

Future Facilities and Directions

Photo by Arcalino / Wikimedia Commons, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25239846

Map of Mainz

Gut/nb N-UIC/Caf

DARK MESA

Kurfürstliches Schloss

the niu Mood 😜

B&B HOTEL Mainz-Hbf Naturhistorisches Landesmuseum Mainz Museum Mainz Am Fort Consenheim Taiyo Finest Sushi & Asian Fusion Rheingoldhalle Mainzer Taubertsbergbad Stadion am Bruchweg 8 🕀 🕥 台 SCHMID Mainzer Dom HARTENBERG-MÜNCHFELD Praxis am Holztur me & all hotel Mainz la kus Schugt, MS **Erbacher Hof** Am besten bewertet Saarstraße Eskute E-Bike Shop straße St. Stephan Mainz Hege Johannes Saarstra Gutenberg-Universität CineStar Mainz Bastion Zitadelle auf dem Jakobsberg Mainz reriusweg Botaris (1)St (1)

OBERSTADT Maps from https://google.de/maps/

Drususwall

Institute of Nuclear Physics

nonz-institut viainz

Mainzer Mikrotron

M. Biroth for the MAGIX Collaboration, Mainz – mbiroth@uni-mainz.de

DARK MESA

ser-Hüsch-Weg

Electron Accelerator MAMI

- DARK
- Former A4 experiment measured parity violating asymmetries

Former A4 experiment measured parity violating asymmetries •

High-power beam dump

Thickness: 2 m \sim 26 X_0

...and after clearing the hall...

M. Biroth for the MAGIX Collaboration, Mainz - mbiroth@uni-mainz.de

M. Biroth for the MAGIX Collaboration, Mainz – mbiroth@uni-mainz.de

Electron Accelerator MESA

25 MeV superconducting cavities

Mainz Energy-recovering Superconducting Accelerator

Energy Recovery Linac (ERL) mode:

- Energy: $E_e \leq 105$ MeV in 2 turns
- Recovery: $\delta E_e \leq 100 \text{ MeV}$
- Current: $I_e > 1 \text{ mA}$

Electron Accelerator MESA

P2 exp. t beam dump

Mainz Energy-recovering Superconducting Accelerator

Energy Recovery Linac (ERL) mode:

- Energy: $E_e \leq 105$ MeV in 2 turns
- Recovery: $\delta E_e \leq 100 \text{ MeV}$
- Current: $I_e > 1 \text{ mA}$

Extracted Beam (EB) mode:

- Energy: $E_e \sim 155$ MeV in 3 turns
- Current: $I_e \leq 150 \ \mu A$

Electron Accelerator MESA

Mainz Energy-recovering Superconducting Accelerator

Energy Recovery Linac (ERL) mode:

- Energy: $E_e \leq 105$ MeV in 2 turns
- Recovery: $\delta E_e \leq 100 \text{ MeV}$
- Current: $I_e > 1 \text{ mA}$

Extracted Beam (EB) mode:

- Energy: $E_e \sim 155 \text{ MeV}$ in 3 turns
- Current: $I_e \leq 150 \ \mu A$

P2 exp. + Vecu Rich portfolio of dark sector experiments

WIMPs and Light Dark Matter

Weakly Interacting Massive Particles

- Matching relic abundance for the electroweak mass scale
- WIMPs require only SM interaction
- No positive evidence after LHC and galactic DM searches

WIMPs and Light Dark Matter

Weakly Interacting Massive Particles

Light Dark Matter

- Matching relic abundance for the electroweak mass scale
- WIMPs require only SM interaction
- No positive evidence after LHC and galactic DM searches

- Thermal relic targets exist for the MeV-GeV mass scale
- LDM requires a beyond SM force
- Rich phenomenology of portals: vector, higgs, neutrino, axion

- Dark photon γ' is the vector mediator
- Coupling to ordinary photons by kinetic mixing $\varepsilon = g_{\rm D}/g_{\rm SM} = \sqrt{\alpha_{\rm D}/\alpha}$
- Decay modes to both sectors

- Dark photon γ' is the vector mediator
- Coupling to ordinary photons by kinetic mixing $\varepsilon = g_{\rm D}/g_{\rm SM} = \sqrt{\alpha_{\rm D}/\alpha}$
- Decay modes to both sectors

- MESA in the ERL mode
- Supersonic gas jet target
- Magnetic spectrometers

- Dark photon γ' is the vector mediator
- Coupling to ordinary photons by kinetic mixing $\varepsilon = g_{\rm D}/g_{\rm SM} = \sqrt{\alpha_{\rm D}/\alpha}$
- Decay modes to both sectors

- Dark photon γ' is the vector mediator
- Coupling to ordinary photons by kinetic mixing $\varepsilon = g_{\rm D}/g_{\rm SM} = \sqrt{\alpha_{\rm D}/\alpha}$
- Decay modes to both sectors

Invisible decay:
$$m_{\gamma \prime} > 2m_{\chi}$$

• Scintillator telescope layer for PID

- Dark photon γ' is the vector mediator
- Coupling to ordinary photons by kinetic mixing $\varepsilon = g_{\rm D}/g_{\rm SM} = \sqrt{\alpha_{\rm D}/\alpha}$
- Decay modes to both sectors

Invisible decay: $m_{\gamma} > 2m_{\chi}$

P2 experiment (runtime 20,000 h)

- MESA in the EB mode
- Liquid hydrogen target $60 \text{ cm} \rightarrow dE/dx \sim 17 \text{ MeV}$
- Dumped electrons: 6.74×10^{22}

- Dark photon γ' is the vector mediator
- Coupling to ordinary photons by kinetic mixing $\varepsilon = g_D/g_{SM} = \sqrt{\alpha_D/\alpha}$
- Decay modes to both sectors

Invisible decay: $m_{\gamma \prime} > 2m_{\chi}$

P2 experiment (runtime 20,000 h)

- MESA in the EB mode
- Liquid hydrogen target $60 \text{ cm} \rightarrow dE/dx \sim 17 \text{ MeV}$
- Dumped electrons: 6.74×10^{22}

Direct LDM measurement!

Simulation: Dark Photons

GEANT4 simulation:

- 155 MeV electron beam interacts with P2 target
- Residual beam is stopped within one radiation length X₀
- On average 1 hard photon and 3 charged particles per electron are produced:
 - Dark Bremsstrahlung
 - Dark annihilation

 $e^+ + e^- \rightarrow \gamma' + \gamma$

M. Biroth for the MAGIX Collaboration, Mainz – mbiroth@uni-mainz.de

Simulation: Dark Matter Pairs

MadGraph simulation:

- Calculation of physical dark photon decays into DM pairs $\chi \overline{\chi}$
- Assumptions: $m_{\gamma \prime} := 3 \ m_{\chi}$, $\alpha_{\rm D} := 0.5$

Back in GEANT4:

- Dark matter particles knock out electrons with energies as low as $E_{\rm th} \sim 10 {\rm ~MeV}$
- A Calorimeter is perfectly suited to detect low-energetic electrons
- Different Cherenkov glasses were tested for their sensitivity

Detector Sensitivity Study

PbF₂ and the Pb-glass SF5 offer proper electron sensitivity and neutron insensitivity

Electron sensitivity study

Electron beam test, read: Mirco Christmann, et al.

- NIM A 958 (2020) 162398
- NIM A 960 (2020) 163665

Bachelor thesis of Paul Burger: Neutron sensitivity study with an AmBe source

Neutron sensitivity study

Modular Calorimeter Concept

• Modular calorimeter concept

 $\frac{PbF_{2} \text{ module}}{5 \times 5 \text{ matrix of } PbF_{2}}$ Volume: 4 l

1000 crystals: A4@Mainz each $(18 \times 3 \times 3)$ cm³

SF5 module 4×4 matrix of SF5 Pb-glasses Volume: 91

2000 glasses: WA98@CERN each $(46 \times 3.5 \times 3.5)$ cm³

Active Volume Expansion

 Phase A: 1 PbF₂ module, active volume of 0.004 m³

 Phase B: 30 PbF₂ and 64 SF5 modules, active volume 0.7 m³

M. Biroth for the MAGIX Collaboration, Mainz – mbiroth@uni-mainz.de

Active Volume Expansion

 Phase A: 1 PbF₂ module, active volume of 0.004 m³

 Phase B: 30 PbF₂ and 64 SF5 modules, active volume 0.7 m³

- Phase C: Long term plans
 - DarkMESA DRIFT: 1 m³ negative ion TPC as complimentary detection method
 - Calorimeter upgrade: Volume expansion up to 9 m³

DarkMESA Expected Reach

Phase	Detector	Period	Time	EOT
А	Prototype	14. year	2,200 h	$7.42 \cdot 10^{21}$
В	PbF ₂ , SF5	46. year	6,600 h	$2.22 \cdot 10^{22}$
С	+TPC	712. year	13,200 h	$4.45 \cdot 10^{22}$

Simulation by M. Christmann, Saskia Plura

Limits given as $y \propto m_{\chi}^2 \langle \sigma_A v \rangle$ $\sigma_A \sim \text{cross section of } \chi \overline{\chi} \to SM$

DarkMESA Expected Reach

Phase	Detector	Period	Time	EOT
А	Prototype	14. year	2,200 h	$7.42 \cdot 10^{21}$
В	PbF ₂ , SF5	46. year	6,600 h	$2.22 \cdot 10^{22}$
С	+TPC	712. year	13,200 h	$4.45 \cdot 10^{22}$

Main Competitors:

- LDMX
- Future NA64
- Belle II at high masses

DARK Phase-A Calorimeter Response

Phase A calorimeter (5x5 PbF₂):

Response to 4 different cosmic tracks:

Bachelor thesis of Jonas Pätschke

M. Biroth for the MAGIX Collaboration, Mainz – mbiroth@uni-mainz.de

-0.004

Calorimeter Crystal Calibration

Gain calibration of the PMTs

• Curve-fitting of charge spectra under short laser pulses

Light output calibration of the crystals:

• Sensitivity to particle tracks with respect to the Cherenkov angle:

 $\cos\theta = 1/n\beta$

• Beam test data is under analysis

PhD thesis of Matteo Lauß

Bachelor thesis of Jonas Pätschke

Cosmic Particles Veto Concept DARK

- Veto layers from double plastic scintillator-absorber sandwiches
- Heavy absorber shields electrons and converts photons, neutrons
- Muons produce a signal in opposite veto layers
- DM is assumed to pass the veto detector

Beam test data under analysis

PhD thesis of Matteo Lauß

Phase-A Veto Readout

Further reading: M. Lauß, et al., NIM A 1012 (2021) 165617

Detector Signal Processing

Narrow calorimeter PMT signal:

work

25 50

-0.02

Amplitude [V] -0.04 -0.06

-0.08

-0.10

-0.12

175

0.00

-0.05

-0.10

-0.15 -upplitude -0.20 -

-0.25

-0.30

-0.35

50 100 150

200 250

Time [ns]

300 350

ò

Broad Veto SiPM signal:

- Signals are sampled for • documentation purposes
- Ongoing study of pulse ٠ shaping to match ADC characteristics
- PANDA SADC
 - Channel count: 64
 - Voltage resolution: 14 bit
 - Sampling frequency: 80 MHz = 1/12.5 ns

See: PhD thesis of E.J.O. Noll (2020) Digital Signal Processing for the Measurement of Particle Properties with the PANDA Electromagnetic Calorimeter

Additional information:

- S. Plura (today 16:51) Search for Light Dark Matter with the DarkMESA Experiment
- S. Schlimme (Thursday 11:00) The MESA physics programme

Thermal Dark Matter

- Early universe $T > m_{\chi}$: Dark Matter (DM) is hold in thermal equilibrium by interaction with Standard Model (SM) matter
- During cooling down $T < m_{\chi}$: Number density dropped $n \propto e^{-m_{\chi}/T}$
- Finally $T \ll m_{\chi}$: Number density froze out at $n_{\rm FO} \approx H/\langle \sigma_{\rm A} v \rangle$
- Increased annihilation cross-section $\sigma_{\rm A}$ would lead to decreased relic abundance and later freeze-out

Hubble constant *H*, thermally averaged annihilation cross-section $\langle \sigma_A v \rangle$

WIMPs Expected Reach

chamber filled with Carbon Disulfide at 0.05 bar, see: D.P.

Snowden-Ifft, et al., arXiv:1809:06809

- Lowers the nuclear recoil detection threshold: $E_{\rm th} \sim 35 \; {\rm keV}$
- Requires Gadolinium-doped scintillators as cosmic Neutron veto detectors
 - Started cooperation with Philip Cole, Lamar University, Texas, US

DarkMESA DRIFT

Negative ion time projection

Cosmic Particles Background

Simulation of cosmogenic background based on the Cosmic-Ray shower librarY •

102 10 Cosmogenic **mu plus** flux 10 MeV Cosmogenic neutron flux 10 10 Cosmogenic flux (s⁻¹ m⁻²) Cosmogenic flux (s⁻¹ m⁻²) in hall $\sim 7 s^{-1} m^{-2}$ 10 10 10-5 10^{-1} 10-10 10^{-2} 10^{-10} 10^{-2} 10-4 10⁴ 10⁶ 10⁸ 10^{2} 10^{8} Energy (MeV) Energy (MeV)

Cosmogenic particles have to be vetoed with high efficiency

35

Neutron flux: Sea level (dashed), Hall (solid)

Beam Neutrons Background

• FLUKA simulation of beam-induced neutrons

- No significant background
- Work in progress

PbF₂ Module Assembly

3D printed housing with locking points

First layer assembly

Bachelor thesis of Jonas Pätschke

Single-detector assembly

Complete prototype

Veto Scintillator Properties

- Veto scintillators tested with cosmic particles and in the electron beam
- Wavelength shifting fibers increased light output but also the inhomogeneity
- Further reading: M. Lauß, et al., NIM A 1012 (2021) 165617
- Ongoing study of
 - Readout electronics
 - Attenuation length < 10 %/cm
 - Homogeneity

PhD and master thesis of Matteo Lauß

Detector Signal Shapes

• Waveforms of calorimeter and veto detectors are differently shaped

Narrow calorimeter PMT signal:

- For documentation purposes the waveforms of rare events should be stored
- Budged per channel is limited in case of a total count of 2000 in phase B

Broad Veto SiPM signal:

Detector Signal Processing

- PANDA SADC
 - Channel count: 64
 - Voltage resolution: 14 bit
 - Sampling frequency: 80 MHz = 1/12.5 ns
 - See: PhD thesis of E.J.O. Noll (2020) Digital Signal Processing for the Measurement of Particle Properties with the PANDA Electromagnetic Calorimeter
- Energy signals of the fast PMTs have to be bandwidth limited to match the slow sampling rate
- Investigation of the optimum time constant τ :
 - Require sample in the rising edge (Phase error)

M. Biroth for the MAGIX Collaboration, Mainz – mbiroth@uni-mainz.de

Optimize the charge integral SNR

P2 Experiment at MESA

The weak mixing angle: Measurement of the parity violating asymmetry in the elastic scattering of polarized electrons off unpolarized nuclei

Competitors Overview

- Beam dump experiments similar to DarkMESA
 - BDX@JeffersonLAB, e⁻beam (future unclear)
 - SHiP@SPS/CERN, p beam (future unclear)
 - MiniBooNE@FermiLAB, ν beam (ongoing)
- Missing mass experiments similar to MAGIX
 - PADME@INFN,Frascati, e⁺ beam on e⁻ (ongoing)
 - DarkLight@ARIEL/TRIUMF, e⁻ beam (30 MeV in 2024, 50 MeV in 2025)
- Missing momentum/energy experiments
 - LDMX@SLAC,Stanford, e⁻ beam (4 GeV in 2025, 8 GeV in 2027)
 - NA64@SPS/CERN, e⁻ beam (upgrade)
 - Lohengrin@ELSA,Bonn, e⁻ beam (future)
- Collider experiments
 - FASER@LHC/CERN, pp collisions (ongoing)
 - BaBar, BES III, ISR in e⁺e⁻ collisions (future: Belle II)

Visible Decay Expected Reach

- Decay length $l = \gamma c\tau \le 8 \text{ mm}$ requires vertex reconstruction
- Search for a sharp invariant mass peak: $m_{\gamma'}^2 = (\mathbf{e^+} + \mathbf{e^-})^2$
- Simulation by H. Merkel
- Competitors:
 - DarkLight
 - FASER
 - NA64

Visible Decay Expected Reach

- Decay length $l = \gamma c\tau \le 8 \text{ mm}$ requires vertex reconstruction
- Search for a sharp invariant mass peak: $m_{\gamma'}^2 = (\mathbf{e^+} + \mathbf{e^-})^2$
- Simulation by H. Merkel
- Competitors:
 - DarkLight
 - FASER
 - NA64
- Sensitivity enables the search for the vector boson candidate X17 in excited states of He, Be and C

Invisible Decay Expected Reach

- Missing mass: $m_{\gamma\prime}^2 = (e^{o-} - e^- + p^o - p)^2$
- Simulation by P. Gülker
- Competitors:
 - LDMX@SLAC 8 GeV
 - Future NA64
 - Future Belle II at high masses

Visible Decay at MAMI

Linear electron accelerator Mainz Mikrotron (MAMI):

- Energy: $E_e \leq 1.6 \text{ GeV}$
- Current: $I_e \leq 100 \ \mu A$

RTM2

- 3 magnetic spectrometers
- Mass resolution $\delta m < 100 \, {\rm keV}/c^2$

10 m

Experiment:

- Beam: $E_e \in [180, 855]$ MeV
- Target: tantalum foil

Exclusion limits:

- $m_{\gamma \prime} \in [40, 300] \,\mathrm{MeV}/c^2$
- $\varepsilon \ge 8 \cdot 10^{-7}$

Let. 112 (2014) 221802

