

UNIVERSITÀ **DEGLI STUDI** DI MILANO

Evidence of intrinsic charm in the proton

Niccolò Laurenti, on behalf of the **NNPDF** collaboration

MENU 2023, Mainz, 20/10/2023

Istituto Nazionale di Fisica Nucleare

Theory background

Methodology

Results

Further developments

Theory background

Methodology

Results

Further developments

How do we compute observables in HEP?

What are the PDFs?

Deep inelastic scattering (DIS)

- Which quark does have a PDF?
- What do we mean with intrinsic charm?

Observables can be computed in different schemes:

3 Flavor scheme (3FS)

- 3 light flavors \implies only u, d, s, g evolve with DGLAP
- $\hat{\sigma}_i$ contain the charm mass dependence

 $\mu_c \sim \mathcal{O}(m_c)$

4FS

3FS

- Charm is massless \implies it evolves with DGLAP
- The charm splittings are reabsorbed in the **PDFs**

$$\mu_b \sim \mathcal{O}(m_b)$$
 5FS $\mu_t \sim \mathcal{O}(m_t)$

Putting $m_c = 0$ above μ_c would be a rough approximation. Things are more complicated than that! (backup)

- How do we relate PDFs in different flavor schemes?
- Which are the different components of the charm PDF?

$$f_i^{[4]}(\mu_c) = \sum_{j=g,q,\bar{q},c,\bar{c}} A_{ij} \left(\frac{m_c^2}{\mu_c^2}\right) \otimes f_j^{[3]}(\mu_c^2) \quad i = g, q, \bar{q}, c$$

$$A_{ij} \text{ are the matching conditions:} \text{ almost fully known up to } \mathcal{O}(\alpha_s^3)$$

$$A_{ij} = \begin{cases} 1 + \mathcal{O}(\alpha_s) \quad i = j \\ \mathcal{O}(\alpha_s) \quad i \neq j \end{cases}$$

$$f_c^{[4]}(\mu_c) = \left(1 + \alpha_s A_{cc}^{(1)}\right) f^{[3]}(\mu_c) + \alpha_s \sum_{j=g,q,\bar{q}} A_{cj}^{(1)} \otimes f_j^{[3]}(\mu_c^2) + \alpha_s \sum_{j=g,q,\bar{q}} A_{cj}^{(1)} \otimes f_j^{[3]}$$

Theory background

Methodology

Results

Further developments

How are the PDFs fitted?

 Which ingredients are required for a PDFs fit?

• Theory

 What defines the theory of a fit?

Dataset

• Which data points are included in the fit?

4618 data points from different processes

- Methodology
- How are the PDFs extracted?

Magnetize Results of the fit

13

How did we determine the intrinsic charm?

Step 2: evolve $f_i^{[4]}(Q_0^2)$ back to μ_c $f_i^{[4]}(\mu_c^2) = E_{ik}(\mu_c^2 \leftarrow Q_0^2) \otimes f_k^{[4]}(Q_0^2)$

Step 3: obtain charm PDF in 3FS $f_c^{[3]}(\mu_c^2) = A_{ck}^{-1} \left(\frac{m_c^2}{\mu_c^2} \right) \otimes f_k^{[4]}(\mu_c^2)$

Step 4: is $f_c^{[3]}(\mu_c^2)$ compatible with zero or not?

Theory background

Methodology

Results

Further developments

- Results of the fit: the matching is performed both at $\mathcal{O}(\alpha_s^2)$ and at $\mathcal{O}(\alpha_s^3)$
- PDFs uncertainties come from experimental uncertainties

•
$$c^+ = c + \bar{c} = 2c$$

Intrinsic charm is not compatible with zero at 3σ level

Comparison with models

 PDFs uncertainties come from experimental uncertainties + missing higher orders uncertainty

It agrees with with BHPS and Meson/Baryon models

- Is our result in agreement with data not included in the fit?
- LHCb measurement of Z+c jet (sensitive to charm PDF)

Theoretical predictions agree with data!

The last bin is the most correlated to the charm PDF (backup)

- Is our fit stable upon the inclusion of new data?
- LHCb measurement of Z+c jet are added to the dataset
- Two limiting cases: completely uncorrelated or fully correlated systematics between rapidity bins

Almost same results!

- EMC DIS data with charm in the final state are added to the dataset
- They are not added to the default set since they are relatively imprecise

Adding both LHCb and EMC data: local statistical significance

Fit is stable upon inclusion of new data!

Theory background

Methodology

Results

Further developments

What happens if we don't impose $c = \bar{c}$?

Nothing constrains $c = \bar{c}$

We extended the neural network to fit also \bar{c}

Observation: with no intrinsic charm $f_c^{[4]}(\mu_c) = f_{\bar{c}}^{[4]}(\mu_c) = \sum_{j=g,q,\bar{q}} A_{cj}\left(\frac{m_c^2}{\mu_c^2}\right) \otimes f_j^{[3]}(\mu_c^2)$

$\mathbf{c} \neq \bar{\mathbf{c}}$ would be another evidence for intrinsic charm

Preliminary results of intrinsic charm asymmetry

• $c^{\pm} = c \pm \bar{c}$

24

Preliminary results of intrinsic charm asymmetry central PDF • pulls = uncertainty

25

Theory background

Results

Further developments

Summary and Outlook

Intrinsic charm is a non-perturbative component of the proton

We disentangled the non-perturbative charm from the perturbative radiation

We observed a non-zero intrinsic charm

It agrees with models

It can describe data not included in the fit

The fit is stable upon inclusion of other data

Investigating charm asymmetry gives $c \neq \bar{c}$

Thank you for your attention!

Backup

Theory background

Methodology

Results

Further developments

- Neglecting the mass of the quark as soon as we cross the threshold would be a rough approximation
- How do we include mass effects?

 $\sigma = +a_0$ $+\alpha_{s}(a_{1}\log(Q^{2}/m^{2})+b_{1})$ $+\alpha_s^2 \left(a_2 \log^2(Q^2/m^2) + b_2 \log(Q^2/m^2) + c_2 \right)$ $+\alpha_s^3 \left(a_3 \log^3(Q^2/m^2) + b_3 \log^2(Q^2/m^2) + c_3 \log(Q^2/m^2) + d_3 \right)$ $+\ldots$

$\sigma_{\rm VFNS} = ?$

- Neglecting the mass of the quark as soon as we cross the threshold would be a rough approximation
- How do we include mass effects?

 $\sigma = +a_0$ $+\alpha_s \left(a_1 \log(Q^2/m^2) + b_1 \right)$ $+\alpha_s^2 \left(a_2 \log^2(Q^2/m^2) + b_2 \log(Q^2/m^2) + c_2 \right)$ $+\alpha_s^3 \left(a_3 \log^3(Q^2/m^2) + b_3 \log^2(Q^2/m^2) + c_3 \log(Q^2/m^2) + d_3 \right)$ $+\ldots$

$\sigma_{\rm VFNS} = \sigma_{\rm f.o.} + ?$

- Neglecting the mass of the quark as soon as we cross the threshold would be a rough approximation
- How do we include mass effects?

 $\sigma = +a_0$ $+\alpha_s \left(a_1 \log(Q^2/m^2) + b_1 \right)$ $+ \alpha_s^2 \left(a_2 \log^2(Q^2/m^2) + b_2 \log(Q^2/m^2) + c_2 \right)$ $+\alpha_s^3 \left(a_3 \log^3(Q^2/m^2) + b_3 \log^2(Q^2/m^2) + c_3 \log(Q^2/m^2) + d_3 \right)$ $+\ldots$

$\sigma_{\rm VFNS} = \sigma_{\rm f.o.} + \sigma_{\rm res} + ?$

- Neglecting the mass of the quark as soon as we cross the threshold would be a rough approximation
- How do we include mass effects?

 $\sigma = +a_0$ $+\alpha_s \left(a_1 \log(Q^2/m^2) + b_1 \right)$ $+ \alpha_s^2 \left(a_2 \log^2(Q^2/m^2) + b_2 \log(Q^2/m^2) + c_2 \right)$ $+\alpha_s^3 \left(a_3 \log^3(Q^2/m^2) + b_3 \log^2(Q^2/m^2) + c_3 \log(Q^2/m^2) + d_3 \right)$ $+\ldots$

$\sigma_{\rm VFNS} = \sigma_{\rm f.o.} + \sigma_{\rm res} - \sigma_{\rm d.c.}$

• Correlation coefficient between charm PDF at 100 GeV and the observable $R_j^c = \sigma(Zc)/\sigma(Zj)$

For the last curve (corresponding to the last bin of the measurements) R_j^c is mostly correlated to the region of the charm peak