
 - Structure at 2.9 GeV in $D_s^+\pi^{+/-}$ spectra can not be well described by any known or new $D^{*+/0} \rightarrow \overline{D}^{0/-}\pi^+$ resonances.

Observation of $T^{a}_{c\bar{s}0}(2900)^{++}$ and $T^{a}_{c\bar{s}0}(2900)^{0}$

PRL131 (2023) 041902

- Both states prefer $J^P = 0^+$ (1⁻ is rejected by >7 σ).
- Separated fit reports: (both M and Γ in great agreement)

 $T^{a}_{c\bar{s}0}(2900)^{0}: M = 2.892 \pm 0.014 \pm 0.015 \text{ GeV}$ $\Gamma = 0.119 \pm 0.026 \pm 0.013 \text{ GeV}$ $T^{a}_{c\bar{s}0}(2900)^{++}: M = 2.921 \pm 0.017 \pm 0.020 \text{ GeV}$ $\Gamma = 0.137 \pm 0.032 \pm 0.017 \text{ GeV}$ 6.5σ

 $T^{a}_{c\bar{s}0}(2900)^{++}$ is the first observed **doubly-charged** tetraquark candidate.

• Shared fit reports: (assume they belong to isospin triplet)

 $M = 2.908 \pm 0.011 \pm 0.020 \text{ GeV}$

 $\Gamma = 0.136 \pm 0.023 \pm 0.013 \text{ GeV}$

Summary and prospects

- Some recent interesting results presented:
 - New conventional hadrons
 - New excited Ω_c^0 states: $\Omega_c(3327)^0$, $\Omega_c(3185)^0$
 - New excited Ξ_b^0 states: $\Xi_b(6095)^0, \Xi_b(6087)^0$
 - New exotics
 - New pentaquark candidates: $P_{\psi s}^{\Lambda}(4338)^0$
 - New tetraquark candidates: $X(3960), T_{\psi s1}^{\theta}(4000)^0, T_{c\bar{s}0}^{a}(2900)^{++/0}$
- Higher statistics in upgrade boosts hadron spectroscopy studies at LHCb:
 - Search for more conventional excited states
 - *Evidence* of some hadrons/decay modes ⇒ *Observation*
 - Search for new decay modes of observed exotic hadrons, e.g., $P_{\psi}^{N^+}$
 - Determine J^P and other properties of multiquark states

•

Thanks for listening

Questions and comments are welcomed.

Backup

Impact on recently discovered hadrons

Minimal quark	Current name	I(G) IP(C)	Proposed name	Reference
content	Current name	1 , 0 , 0	i toposed name	
$c\bar{c}$	$\chi_{c1}(3872)$	$I^G = 0^+, \ J^{PC} = 1^{++}$	$\chi_{c1}(3872)$	[24, 25]
$car{c}uar{d}$	$Z_c(3900)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(3900)^+$	[26-28]
$car{c}uar{d}$	$X(4100)^+$	$I^{G} = 1^{-}$	$T_{\psi}(4100)^+$	[29]
$car{c}uar{d}$	$Z_c(4430)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\psi 1}(4430)^+$	[30, 31]
$car{c}(sar{s})$	$\chi_{c1}(4140)$	$I^G = 0^+, J^{PC} = 1^{++}$	$\chi_{c1}(4140)$	[32 - 35]
$c\bar{c}u\bar{s}$	$Z_{cs}(4000)^+$	$I = \frac{1}{2}, \ J^P = 1^+$	$T^{\theta}_{\psi s1}(4000)^+$	[7]
$c\bar{c}u\bar{s}$	$Z_{cs}(4220)^+$	$I = \frac{1}{2}, \ J^P = 1^?$	$T_{\psi s1}(4220)^+$	[7]
$c\bar{c}c\bar{c}$	X(6900)	$I^G = 0^+, \ J^{PC} = ?^{?+}$	$T_{\psi\psi}(6900)$	[4]
$csar{u}ar{d}$	$X_0(2900)$	$J^P = 0^+$	$T_{cs0}(2900)^0$	[5,6]
$csar{u}ar{d}$	$X_1(2900)$	$J^{P} = 1^{-}$	$T_{cs1}(2900)^0$	[5,6]
$ccar{u}ar{d}$	$T_{cc}(3875)^+$		$T_{cc}(3875)^+$	[8,9]
$b ar{b} u ar{d}$	$Z_b(10610)^+$	$I^G = 1^+, \ J^P = 1^+$	$T^b_{\Upsilon 1}(10610)^+$	[36]
$c \bar{c} u u d$	$P_c(4312)^+$	$I = \frac{1}{2}$	$P_{\psi}^{N}(4312)^{+}$	[3]
$car{c}uds$	$P_{cs}(4459)^0$	$I = \overline{0}$	$P_{\psi s}^{\Lambda}(4459)^{0}$	[20]