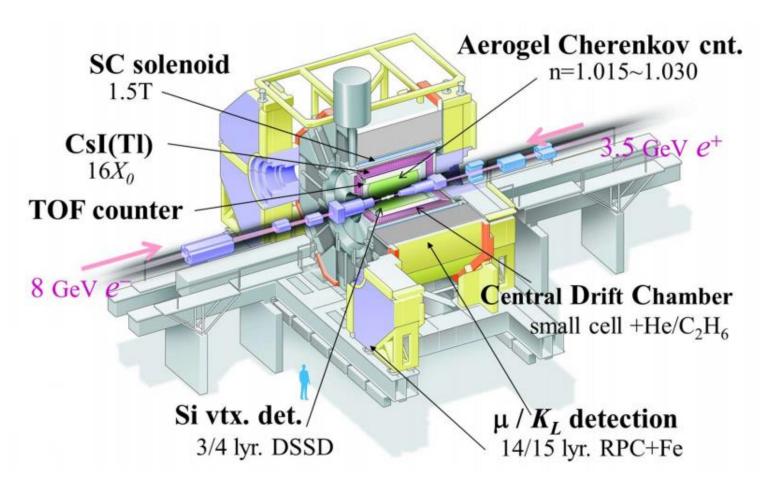
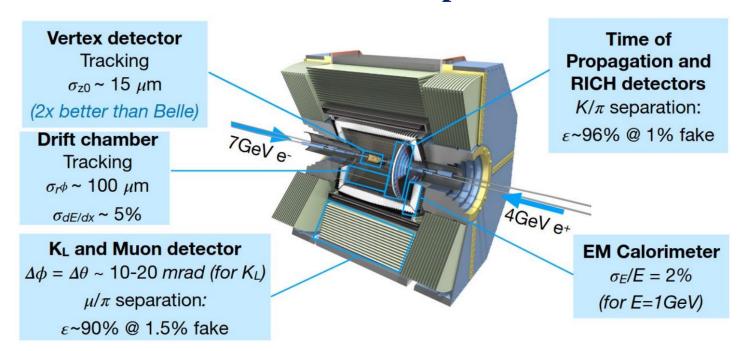
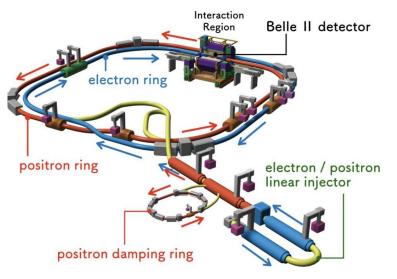
Hadron Spectroscopy at Belle & Belle II

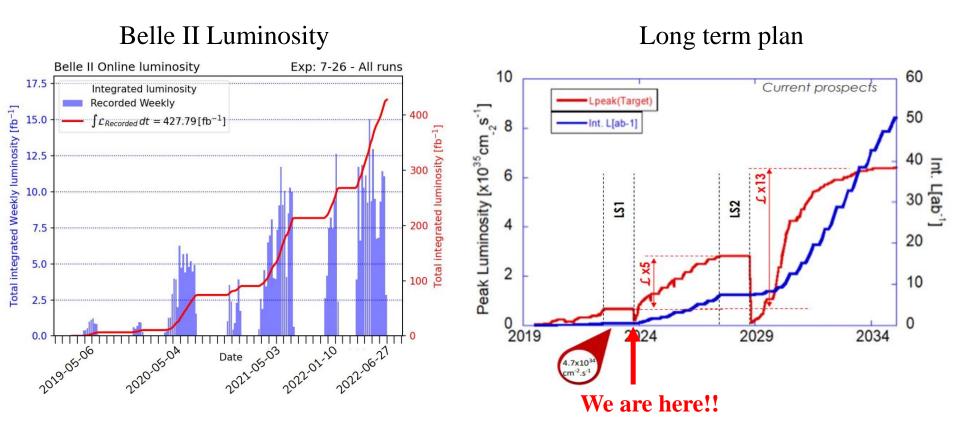

MENU 2023 October 16, 2023

Seongbae Yang (Korea University)
on behalf of Belle & Belle II Collaborations

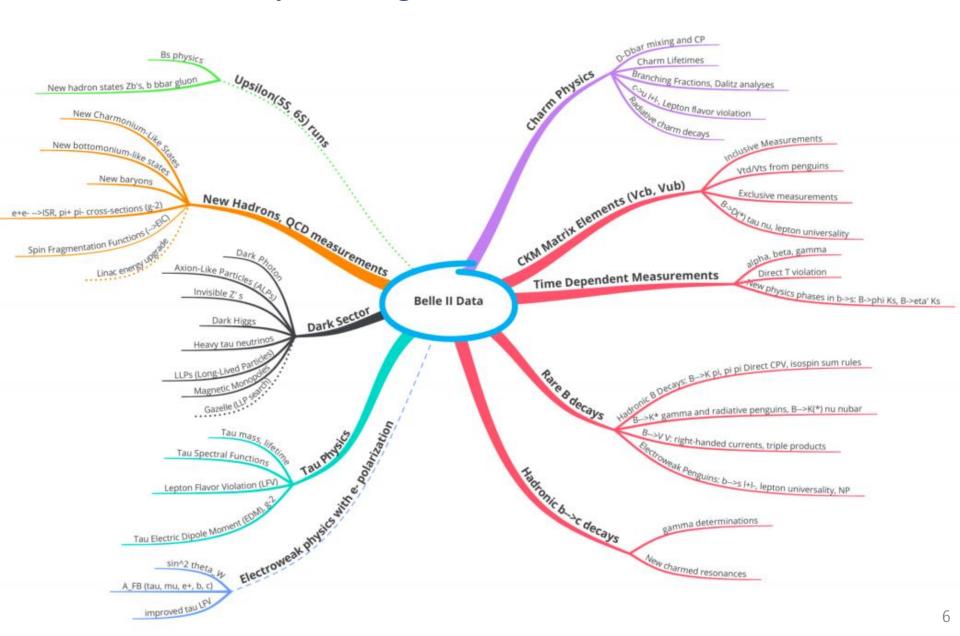
Contents


- 1. Introduction
 - -Belle & Belle II
 - -Hadron spectroscopy at Belle & Belle II
- **2.** Bottomonium: Transitions of $\Upsilon(10753)$
 - -Observation of $\Upsilon(10753) \rightarrow \chi_{bI}(1P)\omega$ decay
 - -Search for $\Upsilon(10753) \to \chi_{b0}(1P)\omega$ and $\omega \eta_b(1S)$ decays
- 3. Hyperon: New peak structures near the mass thresholds
 - $-\Lambda \eta$ threshold cusp in pK^- system
 - -New peaking structures near the $\overline{K}N$ threshold in $\Lambda\pi$ system
- 4. Summary
- * In Hadron Spectrocopy section (Oct. 17, 12:10PM),
 - 'Recent results on charmed baryon' by Suxian Li

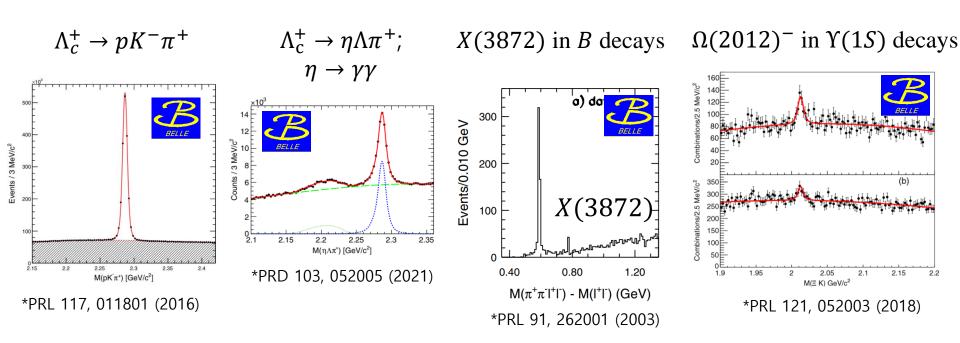

Belle Experiment


- Physics beamtime: 1999~2010
- Huge statistics, $\sim 10^9 \ B\bar{B}$ pairs, $\sim 1 \ ab^{-1}$ integrated luminosity

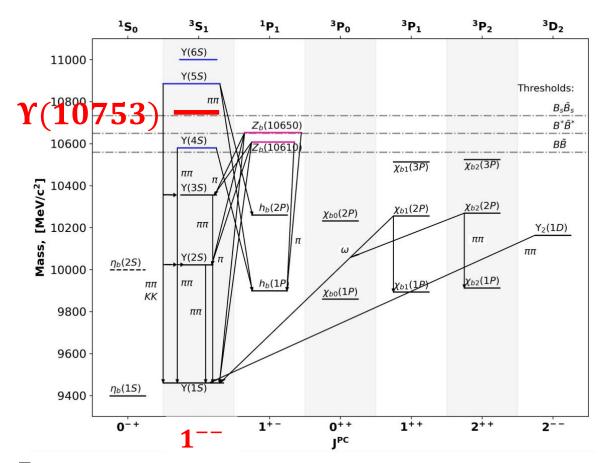
Belle → **Belle** II Experiment



- SuperKEKB and Belle II upgrades
 - Higher beam current (\times 2) and smaller beam focus ($\times \frac{1}{20}$) at IR
 - Upgrades in all parts of the detector (vertex, resolution, trigger, and DAQ, ...)

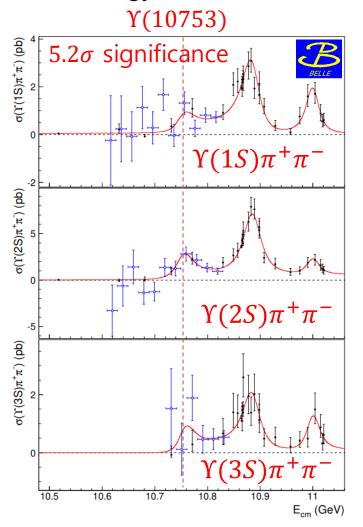

- Instantaneous luminosity record of $4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ (world record)
- Total integrated luminosity of 424 fb⁻¹ until now.
- We plan to take 50 times more data than Belle in the future

Physics Program of Belle & Belle II



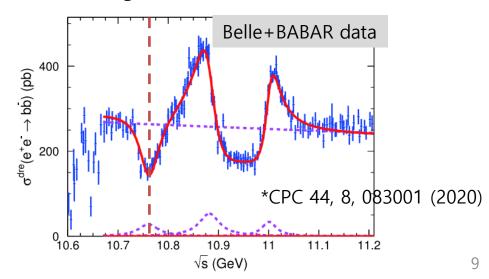
Hadron Spectroscopy at Belle & Belle II

- Huge statistics, Belle + Belle II: ~1.5 ab⁻¹ until now
- Excellent detector performance with 4π solid angle
- EM calorimeter for gamma detection ($\sigma_E/E = 2\%$ at 1 GeV)
- Various channels for hadron spectroscopy
- $e^+e^- \rightarrow q\bar{q}$, B decays, $\Upsilon(1S)$ decays, and charmed baryon decays (for hyperons)

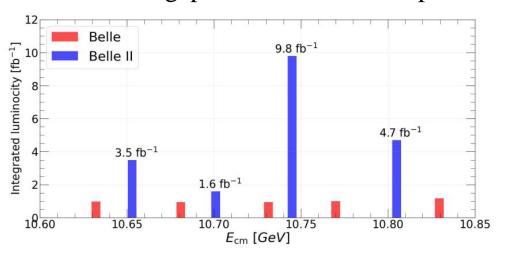

Bottomonium Scheme

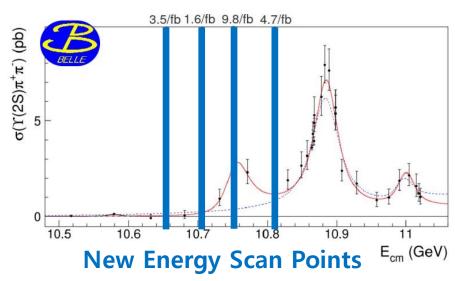
- Below $B\bar{B}$ threshold: States are well described by potential models
- Above $B\bar{B}$ threshold: Unexpected properties are seen.
 - Two charged Z_b^+ states $(B^{(*)}\bar{B}^*$ molecular states?)
 - Hadronic transitions are strongly enhanced
 - η transitions are not suppressed compared to $\pi^+\pi^-$ transitions

Observation of $\Upsilon(10753)$


- Measurement of $e^+e^- \to \Upsilon(nS)\pi^+\pi^-$ cross sections
- Belle energy scan data in the energy range from 10.63 GeV to 11.02 GeV

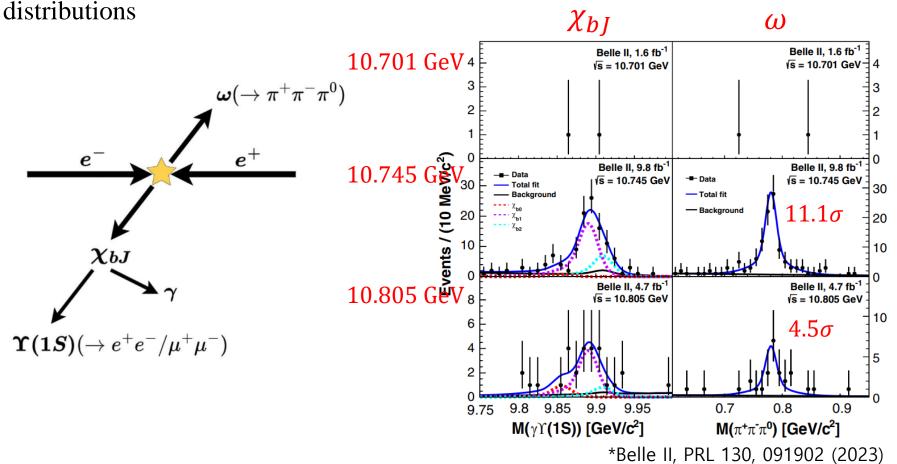
*Belle, JHEP 10 (2019) 220


	Υ(10860)	$\Upsilon(11020)$	New structure
$\rm M~(MeV/c^2)$	$10885.3 \pm 1.5 ^{+2.2}_{-0.9}$	$11000.0^{+4.0}_{-4.5}{}^{+1.0}_{-1.3}$	$10752.7 \pm 5.9 ^{+0.7}_{-1.1}$
$\Gamma \ ({ m MeV})$	$36.6^{+4.5}_{-3.9}{}^{+0.5}_{-1.1}$	$23.8^{+8.0\ +0.7}_{-6.8\ -1.8}$	$35.5^{+17.6}_{-11.3}{}^{+3.9}_{-3.3}$

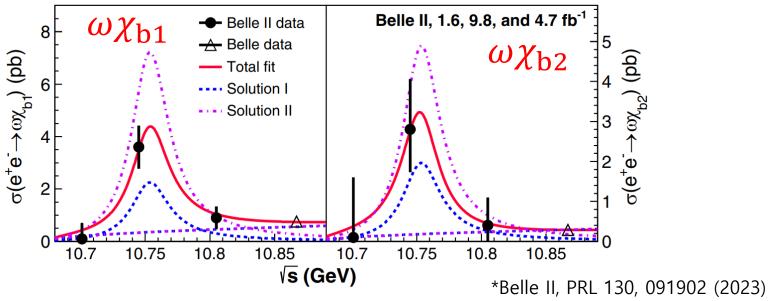

• $e^+e^- \rightarrow B\overline{B}$ cross sections - A dip near 10.75 GeV

New Energy Scan for Y(10753)

- In November 2021, Belle II collected unique energy scan data around 10.75 GeV
- The main goal was to confirm and study $\Upsilon(10753)$
- Total integrated luminosity: 19 fb⁻¹
- Fill in the gaps between the Belle points


Observation of $\Upsilon(10753) \rightarrow \omega \chi_{bJ}$

- \blacksquare Y(10753) → $\omega \chi_{bJ}$ and γX_b
 - $Y(4220) \rightarrow \omega \chi_{c0}$ and $\gamma X(3872)$ are observed \rightarrow


*BESIII, PRL 122, 232002 (2019) and PRD 99, 091103 (2019)

Similar nature with Y(4220) in charmonium section

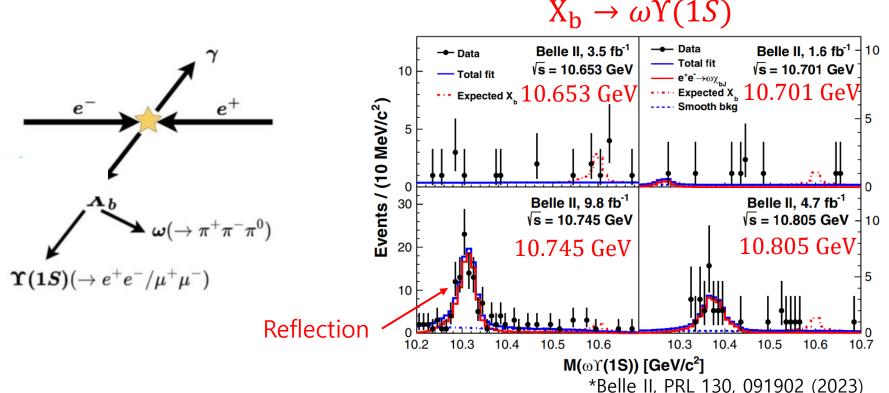
• 2D unbinned maximum likelihood fits to $M(\gamma \Upsilon(1S))$ and $M(\pi^+\pi^-\pi^0)$

• Cross sections of $e^+e^- \rightarrow \omega \chi_{b1}$ and $\omega \chi_{b2}$

$$\bullet \frac{\sigma(e^+e^-\to\omega\chi_{\rm bJ})}{\sigma(e^+e^-\to\Upsilon(nS)\pi^+\pi^-)} = \sim 1.5 \text{ at } \sqrt{s} = 10.745 \text{ GeV}$$

- The ratio is significantly different with the ratio of $\Upsilon(5S)$ (~0.15)
- \rightarrow Different internal structure with $\Upsilon(5S)$? *Belle, PRL 113, 142001 (2014)

$$\bullet \frac{\sigma(e^+e^- \to \omega \chi_{b1}(1P))}{\sigma(e^+e^- \to \omega \chi_{b2}(1P))} = 1.3 \pm 0.6 \text{ at } \sqrt{s} = 10.745 \text{ GeV}$$


- Prediction for *D*-wave bottomonium state: 15 *Phys. Lett. B 738, 172 (2014)
- Prediction for *S-D* mixed state: 0.2 *Phys. Rev. D 104, 034036 (2021)
- \rightarrow Close to S-D mixed state?

2. Transitions of $\Upsilon(10753)$

- Search for $\Upsilon(10753) \rightarrow \gamma X_b$
 - Search for X_b in $M(\omega \Upsilon(1S))$ distributions
 - \rightarrow Reflections from $\Upsilon(10753) \rightarrow \omega \chi_{b1}$ and $\omega \chi_{b2}$ are seen.
 - \rightarrow No significant signal of X_b is observed.

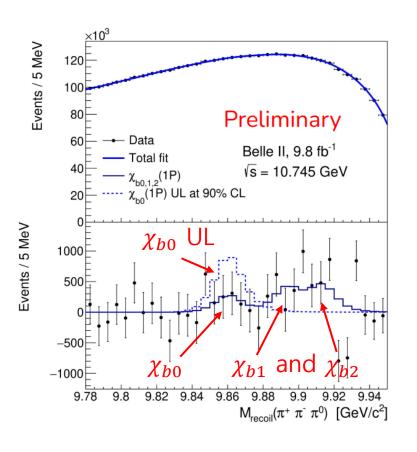
\sqrt{s} (GeV)	10.653	10.701	10.745	10.805
Upper limits on $\sigma_{\rm B}(e^+e^- \to \gamma {\rm X_b}) \cdot B({\rm X_b}\omega \Upsilon(1S))$ (pb)	(10.14, 0.55)	(0.25, 0.84)	(0.06, 0.14)	(0.08, 0.37)

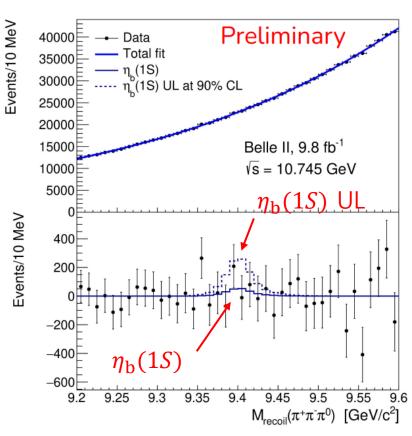
*with varying $M(X_b)$ from 10.45 to 10.65 GeV/ c^2

Search for $\Upsilon(10753) \rightarrow \omega \eta_b(1S)$ and $\omega \chi_{b0}$

• Tetraquark interpretation predicts a strong transition of $\omega \eta_b(1S)$ compared to $\Upsilon \pi^+ \pi^-$ transition.

$$\frac{\Gamma(\omega\eta_b)}{\Gamma(\Upsilon\pi^+\pi^-)} \sim 30 \quad \text{*Chin. Phys. C 43, 123102 (2019)}$$


There is no convenient way to reconstruct η_b .


- In charmonium section, $Y(4220) \rightarrow \omega \chi_{c0}$ transition is enhanced compared to $\omega \chi_{c1}$ and $\omega \chi_{c2}$.*PRL 130, 091902 (2023) But $e^+e^- \rightarrow \omega \chi_{b0}$ was not observed in the full reconstruction due to $B(\chi_{b0} \rightarrow \gamma \Upsilon(1S)) = (1.94 \pm 0.27)\%$.
- Search for these above transitions by the recoil mass of $\omega \to \pi^+\pi^-\pi^0$

$$M_{\text{recoil}}(\pi^+\pi^-\pi^0) = \sqrt{(\frac{E_{c.m.}-E^*}{c^2})^2 - (\frac{p^*}{c})^2},$$

where $E_{c.m.}$: total e^+e^- energy E^* and p^* : energy and momentum of $\omega \to \pi^+\pi^-\pi^0$ in the center of mass frame.

• $\omega \to \pi^+\pi^-\pi^0$ recoil mass distributions

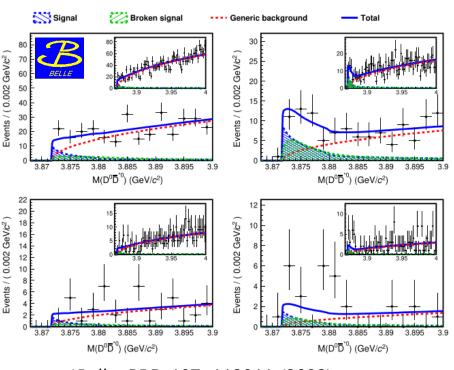
 \rightarrow No significant χ_{b0} and $\eta_b(1s)$ signals are observed.

 \rightarrow These results do not support the tetraquark prediction of $\Upsilon(10753)$.

New Peak Structures near the Mass Thresholds

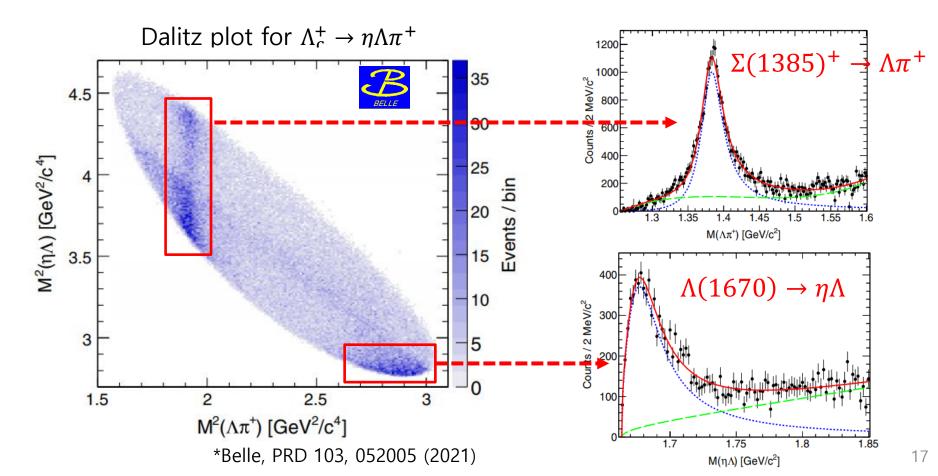
- New peak structures have been observed near the mass threshold.
 - They do not always indicate new hadron resonances.
 - → New hadron resonance or threshold cusp
 - → Linesahpe analysis is required to identify the structure.
- X(3872) structure near $D^0 \overline{D}^{*0}$ threshold

3.88

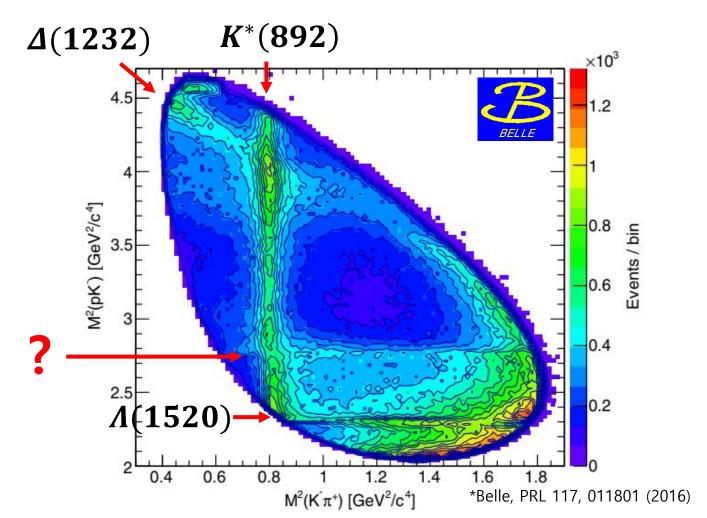

3.885

M(D0D0) (GeV/c2)

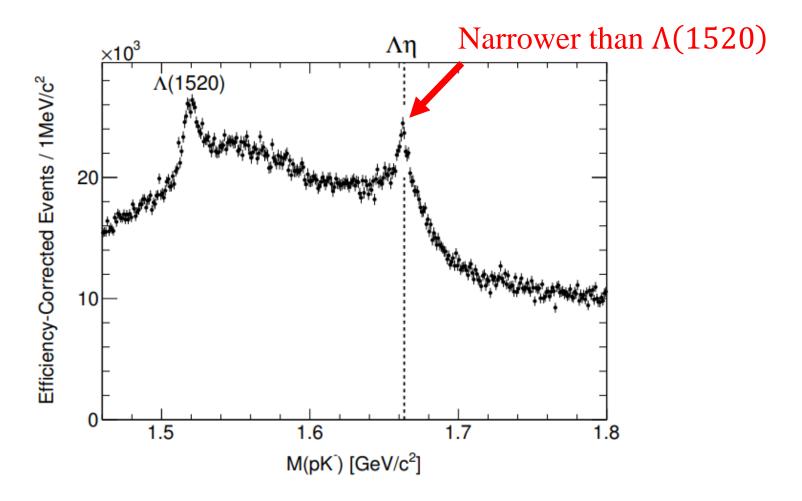
3.89


 $M(D^0\overline{D}^{*0})$ (GeV/ c^2)

Flatté model

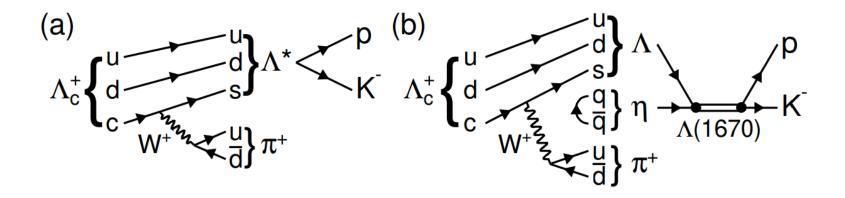

Hyperons in Charmed Baryon Decays

- Better S/N ratio compared to $e^+e^- \rightarrow q\bar{q}$ production.
- Possible to choose a suitable decay channel.
- $\Lambda(1670)$ in $\Lambda_c^+ \to \eta \Lambda \pi^+$ decays
 - First observation of a peak structure of $\Lambda(1670)$



$\Lambda \eta$ Threshold Cusp in pK^- System

- Full data sample of Belle, 980 fb⁻¹
- Dalitz plot for $\Lambda_c^+ \to pK^-\pi^+$,



■ $M(pK^-)$ Distribution of $Λ_c^+ \to pK^-\pi^+$ decays

 \rightarrow A new narrow peak structure near the $\Lambda\eta$ threshold

■ Two approaches to explain the narrow peaking structure.

- (a) Breit-Wigner function: a new resonance
- (b) Flatté function : a visible cusp enhanced by $\Lambda(1670)$ pole

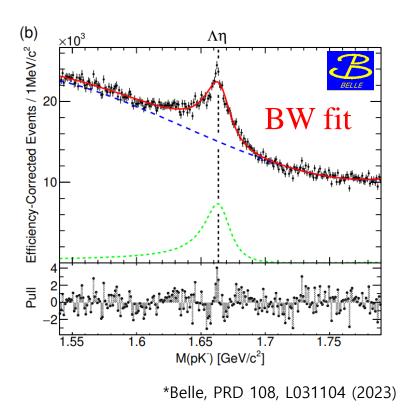
$$\frac{dN}{dm} \propto \left| f(m) \right|^2 = \left| \frac{1}{m - m_f + \frac{i}{2} \left(\Gamma' + \bar{g}_{\Lambda \eta} k \right)} \right|^2,$$

where m_f : Flatté mass

 Γ' : a sum of partial widths other than $\Lambda\eta$ decay

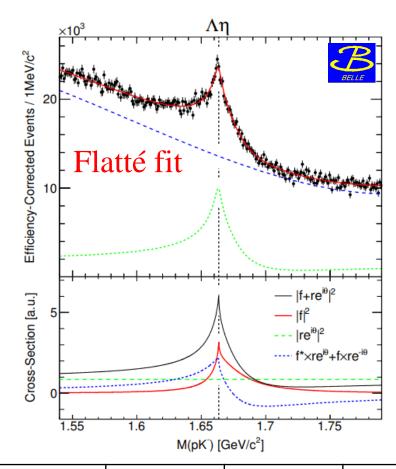
 $\bar{g}_{\Lambda\eta}$: coupling constant of $\Lambda\eta$ channel

 $k: \sqrt{2\mu_{\Lambda\eta}(m-m_{\Lambda}-m_{\eta})}, *k \text{ is imaginary when } m < m_{\Lambda} + m_{\eta}$


• Interference effects with other resonances:

Breit-Wigner and Flatté functions with a constant coherently added.

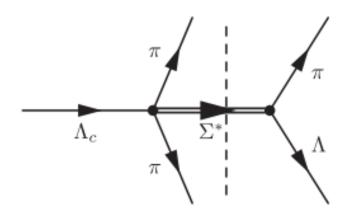
- The cusp shape is unaffected by resonances in higher partial waves.
- The interference term with different L vanishes with an integral over the decay angle.
- S-wave resonances such as $\Lambda(1405)$ can make an interference effect. As they are rather far away, and their effect are approximated as a constant.


Then,
$$\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$$
 is a reasonable choice.
*Flatté function: $|f(m)|^2 = \left| \frac{1}{m - m_f + \frac{i}{2} (\Gamma' + \bar{g}_{\Lambda \eta} k)} \right|^2$

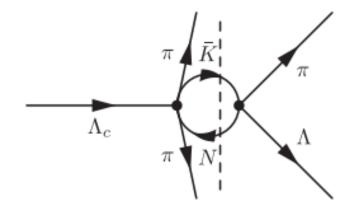
One-dimensional fit results

Mass (MeV/c²)	Width (MeV)	χ²/ndf
1665.4±0.5	23.8±1.2	1.27 (308/243)

* $m_f = 1674.4 \text{ MeV}/c^2 \text{ and } \theta = \pi \text{ fixed.}$

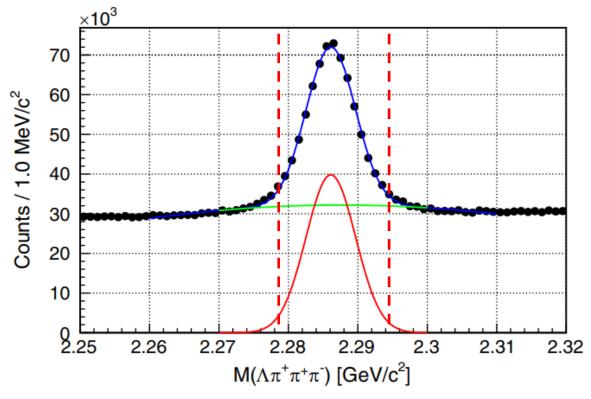


$m_f ({ m MeV}/c^2)$	Γ' (MeV)	$ar{g}_{\Lambda\eta}$	χ^2/ndf
1674.4 (fixed)	27.2±1.9 ^{+5.0} _{-3.9}	0.258±0.023 ⁺⁶¹ ₋₇₅	1.06 (257/243)

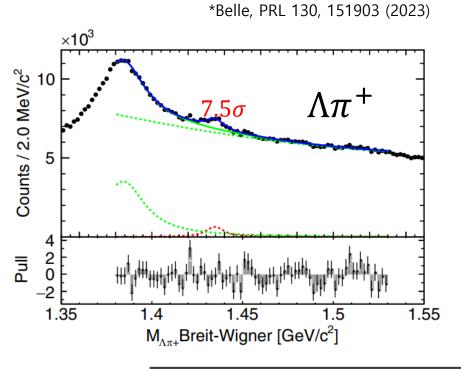

→ Flatté function is significantly favored than Breit-Wigner function.

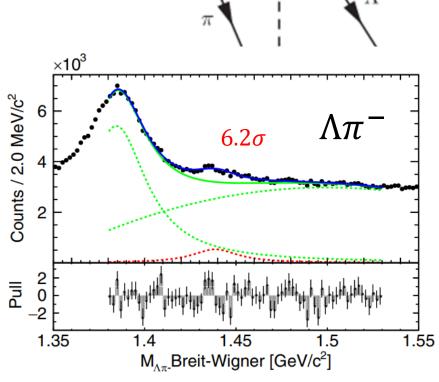
New peak structures near $\overline{K}N$ threshold in $\Lambda\pi$ system

- New $\Lambda \pi$ peak structures near $\overline{K}N(I=1)$ threshold in $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$ decays
 - No prediction from standard quark model $\Lambda_c^+ \to \Lambda \pi^+ \pi^- \pi^+$
 - → Exotic hadron?
 - \rightarrow Threshold cusp whose shape reflects the scattering length of $\overline{K}N(I=1)$ interaction?

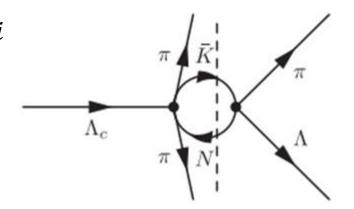

 Σ^* resonance

 $\overline{K}N$ scattering with a cusp


*Belle, PRL 130, 151903 (2023)


- Full data sample of Belle, 980 fb⁻¹
- Distribution of $M(\Lambda \pi^+ \pi^- \pi^+)$
 - clear peak structure of Λ_c^+ is seen.
 - Mass window $\left| M(\Lambda \pi^+ \pi^- \pi^+) M_{\Lambda_c^+} \right| < 8 \text{ MeV}/c^2$

*Belle, PRL 130, 151903 (2023)



Mode	$E_{\rm BW}~({\rm MeV}/c^2)$	$\Gamma ({\rm MeV}/c^2)$	χ^2/NDF
$\Lambda\pi^+$	1434.3 ± 0.6	11.5 ± 2.8	74.4/68
$\Lambda\pi^-$	1438.5 ± 0.9	33.0 ± 7.5	92.3/68

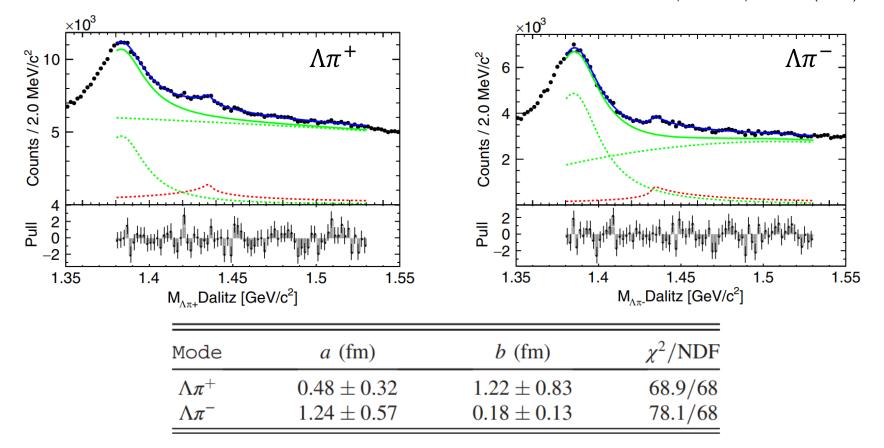
- Parameterization of Dalitz model
 - Neglecting the Λ_c^+ form factor
 - \overline{K} -N complex scattering length: a + bi

$$f_D = rac{4\pi b}{(1+kb)^2 + (ka)^2}, \qquad E > m_{\bar{K}N}$$

$$= rac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, \qquad E < m_{\bar{K}N},$$

where
$$\kappa = \sqrt{2\mu(E - m_{\overline{K}N})},$$

$$k = \sqrt{2\mu_{\Lambda\eta}(m_{\overline{K}N} - E)},$$

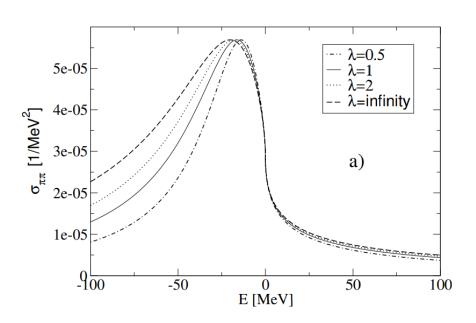

$$\mu = \frac{m_{\overline{K}}m_N}{(m_{\overline{K}} + m_N)}.$$

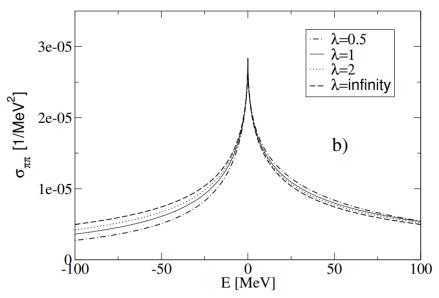
*Belle, PRL 130, 151903 (2023)

• The Dalitz model is largely consistent with the Flatté model by fixing m_f far away from $\overline{K}N$ threshold.

• Fit results with Dalitz model

*Belle, PRL 130, 151903 (2023)


- The scattering length is larger than the previous results
 → The effect of the neglected decay form factor?
- Comparing to Breit-Wigner results, we can't identity them.


- Bottomonium: Transitions of $\Upsilon(10753)$
 - $\Upsilon(10753) \rightarrow \chi_{bI}(1P)\omega$ decays are observed.
 - No significant signals of $\Upsilon(10753) \to \chi_{b0}(1P)\omega$ and $\omega \eta_b(1S)$ decays are observed.
- Hyperon: New peak structures near the mass thresholds
 - A threshold cusp at the $\Lambda \eta$ threshold is observed in pK^- system. The peak structure favors the Flatté model significantly.
 - New $\Lambda\pi$ peaking structures near the $\overline{K}N$ threshold are observed in $\Lambda_c^+ \to \Lambda\pi^+\pi^-\pi^+$ decays. They are not predicted by standard quark model.
- * In Hadron Spectrocopy section (Oct. 17, 12:10PM), 'Recent results on charmed baryon' by Suxian Li

Significant research on hadron spectroscopy is currently in progress at Belle & Belle II!!

*Backup Slides

Flatté model

$$f_{\rm el} = -\frac{1}{2q} \frac{\Gamma_P}{E - E_{\rm BW} + i\frac{\Gamma_P}{2} + i\bar{g}_K \frac{k}{2}}$$

where, $k = \sqrt{m_K(\sqrt{s} - 2m_k)}$ *k is imaginary when $m < 2m_K$