The 16th edition of the International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

Dark sector and Axion-like particle search at ⊮SII

Xiaoxuan Ding (丁晓萱)

(On behalf of the BESIII Collaboration)

Peking University

1

Mainz Oct 19, 2023

Introduction

- Standard Model (SM) is incredibly successful, but not complete!
 - SM fails to explain the origin of dark matter (DM) of the universe
- Dark matter may interact with Standard Model through "portal" interactions
 - Vector portal (dark photon)
 - Pseudo-scalar portal (axion-like particle)
 - Scalar portal (dark Higgs)
 - Neutrino portal (heavy neutrinos)

Dark, but is experimentally accessible!

• High intensity e^+e^- collider experiments, such as BESIII, have the ability to probe dark sector particles and ALPs, benefiting from a well-measured CM energy and a clean environment

New Physics!

Outline

O Introduction

O BEPCII & BESIII

O Topics in this talk

Axion-like particles (ALPs) search

Search for an axion-like particle in radiative J/ψ decays

✓ Using ψ (3686) data

PLB 838 137698 (2023) Preliminary result

- ✓ Using J/ψ data
- Dark sector search
 - 1. Search for massless dark photon in $\Lambda_c^+ \to p\gamma'$
 - 2. Search for invisible decays of Λ baryon
 - 3. Search for invisible decays of dark photon

o Summary

PRD 105, 106, 072008 (2022)

PRD 105, L071101(2022)

PLB 839, 137785 (2023)

BESIII experiment

• A symmetric electron positron collider running at tau-charm region

- **BEPCII**: Electron–positron colliders: accelerate the e^+ , e^-
- BESIII detector : Record the hit positions, momentum , energy of particles.

Beijing Electron–Positron Collider II

Beijing Spectrometer III

dingxx@stu.pku.edu.cn

BESIII Dataset

- **o** World largest data samples in tau-charm region:
 - 10 billion J/ψ , 2.3 billion $\psi(3686)$ on threshold in the world, and $20\text{fb}^{-1}\psi(3770)$ data samples are coming soon
- **O** Ideal environment to study
 - ✓ Charmonium
 - ✓ Charm
 - ✓ Light hadrons
 - ✓ Tau and QCD
 - $\checkmark New physics$

O Axion-like particles (ALPs)

Pseudo-scalar particle

Phys. Rev. Lett. 40, 223 (1978); Phys. Rev. Lett. 40, 279 (1978)

- Introduced by the spontaneous breaking of Peccei-Quinn symmetry to solve the strong CP problem of the QED
- The ALP-photon coupling $g_{a\gamma\gamma}$ is mostly discussed \rightarrow ALP decays to two photons $(a \rightarrow \gamma\gamma)$
- Independent mass and coupling bounded by experiments
 - ★ Experimental bounds on $g_{a\gamma\gamma}$ with m_a range of MeV/c² GeV/c² mainly from e^+e^- colliders Phys. Lett. B 753, 482 (2016)
- We search for ALPs decaying into two photons in J/ψ radiative decays via $J/\psi \rightarrow \gamma a, a \rightarrow \gamma \gamma$ in 0.165 < $m_a < 2.84 \text{ GeV}/c^2$

$$\mathcal{B}(J/\psi\to\gamma a)=\frac{m_{J/\psi}^2}{32\pi\alpha_{\rm em}}g_{a\gamma\gamma}^2\left(1-\frac{m_a^2}{m_{J/\psi}^2}\right)^3\mathcal{B}(J/\psi\to e^+e^-),$$

Resonant ALP production

J. High Energy Phys. 06, 091 (2019)

PLB 838 137698 (2023)

O Data samples: 2.27 Billion $\psi(3686)$ events

o Strategy:

Search for $J/\psi \to \gamma a, a \to \gamma \gamma$ with $\psi(3686) \to \pi^+ \pi^- J/\psi$ decays

- Search range: $0.165 < m_a < 2.84 \text{ GeV} / c^2$
- *a* : negligible lifetime \triangleright decay width $\Gamma_a = g_{a\gamma\gamma}^2 m_a^3/64\pi$
- $\psi(3686)$ decay
 - ★ preclude the pollution from non-resonant production , avoid large QED background: $e^+e^- \rightarrow \gamma\gamma(\gamma)$
- Three $\gamma\gamma$ combinations per event, perform unbinned maximum-likelihood fits on $M_{\gamma\gamma}$
- Exclude mass intervals around π^0 , η , η' peaks when extracting the signal

O Signal extraction

- A series of 1D unbinned maximum-likelihood fits are performed to $M_{\gamma\gamma}$ distribution
 - ▶ Determine the **signal yields** with different **ALP mass** hypotheses.
- Totally, 674 mass hypotheses are probed

▶
$$m_a = 2.208 \text{GeV/c}^2$$

The $M_{\gamma\gamma}$ fit intervals for various m_a points.

m_a points (GeV/ c^2)	$M_{\gamma\gamma}$ fit intervals (GeV/ c^2)
0.165 - 0.35	0.06 - 0.45
0.35 - 0.75	0.25 - 0.85
0.75 - 1.20	0.65 - 1.30
1.20 - 2.84	$(m_a - 0.2)$ - $(m_a + 0.2)$

PLB 838 137698 (2023)

Eur. Phys. J. C 71, 1554 (2011)

O Upper limits

- Since no significant ALP signal is observed, 95% confidence level upper limits on $\mathscr{B}(J/\psi \to \gamma a)$ are computed
- The observed limits range from 8.3×10^{-8} to 1.8×10^{-6} in the search region 0.165 < m_a < 2.84 GeV / c^2
- ★ The exclusion limits on the ALP-photon coupling are the most stringent to date for $0.165 < m_a < 1.468 \text{ GeV} / c^2$

dingxx@stu.pku.edu.cn

MENU2023

Preliminary result

O Data samples: 10B J/ψ events

o Strategy:

Search for $J/\psi \rightarrow \gamma a, a \rightarrow \gamma \gamma$ with J/ψ data on threshold

- The contribution from non-resonant production, $\sigma_{non-res}/\sigma_{res}$, is estimated to be 4.4% (taken as systematic uncertainty)
- Select at least three photon candidates in the EMC barrel region
- Exclude mass intervals around π^0 , η , η' peaks when extracting the signal
- ☆ Expected UL
 - ★ The 95%CL upper limits of $\mathscr{B}(J/\psi \to \gamma a)$ reach a level of 10⁻⁷ for full search region

Search for massless dark photon in $\Lambda_c^+ \to p\gamma'$

O Motivation on Massless dark photon γ'

- A new force mediated by γ' between the dark sector and the SM is proposed
- The flavor changing neutral current (FCNC) is highly suppressed by the GIM mechanism in the charm sector
 < 10⁻⁹ in SM, Phys. Rev. D 98, 030001 (2018)
 - ☆ any significant observation would be a hint for the new physics.
- A massless dark photon could induce FCNC process through higher dimensional operators, allowing $\mathscr{B}(\Lambda_c^+ \to p\gamma')$ up to 1.6×10^{-5} Phys. Rev. D 102, 115029 (2020)

within the sensitivity of BESIII experiments!

• The missing energy due to the dark photon is the feature of the signal processes $c \rightarrow u\gamma'$

spontaneous broken: massiveUnbroken: massless

11

Search for massless dark photon in $\Lambda_c^+ \rightarrow p\gamma'$

O Data samples: 4.5 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.6 \sim 4.7$ GeV

o Strategy:

- The $\Lambda_c^+ \bar{\Lambda_c^-}$ are pair produced in $e^+ e^- \to \Lambda_c^+ \bar{\Lambda_c^-}$
- Double Tag Method
 - ★ Tag side: reconstruct $\overline{\Lambda}$ with 10 hadronic decay modes. Tag yields: 105244 ± 384 **10 hadronic decay modes**

★ Signal side:
$$\Lambda_c^+ \to p \gamma'$$

 $\mathcal{B}(\Lambda_c^+ \to p\gamma') = \frac{N_{\rm obs} - N_{\rm bkg}}{\sum_{ii} N_{ii}^{\rm ST} \cdot (\epsilon_{ii}^{\rm DT} / \epsilon_{ii}^{\rm ST})},$

PRD 105, 106, 072008 (2022)

 $\bar{\Lambda}_c \rightarrow 10$ hadronic decays

Search for massless dark photon in $\Lambda_c^+ \to p\gamma'$

O Signal extraction

- Search for an invisible signature on the square of the recoil mass spectrum $M^2_{\text{rec}(\bar{\Lambda_c}p)}$
- Signal region is defined as (0.0, 0.1) GeV^2/c^4 in the $M^2_{\text{rec}(\bar{\Lambda_c}, p)}$

- No significant signal observed, $\mathscr{B}(\Lambda_c^+ \to p\gamma') < 8.0 \times 10^{-5}$ at 90% CL
- ✓ A more stringent constraint is expected with larger Λ_c^+ samples at BESIII

PRD 105, 106, 072008 (2022)

Search for invisible decays of the Λ baryon

O Motivation

Dark matter may be represented by baryon matter with invisibles, and many theories suggest a potential correlation between baryon symmetry and dark sector
 Phys. Rev. D 105, 115005 (2022)

MENU2023

- Discrepancy of neutron lifetime in beam method and the storage methods \rightarrow B(n \rightarrow p + X) \approx 99%
- **O Data samples:** $10B J/\psi$ events
- Method: Double tag method
 - Tag side: reconstruct $\bar{\Lambda}$ with $\bar{\Lambda} \to \bar{p}\pi^+$ decay
 - 4 Million tag $\overline{\Lambda}$ events are obtained
 - Signal side: $\Lambda \rightarrow$ invisible

Phys. Rev. D 99, 035031 (2019)

Search for invisible decays of the Λ baryon

O Signal extraction

- Search for signal on total energy deposited in EMC $\rightarrow E_{EMC}$ (not charged tracks);
- Dominating background: $\Lambda \to n\pi^0$
- E_{EMC} divided into three parts
 - $\Rightarrow E_{EMC}^{\pi^0}$: based on the MC simulations
 - $\Leftrightarrow E_{EMC}^n + E_{EMC}^{\text{noise}}$: based on control sample $J/\psi \to \Lambda(n\pi^0)\bar{\Lambda}(\bar{p}\pi^0)$

O Upper limits

No obvious signal observed

 $\Rightarrow \mathscr{B}(\Lambda \rightarrow \text{invisible}) < 7.4 \times 10^{-5} \text{ at } 90\% \text{ CL} \text{arXiv:} 2006.10746$

- ✓ Consistent with the prediction of 4.4×10^{-7} from the mirror model
- \checkmark The first search of invisible decays of baryons

 $E_{\text{EMC}} = E_{\text{EMC}}^{\pi^0} + E_{\text{EMC}}^n + E_{\text{EMC}}^{\text{noise}},$

Search for invisible decays of dark photon

O Motivation on Massive dark photon γ'

- γ' couples weakly to a SM photon γ through kinetic mixing with a mixing parameter $\epsilon \sim 10^{-3}$
- Search for the dark photon in the radiative annihilation process $e^+e^- \rightarrow \gamma\gamma'$, $\gamma' \rightarrow$ invisible decay of the γ'

PLB 839, 137785 (2023)

 γ' with mass in the GeV range

Search for invisible decays of dark photon

O Data samples:

• 14.9 fb⁻¹ e^+e^- annihilation data at $\sqrt{s} = 4.13 \sim 4.60$ GeV

O Strategy:

Search for single photon signals in $1.3 < E(\gamma) < 1.8$ GeV corresponding to $1.5 < m_{\gamma'} < 2.9$ GeV

O Signal extraction

- A simultaneous maximum likelihood fit to the photon energy spectra E_{γ} is performed to all data sets
- No obvious signal, the maximum global significance is determined to be 2.2σ

Search for invisible decays of dark photon

O Upper limits

- We set an upper limit on the coupling ϵ at the 90% confidence level (C.L.) using Bayesian method
- The 90% C.L. upper limits of coupling ϵ are $(1.6 5.7) \times 10^{-3}$, depending on $m_{\gamma'}$ between 1.5 and 2.9 GeV
- ✓ Consistent with what already excluded by BaBar PRL 119 (2017) 131804
- BESIII will produce more competitive results with 20 fb^{-1} data taken at 3.77 GeV in the future

Summary

- Dark sectors have become an intriguing idea for understanding dark matter, and also for looking into new physics beyond SM
- BESIII plays an active role in dark sector and axion-like particle search, with many first searches or best limits
 - ALPs search
 - ★ Search for ALPs with $\psi(3686)$ and J/ψ data (best limits)
 - Dark sector search
 - ★ Search for a massless dark photon in Λ_c^+ decays $\Lambda_c^+ \rightarrow p\gamma'$ (first FCNC search of charmed baryon))
 - ★ Search for $\Lambda \rightarrow$ invisible: (first search for invisible baryon decays)
 - ★ Search for dark photon invisible decay $e^+e^- \rightarrow \gamma \gamma'$ (competitive results)
- With more data available, more exciting results are coming soon

The future is bright!