Inference of the neutron star matter equation of state: Impact of new data

L. B., W. Weise and N. Kaiser, arXiv:2306.06218 (2023) [accepted by PRD] L. B., W. Weise and N. Kaiser, Phys. Rev. D 107, 014001 (2023)

MENU conference 2023

Len Brandes 20.10.2023

Technische Universität München

What are neutron stars?

- Stars remain stable by fusing light elements to heavier elements
- At some point no light elements left in core
 - \rightarrow Resulting implosion leads to supernova
- Collapsed core forms neutron star

Why are neutron stars interesting?

[Fukushima, Kojo and Weise, Phys. Rev. D 102 (2020)]

- ► Masses $M \sim 1 2M_{\odot}$, radii $R \sim 11 13$ km
- High baryon densities in core, beyond terrestrial experiments
- Transition from nucleonic to quark-gluon matter at high density?
 - \rightarrow Nature and location of possible **phase transition(s)**?

Description of neutron stars

► Internal structure described by Tolman-Oppenheimer-Volkoff (TOV) equations

$$\frac{\partial P(r)}{\partial r} = -\frac{G_N}{r^2} \left(\varepsilon(r) + P(r) \right) \left(m(r) + 4\pi r^3 P(r) \right) \left(1 - \frac{2G_N m(r)}{r} \right)^{-1} ,$$

$$\frac{\partial m(r)}{\partial r} = 4\pi r^2 \varepsilon(r)$$
 [Tolman, Phys. Rev. 55 (1939)] [Oppenheimer and Volkoff, Phys. Rev. 55 (1939)]

- ► Solved given equation of state (EoS) $P(\varepsilon)$ and central energy density $\varepsilon(r = 0) = \varepsilon_c$
 - \rightarrow Solution for different ε_c yields (*M*, *R*)-relation
- Each EoS has maximum density $\varepsilon_{c,max}$ corresponding to maximum supported mass M_{max}

Description of neutron stars

► Internal structure described by Tolmann-Oppenheimer-Volkoff (TOV) equations

$$\frac{\partial P(r)}{\partial r} = -\frac{G_N}{r^2} \left(\varepsilon(r) + P(r) \right) \left(m(r) + 4\pi r^3 P(r) \right) \left(1 - \frac{2G_N m(r)}{r} \right)^{-1} ,$$

$$\frac{\partial m(r)}{\partial r} = 4\pi r^2 \varepsilon(r)$$
 [Tolman, Phys. Rev. 55 (193)

- [Tolman, Phys. Rev. 55 (1939)] [Oppenheimer and Volkoff, Phys. Rev. 55 (1939)]
- ► Solved given equation of state (EoS) $P(\varepsilon)$ and central energy density $\varepsilon(r = 0) = \varepsilon_c$
- Simultaneously solve for tidal deformability Λ
 - \rightarrow Relevant for neutron stars in binary systems

Speed of sound

Determine EoS from speed of sound

$$c_s^2(\varepsilon) = \frac{\partial P(\varepsilon)}{\partial \varepsilon}$$

- Causality & thermodynamic stability: $0 \le c_s \le 1$
- Measure of coupling strength in matter
 - → Characteristic signature of phase structure:
 - Nucleonic: monotonously rising sound speed
 - First-order phase transition: coexistence interval with zero sound speed c_s² ~ 0
 - Crossover: peaked behaviour

[McLerran and Reddy, Phys. Rev. Lett. 122 (2019)]

Parametrization

Introduce general parametrization by segment-wise linear interpolations

$$c_{s}^{2}(\varepsilon,\theta) = \frac{(\varepsilon_{i+1} - \varepsilon)c_{s,i}^{2} + (\varepsilon - \varepsilon_{i})c_{s,i+1}^{2}}{\varepsilon_{i+1} - \varepsilon_{i}}$$
[Annala *et al.*, Nature Phys. 16, 907 (2020)]

- Can describe wide range of possible phase transitions and crossovers
- Previous analyses: similar results to non-parametric representations [Annala et al., arXiv:2303.11356 (2023)]
- Constrain parameters $\theta = (\varepsilon_i, c_{s,i}^2)$ based on **available data**

\rightarrow Analyse for signatures of **possible phase transitions**

Bayesian inference

- Constrain parameters of $c_s^2(\varepsilon, \theta)$ via **Bayesian inference** based on data \mathscr{D} $\Pr(\theta|\mathscr{D}) \propto \Pr(\mathscr{D}|\theta) \Pr(\theta)$
- Compute posterior probability $Pr(\theta|\mathscr{D})$ for parameters θ :
 - Compute likelihood $\Pr(\mathcal{D}|\theta)$ for each data \mathcal{D}
 - Choose prior ranges for parameters $Pr(\theta)$
- ► Compute median and credible bands at 68% or 95% level
 - → Here: more prior support at small sound speeds to analyse phase transitions [LB, Weise and Kaiser, Phys. Rev. D 107 (2023)]

[LB, Weise and Kaiser, arXiv:2306.06218 (2023)]

Bayesian inference

- Constrain parameters of $c_s^2(\varepsilon, \theta)$ via **Bayesian inference** based on data \mathscr{D} $\Pr(\theta|\mathscr{D}) \propto \Pr(\mathscr{D}|\theta) \Pr(\theta)$
- Compute posterior probability $Pr(\theta|\mathscr{D})$ for parameters θ :
 - Compute likelihood $\Pr(\mathcal{D}|\theta)$ for each data \mathcal{D}
 - Choose prior ranges for parameters $Pr(\theta)$
- ► Quantify evidence for hypothesis H₀ vs. H₁ with **Bayes factors**

 $\mathscr{B}_{H_0}^{H_1} = \frac{\Pr(\mathscr{D}|H_1)}{\Pr(\mathscr{D}|H_0)}$

[LB, Weise and Kaiser, arXiv:2306.06218 (2023)]

 \rightarrow Comparison to classification scheme for statistical conclusions

[Lee and Wagenmakers, *Bayesian Cognitive Modeling* (Cambridge University Press, 2014)] [Jeffreys, *Theory of Probability* (Oxford University Press, 1961)]

Perturbative QCD

- Strong coupling decreases at high densities
 - → Perturbative QCD calculations in terms of quark and gluon degrees of freedom
- Asymptotic boundary condition at $n \ge 40 n_0$ (with $n_0 = 0.16 \text{ fm}^{-3}$)
- Speed of sound reaches **conformal limit** $c_s^2 = 1/3$ from below
 - → Interpolation to asymptotic pQCD with $0 \le c_s \le 1$ constrains EoS at smaller densities

[Komoltsev and Kurkela, Phys. Rev. Lett. 128 (2022)]

Exclude EoS where matching to asymptotic pQCD is not possible

Chiral effective field theory

► ChEFT: systematic expansion of nuclear forces at low momenta with controlled uncertainties

 \rightarrow Employ only up to $n \le 1.3 n_0$

[Essick et al., Phys. Rev. C 102 (2020)]

Inference of the neutron star matter equation of state | Len Brandes

Shapiro time delays

- ► Neutron stars with strong magnetic fields emit synchroton radiation
- ► If magnetic and rotation axis not aligned, double cone of radiation rotates (→ pulsars)
- Binary systems: gravitational field of companion changes pulsar signal
- ► Extract **neutron star masses** with high precision (68% level):

PSR J0348+0432	M = 2.01 \pm 0.04 M_{\odot}	[Antoniadis et al., Science 340 (2013)
PSR J0740+6620	M = 2.08 \pm 0.07 M_{\odot}	[Fonseca et al., Astrophys. J. Lett. 915 (2021)

 \rightarrow Matter must be sufficiently stiff to support such high masses

[Demorest et al., Nature 467 (2010)]

Pulse profile modelling

- ► Hot spots form on magnetic polar caps of rapidly rotating neutron stars
- Thermal X-ray emission modulated by gravitational effects
 - \rightarrow Measured by **NICER** telescope on ISS
- Model hot spots and neutron star atmosphere
 - → Infer **mass and radius** from X-ray measurements (68% level):

[Riley et al., Astrophys. J. Lett. 887 (2019)]

[Riley et al., Astrophys. J. Lett. 918 (2021)]

 \rightarrow Very similar radii for 1.34 and 2.07 M_{\odot} neutron stars

Neutron star mergers

- Binary neutron star mergers produce gravitational waves
- Compare observed LIGO and Virgo signal to waveform models
- Waveform depends on M₂/M₁ and combination of tidal deformabilities

$$\bar{\Lambda} = \frac{16}{13} \frac{(M_1 + 12M_2)M_1^4\Lambda_1 + (M_2 + 12M_1)M_2^4\Lambda_2}{(M_1 + M_2)^5}$$

[Dietrich, Hinderer and Samajdar, Gen. Rel. Grav. 53 (2021)]

• Two binary neutron star mergers detected so far (90% level):

 $\begin{array}{ll} \mbox{GW170817} & \Bar{\Lambda} = 320^{+420}_{-230} \\ \mbox{GW190425} & \Bar{\Lambda} \leq 600 \end{array}$

[Abbott et al. (LIGO and Virgo Collaborations), Phys. Rev. X 9 (2019)]

[Abbott et al. (LIGO and Virgo Collaborations), Astrophys. J. Lett. 892 (2020)]

New data: black widow pulsar

- Black widow pulsars accrete most of mass from companion
 - \rightarrow Determine mass via observation of companion
- PSR J0952-0607 heaviest neutron star observed so far

 $M = 2.35 \pm 0.17 M_{\odot}$ [Romani *et al.*, ApJL 934 (2022)]

- Simpler heating model compared to other black widows
- Second fastest known pulsar T = 1.41 ms
 - \rightarrow Rotation correction via empirical formula

[Konstantinou and Morsink, Astrophys. J. 934, 139 (2022)]

[W.M. Keck Observatory, Roger W. Romani, Alex Filippenko]

Impact of PSR J0952-0607

- ► Analyse impact of new black widow (BW) pulsar compared to Previous data
- Maximum mass increased (68%): $M_{\text{max}} = 2.31^{+0.14}_{-0.17} M_{\odot}$
- Central densities of heavy neutron stars reduced:

 $n_c(2.1 M_{\odot}) = 4.1^{+0.8}_{-0.9} n_0 \rightarrow n_c(2.1 M_{\odot}) = 3.6 \pm 0.7 n_0 \qquad n_c(2.3 M_{\odot}) = 3.8^{+0.7}_{-0.8} n_0$

 \rightarrow Average distance between baryons: $d > 1.0 \,\text{fm} \gg r_{\text{hard-core}} \sim 0.5 \,\text{fm}$

[Ishii, Aoki and Hatsuda, Phys. Rev. Lett. 99 (2007)]

Speed of sound

- ► Sound speed becomes stiffer by inclusion of heavy mass measurement
- Conformal bound $c_s^2 \le 1/3$ exceeded inside neutron stars
 - \rightarrow Strongly repulsive correlations at high densities
- ► Slight **tension** between ChEFT at $n \simeq 2n_0$ and astro data

Previous + BW

[Altiparmak, Ecker and Rezzolla, Astrophys. J. Lett. 939 (2022)] [Legred, Chatziioannou, Essick, Han and Landry, Phys. Rev. D 104 (2021)]

Previous + BW

[Essick et al., Phys. Rev. C 102 (2020)]

Mass-radius & tidal deformability

- ► Good agreement with data not included in Bayesian analysis:
 - Thermonuclear burster 4U 1702-429

[Nättilä et al., Astron. & Astrophys. 608 (2017)]

• $R(M = 1.4 M_{\odot})$ from quiescent low mass X-ray binaries (qLMXBs)

[Steiner et al., Mon. Not. Roy. Astron. Soc. 476 (2018)]

- Median with almost constant radius R ~ 12.3 km
- ► Good agreement with other GW170817 analyses:
 - Masses and tidal deformabilities of two neutron stars

[Fasano, Abdelsalhin, Maselli, and Ferrari, Phys. Rev. Lett. 123 (2019)]

• $\Lambda(M = 1.4 M_{\odot})$ from universal relations

[Abbott et al. (LIGO and Virgo Collaborations), Phys. Rev. Lett. 121 (2018)]

Pressure & coexistence interval

Compare pressure credible bands to APR EoS

[Akmal, Pandharipande and Ravenhall, Phys. Rev. C 58 (1998)]

- Maxwell construction of first-order phase transition: constant pressure in coexistence interval
 - \rightarrow Width Δn measure of phase transition 'strength'
- Maximum possible interval within posterior credible band

 $\left(\frac{\Delta n}{n}\right)_{\max} \le 0.2$ at 68% level

- Compare to 'strong' nuclear liquid-gas phase transition

 $\frac{\Delta n}{n} > 1$ [Fiorilla, Kaiser and Weise, Nucl. Phys. A 880 (2012)]

\rightarrow Only weak first-order phase transitions <code>possible</code>

Small sound speeds

 Quantify evidence of small sound speeds inside neutron star cores with Bayes factor

 $\mathscr{B}_{c_{s,\min}^2 \le 0.1}^{c_{s,\min}^2 \ge 0.1}$

 $\rightarrow c_{s,\min}^2 \leq 0.1$ perquisite for first-order phase transition

- Previous analyses: $c_s^2 > 0.1$ in neutron stars with $M = 2M_{\odot}$ [Ecker and Rezzolla, Astrophys. J. Lett. 939 (2022)] [Annala *et al.*, arXiv:2303.11356 (2023)]
- Heavy mass measurement increases Bayes factor
- ► Strong evidence against $c_{s,\min}^2 \le 0.1$ in cores of neutron stars with $M \le 2.1 M_{\odot}$
 - \rightarrow Strong first-order phase transitions unlikely

Possible impact of HESS J1731-347

► Central compact object within supernova remnant HESS J1731-347:

 $M = 0.77^{+0.20}_{-0.17} M_{\odot}$ $R = 10.4^{+0.86}_{-0.78} \text{ km}$

[Doroshenko et al., Nat. Astron. 6 (2022)]

- Unusually light neutron star with very low radius
 - → Neutron star mass $M < 1.17 M_{\odot}$ in contradiction with known formation mechanisms [Suwa *et al.*, MNRAS 481 (2018)]

 \rightarrow Strange star?

Systematic uncertainty: larger masses and radii might be possible

[Alford and Halpern, Astrophys. J. 944 (2023)]

Tension between HESS and current astrophysical data

[Jiang, Ecker and Rezzolla, arXiv:2211.00018 (2022)]

 $R \,[\mathrm{km}]$

Summary

- Bayesian inference of sound speed in neutron star matter based on:
 - Shapiro time-delays
 - NICER X-ray measurements
 - Gravitational waves from binary neutron star mergers

- ChEFT results at small densities
- Perturbative QCD calculations at asymptotically high densities
- (New) black widow pulsar $M = 2.35 \pm 0.17 M_{\odot}$
- ► Black widow heavy mass measurement further stiffens EoS
 - \rightarrow Central densities of neutron stars reduced: $n_c < 5 n_0$ for $M \le 2.3 M_{\odot}$
 - \rightarrow Slight tension with ChEFT at $n \sim 2.0 n_0$
- ► Maximum possible **coexistence interval** $(\Delta n/n)_{max} \le 0.2$
 - \rightarrow Only weak phase transitions possible within posterior credible band
- ► Strong evidence against $c_{s,\min}^2 \le 0.1$ in cores of neutron stars with $M \le 2.1 M_{\odot}$
 - \rightarrow Strong first-order phase transitions unlikely

Supplementary material

Outlook

- Fourth observation run of LIGO, Virgo and KAGRA started on May 4th
- ► Four more objects set to be measured by NICER telescope
- Moment-of-inertia measurement of PSR J0737-3039 in next few years

[Greif *et al.*, MNRAS 485 (2019)]

[Landry and Kumar, Astrophys, J. 868 (2018)]

- \rightarrow Many more future measurements will put even tighter constraints on $c_s^2(\varepsilon)$
- \rightarrow More information about high density phase structure

nature

NEWS FEATURE 04 March 2020

The golden age of neutron-star physics has arrived

These stellar remnants are some of the Universe's most enigmatic objects – and they are finally starting to give up their secrets.

Adam Mann

Phases of strongly interacting matter

- Crossover at T ~ 155 MeV from lattice QCD and heavy ion collisions [Bazavov et al., Phys. Rev. D 90 (2014)] [Andronic, Braun-Munzinger, Redlich and Stachel, Nature 561 (2018)]
- ▶ Sign problem at large $\mu \rightarrow$ no lattice QCD
- ► Nuclear liquid-gas phase transition at $\mu = 923 \text{ MeV}$ [Elliott, Lake, Moretto and Phair, Phys. Rev. C 87 (2013)]
- Colour superconducting phase at asymptotic densities [Schäfer and Wilczek, Phys. Rev. D 60 (1999)]
- Unknown transition from nuclear to quark matter
 - \rightarrow High densities and low temperatures realized in neutron stars

Phases of strongly interacting matter

Effective models find first-order phase transition

[Buballa, Phys. Rep. 407 (2005)]

→ Fluctuations beyond mean-field important

[Brandes, Kaiser and Weise, Eur. Phys. J. A 57 (2021)]

- Continuous crossover from hadronic to quark matter [Baymet al., Rep. Prog. Phys. 81 (2018)]
 - \rightarrow Intermediate phase of quarkyonic matter?

[Fukushima and Hatsuda, Rep. Prog. Phys. 74 (2011)]

- Hyperons energetically favourable at high densities?
 - \rightarrow Might be inhibited by repulsive three-body forces

[Gerstung, Kaiser and Weise, Eur. Phys. J. A 56 (2020)]

General EoS parametrization

Determine EoS from speed of sound

$$c_s^2(\varepsilon) = \frac{\partial P(\varepsilon)}{\partial \varepsilon}$$

Parametrize by segment-wise linear interpolations

$$\boldsymbol{c}_{s}^{2}(\varepsilon,\theta) = \frac{(\varepsilon_{i+1} - \varepsilon)\boldsymbol{c}_{s,i}^{2} + (\varepsilon - \varepsilon_{i})\boldsymbol{c}_{s,i+1}^{2}}{\varepsilon_{i+1} - \varepsilon_{i}}$$
[Annala *et al.*, Nature Phys. 16, 907 (2020)]

- Matching to BPS crust at low densities $(c_{s,0}^2, \varepsilon_0) = (c_{s,crust}^2, \varepsilon_{crust})$ [G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170 (1971)]
- ► Constant speed of sound $c_s^2(\varepsilon, \theta) = c_{s,N}^2$ beyond last point $\varepsilon > \varepsilon_N$
- Choose N = 5 corresponding to 7 segments and 10 free parameters
- Priors sampled logarithmically

$$c_{s,i}^2 \in [0,1]$$
 $\varepsilon_i \in [\varepsilon_{crust}, 4 \,\mathrm{GeV}\,\mathrm{fm}^{-3}]$

Parametrizations with only 4 segments leads to comparable results as non-parametric Gaussian process

[Annala et al., arXiv:2303.11356 (2023)]

Bayesian inference

► Bayes theorem:

 $\mathsf{Pr}(\theta|\mathscr{D},\mathscr{M}) = \frac{\mathsf{Pr}(\mathscr{D}|\theta,\mathscr{M})\,\mathsf{Pr}(\theta|\mathscr{M})}{\mathsf{Pr}(\mathscr{D}|\mathscr{M})}$

- Choose **Priors** for parameters $Pr(\theta|\mathcal{M})$
- ► Likelihood $Pr(\mathcal{D}|\theta, \mathcal{M})$: probability of data \mathcal{D} to occur for θ and model \mathcal{M}
- (M, R, Λ) can be deterministically determined for θ

 $\Pr(\mathcal{D}|\theta,\mathcal{M}) = \Pr(\mathcal{D}|M,R,\Lambda,\mathcal{M})$

 \rightarrow For computational feasibility assume (valid for flat Priors in $(M,R,\Lambda))$

 $\Pr(\mathcal{D}|M, R, \Lambda, \mathcal{M}) \propto \Pr(M, R, \Lambda | \mathcal{D}, \mathcal{M})$

[Riley, Raaijmakers and Watts, Mon. Not. Roy. Astron. Soc. 478 (2018)] [Raaijmakers et al., ApJL 918 (2021)]

Bayesian inference

Bayes theorem:

 $\mathsf{Pr}(\theta|\mathscr{D},\mathscr{M}) = \frac{\mathsf{Pr}(\mathscr{D}|\theta,\mathscr{M})\,\mathsf{Pr}(\theta|\mathscr{M})}{\mathsf{Pr}(\mathscr{D}|\mathscr{M})}$

• Evidence $Pr(\mathcal{D}|\mathcal{M})$: determined via normalization of the posterior

$$\Pr(\mathscr{D}|\mathscr{M}) = \int d\theta \ \Pr(\mathscr{D}|\theta, \mathscr{M}) \Pr(\theta|\mathscr{M})$$

- \rightarrow High-dimensional integral, use sampling techniques
- Credible bands: determine $P(\varepsilon_i, \theta)$ on grid $\{\varepsilon_i\}$ for posterior samples to get $\Pr(P|\varepsilon_i, \mathcal{D}, \mathcal{M})$

 \rightarrow Compute credible interval [*a*,*b*] with probability α at ε_i

$$\alpha = \int_{a}^{b} dP \operatorname{Pr}(P|\varepsilon_{i}, \mathcal{D}, \mathcal{M})$$

 \rightarrow Combine credible intervals at all ε_i to posterior credible band $P(\varepsilon)$

Trace anomaly measure

Trace anomaly measure as signature of conformality

$$\Delta = \frac{g_{\mu\nu}T^{\mu\nu}}{3\varepsilon} = \frac{1}{3} - \frac{P}{\varepsilon}$$

[Fujimoto, Fukushima, McLerran and Praszałowicz, Phys. Rev. Lett. 129 (2022)]

- Median becomes negative around $\varepsilon \sim 700 \, \text{MeV} \, \text{fm}^{-3}$
 - \rightarrow Moderate evidence for Δ turning **negative** inside neutron stars

Bayes factor $\mathscr{B}_{\Delta \ge 0}^{\Delta < 0} = 8.11$

[Ecker and Rezzolla, Astrophys. J. Lett. 939 (2022)] [Annala *et al.*, arXiv:2303.11356 (2023)] [Marczenko, McLerran, Redlich and Sasaki, Phys. Rev. C 107 (2023)]

► At higher energy densities again positive ∆ to reach asymptotic pQCD limit

Twin stars

- Strong phase transitions can lead to mass-radius relations with multiple stable branches ('twin stars')
- Bayes factor gives extreme evidence against multiple stable branches [Gorda et al., arXiv:2212.10576 (2022)]
- Without likelihood from ChEFT 'only' strong evidence:

 $\mathscr{B}_{N_{\text{branches}}>1}^{N_{\text{branches}}=1} = 12.97$

[Essick, Legred, Chatziioannou, Han and Landry, arXiv:2305.07411 (2023)]

• Disconnection takes place at $M \sim 0.8 M_{\odot}$

Impact of pQCD

• Matching to pQCD at $n_{c,max}$ has only **negligible impact**

[Somasundaram, Tews and Margueron, arXiv:2204.14039 (2022)]

- ► Change matching to asymptotic pQCD from *n_{c,max}* to 10 *n*₀
 - \rightarrow Much smaller c_s^2 at high energy densities

[Gorda, Komoltsev, and Kurkela, arXiv:2204.11877 (2022)] [Komoltsev and Kurkela, Phys. Rev. Lett. 128 (2022)]

- \rightarrow Few changes in mass-radius, properties of 2.3 M_{\odot} neutron star change only slightly
- EoS beyond $n_{c,max}$ no longer constrained by astrophysical data
 - → Impact depends unconstrained interpolation to high densities [Essick, Legred, Chatziioannou, Han and Landry, arXiv:2305.07411 (2023)]

Perturbative QCD

• Connection of $(\mu_{NS}, n_{NS}, P_{NS})(\theta)$ to $(\mu_{pQCD}, n_{pQCD}, P_{pQCD})$

$$\int_{\mu_{\rm NS}}^{\mu_{\rm pQCD}} d\mu \ n(\mu) = P_{\rm pQCD} - P_{\rm NS} = \Delta P$$

 Causality and thermodynamic stability imply minimum and maximum values

$$\Delta P_{\min} = \frac{\mu_{pQCD}^2 - \mu_{NS}^2}{2\mu_{NS}} n_{NS} \quad \Delta P_{\max} = \frac{\mu_{pQCD}^2 - \mu_{NS}^2}{2\mu_{pQCD}} n_{pQCD}$$

Likelihood

$$\Pr(\mathcal{D}_{pQCD} | \Delta P(\theta), \mathcal{M}) = \begin{cases} 1 & \text{if } \Delta P(\theta) \in [\Delta P_{\min}(\theta), \Delta P_{\max}(\theta)] \\ 0 & \text{else} \end{cases}$$

[Komoltsev and Kurkela, Phys. Rev. Lett. 128 (2022)]

[Gorda, Komoltsev, and Kurkela, arXiv:2204.11877 (2022)]

Likelihoods

- EoS supports masses between M_{\min} and $M_{\max}(\theta)$
- Choose flat mass prior and $M_{\rm min} = 0.5 M_{\odot}$

$$\Pr(M(\theta)) = \begin{cases} \frac{1}{M_{\max}(\theta) - M_{\min}} & \text{if } M \in [M_{\min}, M_{\max}(\theta)] \\ 0 & \text{else} \end{cases}$$

[Landry, Essick and Chatziioannou, Phys. Rev D 101 (2020)]

- When number of data increases incorporate mass population
 - \rightarrow Wrong population model causes a bias

[Mandel, Farr and Gair, Mon. Not. Roy. Astron. Soc. 486 (2019)]

► Assume Shapiro mass measurements Gaussian to compute likelihood

$$\Pr(M(\theta) | \mathscr{D}_{\text{Shapiro}}, \mathscr{M}) = \int_{M_{\min}}^{M_{\max}(\theta)} dM \, \mathscr{N}(M, \langle M \rangle, \sigma_M) \Pr(M(\theta))$$
$$\approx \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{M_{\max}(\theta) - \langle M \rangle}{\sqrt{2}\sigma_M}\right) \right] \Pr(M(\theta))$$

Likelihoods

- ► Data available as samples, approximate underlying probability with Kernel Density Estimation (KDE)
- ► Solve TOV equations to obtain $R(M, \theta)$ and $\Lambda(M, \theta)$
- NICER likelihood:

$$\Pr((M,R)(\theta) | \mathcal{D}_{\text{NICER}}, \mathcal{M}) = \int_{M_{\min}}^{M_{\max}(\theta)} dM \text{ KDE}(M,R(M,\theta)) \Pr(M(\theta))$$

GW likelihood:

$$\Pr((M,\Lambda)(\theta)|\mathscr{D}_{\mathsf{GW}},\mathscr{M}) = \int \mathsf{d}M_1 \int \mathsf{d}M_2 \; \mathsf{KDE}(M_1,M_2,\Lambda(M_1,\theta),\Lambda(M_2,\theta))$$

- Do not assume neutron star-neutron star merger events
 - \rightarrow GW likelihood not weighted by mass prior and $\Lambda(M) = 0$ for black holes
- Do not assumed fixed chirp mass $M_{\text{chirp}} = (M_1 M_2)^{3/5} (M_1 + M_2)^{-1/5}$

Conformal limit

- Derived from naive dimensional analysis and asymptotic limit

$$\mu \gg \Lambda_{\text{QCD}} \implies P \propto \mu^{d+1}$$
$$c_s^2 = \frac{\partial P}{\partial \varepsilon} \sim \frac{1}{d}$$

[Hippert, Fraga and Noronha, Phys. Rev. D 104 (2021)]

Expected to hold in all conformal field theories

[Bedaque and Steiner, Phys. Rev. Lett. 114 (2015)]

• Recent Bayesian analyses found speeds of sound $c_s^2 > 1/3$ inside neutron stars

[Landry, Essick and Chatziioannou, Phys. Rev. D 101 (2020)] [Gorda, Komoltsev, and Kurkela, arXiv:2204.11877 (2022)] [Altiparmak, Ecker, and Rezzolla, arXiv:2203.14974 (2022)] [Leonhardt *et al.*, Phys. Rev. Lett. 125 (2020)]

 \rightarrow Also $c_s^2 > 1/3$ in recent $N_C = 2$ **lattice QCD**

[lida and Itou, PTEP 2022 (2022)]

Hard Dense Loop resummation methods: conformal limit may be approached asymptotically from above

[Fujimoto and Fukushima, Phys. Rev. D 105 (2022)]

Parametrization dependence

- 'Old' segment-wise parametrisation: different ChEFT constraint, $c_s^2 = 1/3$ reached asymptotically from below
- Compared to skewed Gaussian plus logistic function to reach asymptotic limit $c_s^2 = 1/3$

$$c_{s}^{2}(x,\theta) = a_{1} \exp\left[-\frac{1}{2} \frac{(x-a_{2})^{2}}{a_{3}^{2}}\right] \left(1 + \operatorname{erf}\left[\frac{a_{6}}{\sqrt{2}} \frac{x-a_{2}}{a_{3}}\right]\right) + \frac{1/3 - a_{7}}{1 + \exp\left[-a_{5}(x-a_{4})\right]} + a_{7}$$

[Greif et al,, MNRAS 485, 5363 (2019)] [Tews, Margueron and Reddy, EPJA 55, 97 (2019)]

Very similar findings, results robust against change of parametrization and Prior

Machine learning

- ► Sparse amount of data: Bayesian results depend on prior choices and implicit assumptions
 - \rightarrow Complimentary machine learning analysis
- Train neural network to learn EoS from measurements based on simulated data

► Limitations: observations assumed to be gaussian, simple EoS model, only mass-radius data

[Fujimoto, Fukushima and Murase, Phys. Rev. D 101 (2020)]

Simulation based inference

Train neural density estimator (normalizing flow) to approximate likelihood

 $q_{\phi}(\mathcal{D}|\theta) \approx \Pr(\mathcal{D}|\theta)$

[Papamakarios, Sterratt and Murray, AISTAT (2019)]

- 1. Sample θ from prior $Pr(\theta)$
- 2. Solve TOV equations for R(M), sample *M* and determine R = R(M)
- 3. Simulate spectrum x for given (M, R)
- 4. Train neural **density estimator** $q_{\phi}(x|\theta)$ with (x,θ)
- 5. Insert real data x_0 into $q_{\phi}(x_0|\theta) \approx \Pr(x_0|\theta)$ and combine with likelihoods from other sources

Inference of the neutron star matter equation of state | Len Brandes

Simulation based inference

Train neural density estimator (normalizing flow) to approximate likelihood

 $q_{\phi}(\mathcal{D}|\theta) \approx \Pr(\mathcal{D}|\theta)$

[Papamakarios, Sterratt and Murray, AISTAT (2019)]

- 1. Sample θ from prior $Pr(\theta)$
- 2. Solve TOV equations for R(M), sample M and determine R = R(M)
- 3. Simulate spectrum x for given (M, R)
- 4. Train neural **density estimator** $q_{\phi}(x|\theta)$ with (x,θ)
- 5. Insert real data x_0 into $q_{\phi}(x_0|\theta) \approx \Pr(x_0|\theta)$ and combine with likelihoods from other sources

- Similar approach already used for inference of gravitational waves
- Easy to implement with sbi package
- Infer likelihood directly from detector output
- ► Learn likelihood instead of posterior, possible to combine with other data
- Amortization: easy to include new measurements, analyse impact of future measurements
- Might be necessary to first learn a simpler model

[Dax et al., Phys. Rev. Lett. 127 (2021)]

[Tejero-Cantero et al., Journal of Open Source Software (2020)]

[Farrell et al., arXiv:2305.07442 (2023)]

Likelihood $q_{\phi}(\mathcal{D}|\theta)$

Inference of the neutron star matter equation of state | Len Brandes

Neural Likelihood Estimation

► **Sample** (θ_i, x_i) from $Pr(\theta, x)$

 $\theta_i \sim \Pr(\theta)$ $x_i \sim \Pr(x|\theta)$

► **Training** q_{ϕ} based on (θ_i, x_i) equals maximizing $\sum_i \log q_{\phi}(x_i | \theta_i)$

$$\mathbb{E}_{\mathsf{Pr}(\theta,x)}\left[\log q_{\phi}(x|\theta)\right] = -\mathbb{E}_{\mathsf{Pr}(\theta)}\left[D_{\mathsf{KL}}\left(\mathsf{Pr}(x|\theta)||q_{\phi}(x|\theta)\right)\right] + \text{const}$$

- \rightarrow Kullback-Leibler divergence zero for $q_{\phi}(x|\theta) = \Pr(x|\theta)$
- Insert observation x₀

 $\Pr(x_0|\theta) \approx q_{\phi}(x|\theta)$

• Sequential NLE: Change proposal $Pr(\theta)$ to $q_{\phi}(\theta|x_0)$ for faster convergence [Papamakarios, Sterratt and Murray, AISTAT (2019)]

Normalizing Flows

- Represent probability distribution Pr(x) via invertible and differentiable transformation f of base distribution π(u)
- ► Sample easily:

x = f(u) $u \sim \pi(u)$

- Choose simple **base distribution** $\pi(u)$, i.e. standard Gaussian
- Compute probability density:

$$\Pr(x) = \pi(f^{-1}(x)) \left| \det\left(\frac{\partial f^{-1}}{\partial x}\right) \right|$$

[Kingma and Dhariwal, NeurIPS (2018)]

 \rightarrow **Transformation** *f* should be easy to invert and determinant of Jacobian must be easy to compute