



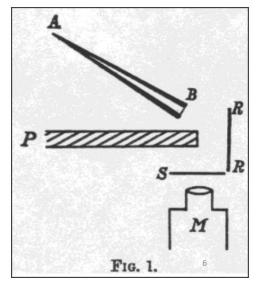
# Study of hyperon-nucleon interactions at BESIII

Jielei Zhang (zhangjielei@ihep.ac.cn)

**Henan University** 

MENU 2023 - The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

## Outline


- Motivation
- BEPCII and BESIII
- > Study of  $\Xi^0 n \to \Xi^- p$ Phys. Rev. Lett. 130, 251902 (2023)
- > Study of  $\Lambda N \rightarrow \Sigma^+ X$  arXiv: 2310.00720
- Summary

### Scattering experiments of particle beams bombarding target materials

1911



 $\alpha$  + Au

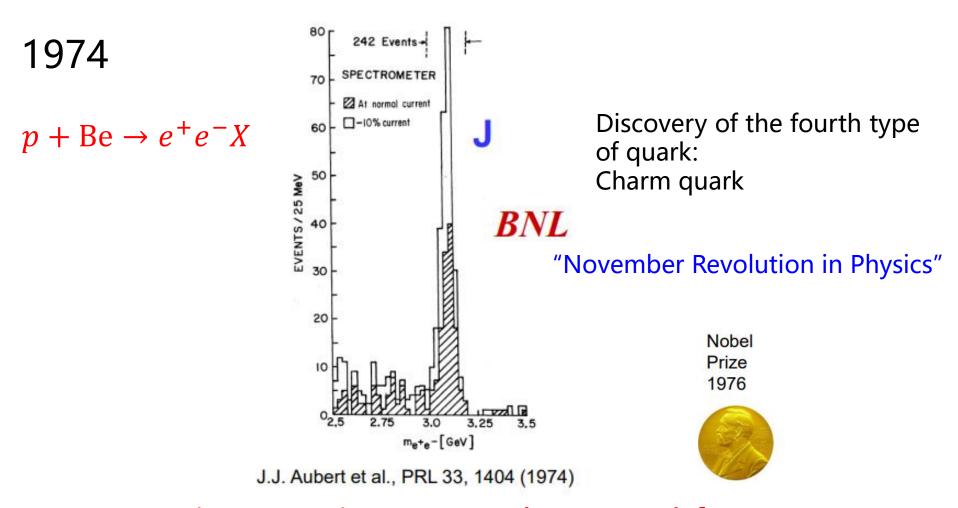


Nuclear structure model of atom

1919  $\alpha + N$ 



Observation of proton

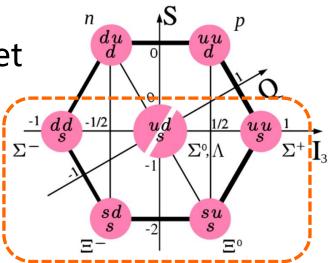

1932  $\alpha + Be$ 



Observation of neutron

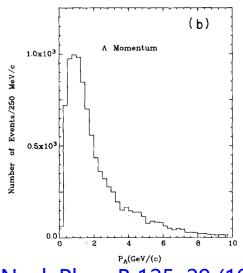


# Scattering experiments of particle beams bombarding target materials

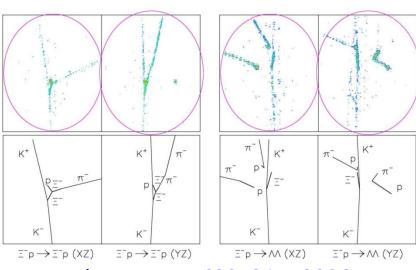



Scattering experiment must have **particle source**, target material, and detector.

### Hyperon source


Baryon octet

One of main goals of nuclear physics is to understand baryonbaryon interaction in a unified perspective




Limited by availability and short-lifetime of hyperon beams

 $\triangleright$  Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with  $K^-$ .



Nucl. Phys. B 125, 29 (1977)



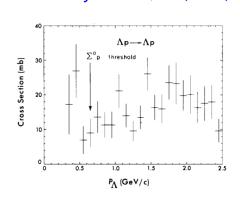
Phys. Lett. B 633, 214 (2006)

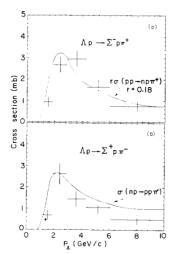
### Hyperon source

- $\triangleright$  Hyperons are obtained by bombarding hydrogen bubble chamber or scintillating fiber target with  $K^-$ .
- > Intensity of hyperon beams is low, experimental measurements are scarce and have large uncertainty.

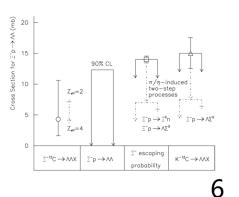
> No anti-hyperon source.

|                                             | /                |     |
|---------------------------------------------|------------------|-----|
| Reaction                                    | Number of events |     |
| $\Lambda p \rightarrow \Lambda p$ (elastic) | 584              | (1) |
| $\Lambda p \rightarrow \Sigma^- p \pi^+$    | 132              | (2) |
| $\Lambda p \rightarrow \Sigma^+ p \pi^-$    | 60               | (3) |
| $\Lambda p \to \Lambda p \pi^+ \pi^-$       | 181              | (4) |
| $\Lambda p \to \Sigma^0 p$                  | 35               | (5) |
| various $\Xi^0$ p interactions              | 25               |     |


Phys. Lett. B 38, 123 (1972)

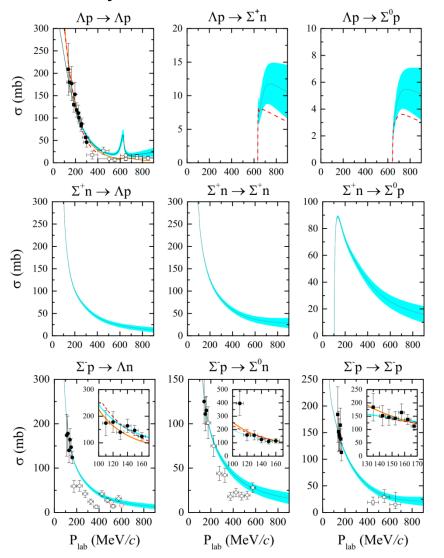

| reaction                                                  | events * | signature | cross-section<br>events ** | cross-section (mb) |
|-----------------------------------------------------------|----------|-----------|----------------------------|--------------------|
| $\Xi^{o} + p \longrightarrow \Xi^{o} + p$                 | 2        | к, Λ      | 1                          | 8                  |
| $\Xi^{O} + p \longrightarrow \Lambda + \Sigma^{+}$        | 6        | Λ         | 4                          | 24                 |
| $\Xi^{O} + p \rightarrow \Sigma^{O} + \Sigma^{+}$         | 1        | Λ         | 1                          | 6                  |
| $\Xi^{O} + p \rightarrow \pi^{+} + \Lambda + \Lambda$     | 1        | к,Λ       | 1                          | 6                  |
| $\Xi^{o} + p \rightarrow \pi^{o} + \Lambda + \Sigma^{+}$  | 1        | Λ         | 1                          | 6                  |
| $\Xi^{O} + p \longrightarrow \pi^{+} + \Xi^{-} + p$       | 1        | K or Λ    | 1                          | 5                  |
| $\Xi^{O} + p \rightarrow \pi^{+} + \pi^{+} + \Xi^{-} + n$ | 1        | к,Λ       | 1                          | 6                  |
| $\Xi^{O} + p \longrightarrow \Xi^{-} + p$                 | 2        | Λ         | 2                          | 8                  |
| $\Xi^{o} + p \longrightarrow \Sigma^{-} + \Sigma^{+}$     | 1        | K         | 1                          | 4                  |
| $\Xi^{0} + p \rightarrow \Sigma^{-} + K^{0} + p$          | 1        | K         | 1                          | 4                  |

#### Phys. Lett. B 32, 720 (1970)

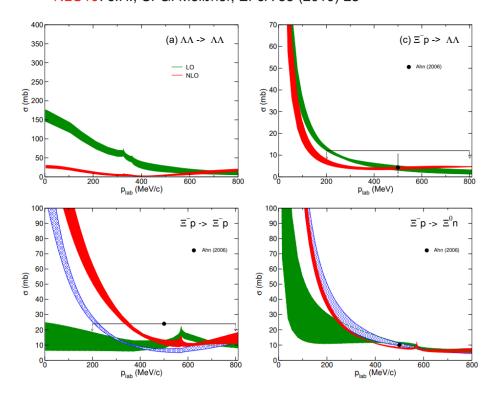

| •                                             |                                             |                     |                   |
|-----------------------------------------------|---------------------------------------------|---------------------|-------------------|
| Reaction                                      | Momentum<br>interval (GeV/c)                | Number<br>of events | σ (mb)            |
| Λp →all                                       | 0.5 → 1.0                                   |                     | 25.8 ± 6.2        |
| •                                             | $1.0 \rightarrow 1.5$                       |                     | $31.3 \pm 6.5$    |
|                                               | $1.5 \rightarrow 2.0$                       |                     | $42.8 \pm 7.1$    |
|                                               | $2.0 \rightarrow 2.5$                       |                     | 37.5 ± 7.2        |
|                                               | $2.5 \rightarrow 3.0$                       |                     | $34.1 \pm 8.3$    |
|                                               | 3.0 →4.0                                    |                     | $41.8 \pm 10.0$   |
| $\Lambda p \rightarrow \Lambda p$             | 0.5 → 1.0                                   | 20                  | 22.2± 5.0         |
|                                               | $1.0 \rightarrow 1.5$                       | 21                  | $12.9 \pm 2.8$    |
|                                               | $1.5 \rightarrow 2.0$                       | 37                  | $22.0 \pm 3.6$    |
|                                               | $2.0 \rightarrow 2.5$                       | 28                  | $16.1 \pm 3.1$    |
|                                               | $2.5 \rightarrow 3.0$                       | 12                  | $11.0 \pm 3.2$    |
|                                               | 3.0 → 4.0                                   | 13                  | $12.5 \pm 3.4$    |
| $\Lambda p \rightarrow \Sigma^0$              | 0.66→4.0                                    | 11                  | 1.5 ± 0.5         |
| $\Lambda p \rightarrow \Lambda p \pi^0$       | 0.88 → 4.0                                  | 29                  | 4.1 ± 0.8         |
| $\Lambda p \rightarrow \Lambda p \pi^+ \pi^-$ | 1.36 - 4.0                                  | 12                  | 1.9 ± 0.6         |
| Σ+p →Σ+p                                      | 0.5 →1.5                                    | 10                  | 31.2 ± 10.1       |
| 3 P 2 P                                       | 1.5 → 2.5                                   | 8                   | 18.7 ± 6.6        |
|                                               | 2.5 → 4.0                                   | 4                   | $15.3 \pm 7.8$    |
| Σ <b>⁻</b> p →Σ <b>⁻</b> p                    | 0.5 →1.5                                    | 6                   | 13.2± 4.7         |
| 2 P 2 P                                       | 1.5 → 2.5                                   | 11                  | 13.9 ± 4.1        |
|                                               | 2.5 → 4.0                                   | 4                   | 7.5 ± 3.8         |
|                                               | 10 -10                                      | 6                   | 13 ± 6            |
| Ξ°p -⁄Ξ°p<br>Ξ°p -⁄Ξ°p                        | $1.0 \rightarrow 4.0$ $1.0 \rightarrow 4.0$ | 4                   | 13 ± 6<br>19 ± 10 |
| = ~b ~= ~b                                    | 1.0 -4.0                                    | 4                   | 19 ±10            |

#### Nucl. Phys. B 125, 29 (1977)






#### Phys. Lett. B 633, 214 (2006)

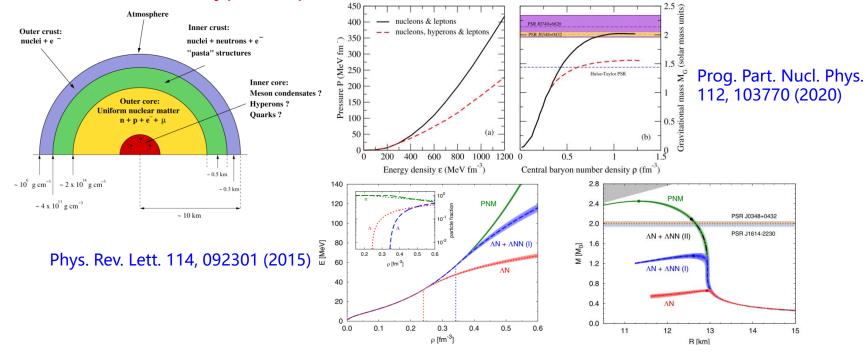



# Theory of hyperon-nucleon (YN) interaction has large uncertainty due to lack of relevant measurements

Phys. Rev. C 105, 035203 (2022)



LO: H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

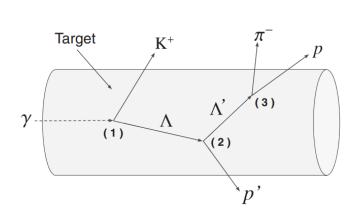


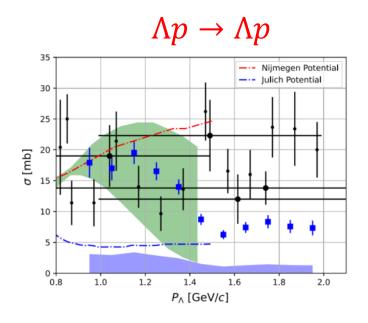

### "Hyperon puzzle" of neutron stars

Hyperons are believed to be appeared in inner core of neutron stars.

$$B_1 \to B_2 + l + \bar{\nu}_l, \ B_2 + l \to B_1 + \nu_l$$
  
 $n \to p + e^- + \bar{\nu}_e, p + e^- \to n + \nu_e$   
 $\Lambda \to p + e^- + \bar{\nu}_e, p + e^- \to \Lambda + \nu_e$ 

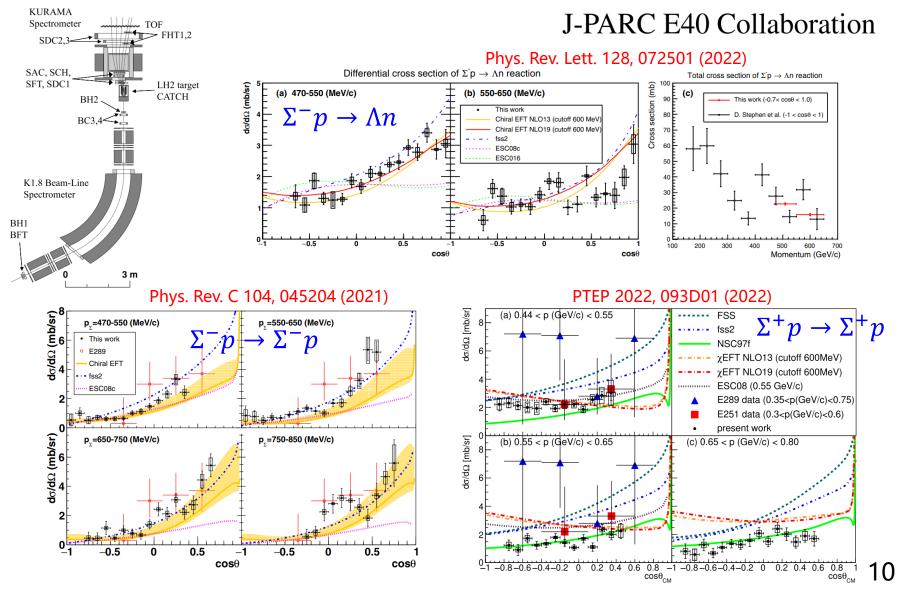
- > Appearance of hyperons softens equation of state, lead to maximum mass that neutron stars can sustain is less than mass of already-observed neutron stars.
- $\triangleright$  A repulsive force is introduced to stiffen equation of state in theory, such as a combination of  $\Lambda N$  and  $\Lambda NN$  interactions. Study of hyperon-nucleon interaction is crucial to solve "hyperon puzzle" of neutron stars.



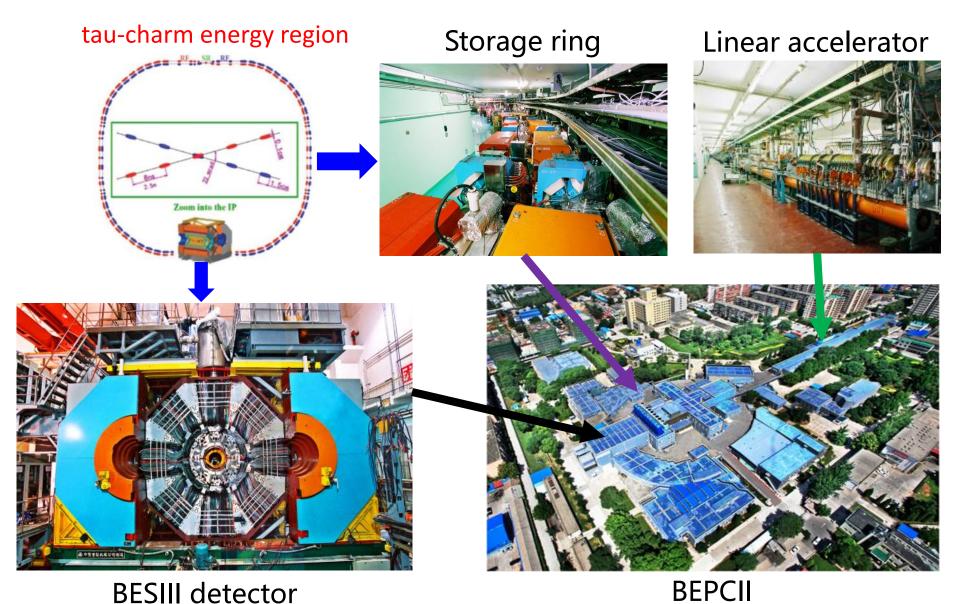


# Some recent experimental results of hyperon-nucleon scattering

PHYSICAL REVIEW LETTERS 127, 272303 (2021)

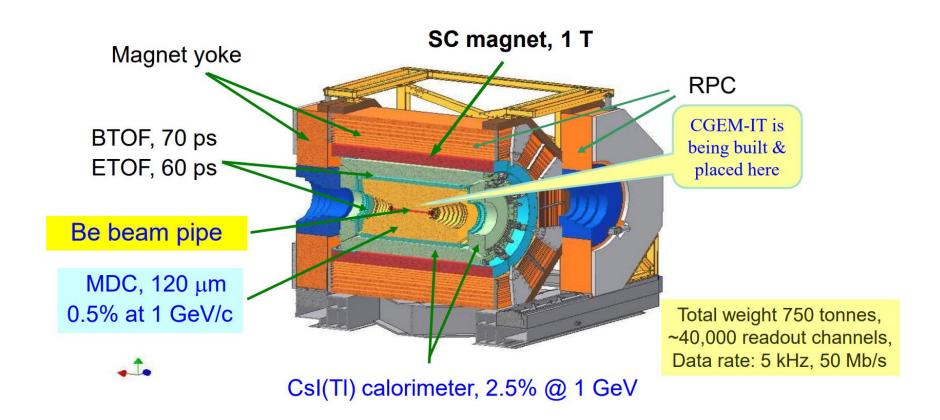
(CLAS Collaboration)


Improved  $\Lambda p$  Elastic Scattering Cross Sections between 0.9 and 2.0 GeV/c as a Main Ingredient of the Neutron Star Equation of State



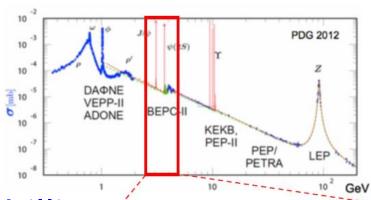



This is the first data on this reaction since the 1970s.


# Some recent experimental results of hyperon-nucleon scattering

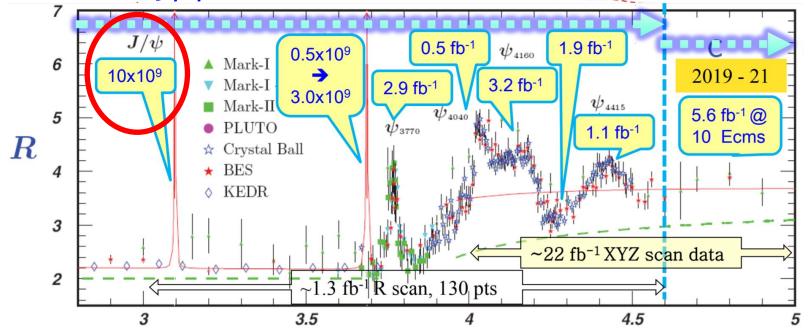


#### Beijing Electron Positron Collider II (BEPCII) and Beijing Spectrometer III (BESIII)

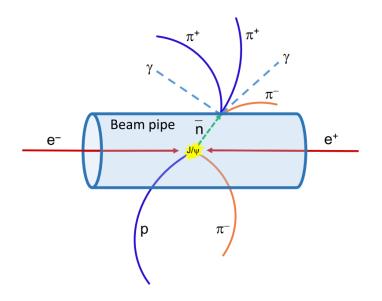



## **BESIII** detector




Has been in full operation since 2008, all subdetectors are in very good status!

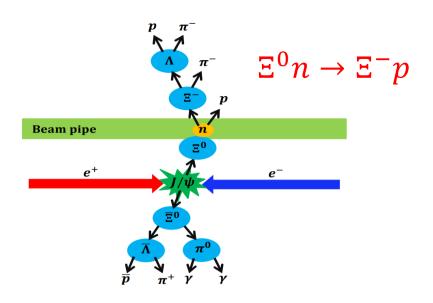
# BESIII data samples




BESIII has collected the largest data samples of the  $J/\psi$  and  $\psi(3686)$  in the world, and  $> 20 \text{ fb}^{-1}$  above 4.0 GeV in total.

10 billion  $J/\psi$  events




### Experimental study on particle targeting at BESIII



Phys. Rev. Lett. 127, 012003 (2021)

arXiv: 2209.12601

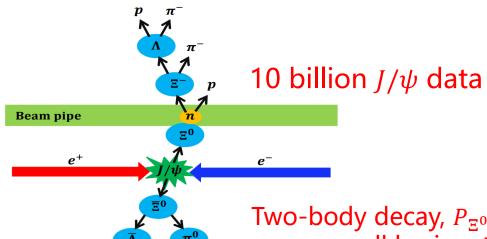
$$\bar{n}p \rightarrow \pi^+\pi^+\pi^-\pi^0$$
,  $\pi^0 \rightarrow \gamma\gamma$ 



particle source: hyperon from  $J/\psi$  decays

target material: beam pipe

detector: BESIII detector 14


# New results on hyperon-nucleon interactions at BESIII

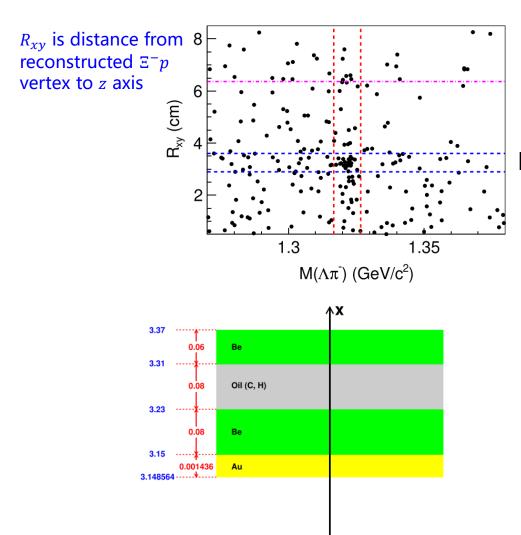
- First Study of Reaction  $\Xi^0 n \to \Xi^- p$  Using  $\Xi^0$ -Nucleus Scattering at an Electron-Positron Collider Phys. Rev. Lett. 130, 251902 (2023)
- First measurement of  $\Lambda N$  inelastic scattering with  $\Lambda$  from  $e^+e^- \rightarrow J/\psi \rightarrow \Lambda \overline{\Lambda}$  arXiv: 2310.00720

# Study of $\Xi^0 n \to \Xi^- p$

#### Reaction chain:

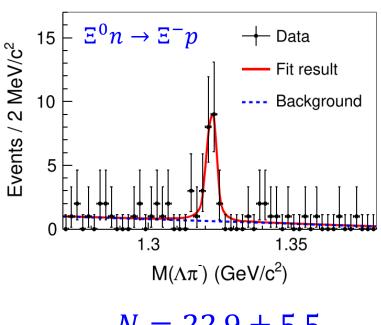
$$J/\psi \to \Xi^0 \overline{\Xi}{}^0$$
,  $\overline{\Xi}{}^0 \to \overline{\Lambda} \pi^0$ ,  $\overline{\Lambda} \to \overline{p} \pi^+$ ,  $\pi^0 \to \gamma \gamma$ ,  $\Xi^0 n \to \Xi^- p$ ,  $\Xi^- \to \Lambda \pi^-$ ,  $\Lambda \to p \pi^-$ .




Two-body decay,  $P_{\Xi^0} \approx 0.818 \, \text{GeV}/c$ , a very small horizontal crossing angle of 11 mrad for  $e^+$  and  $e^-$  beams.

16

### **Analysis method:**

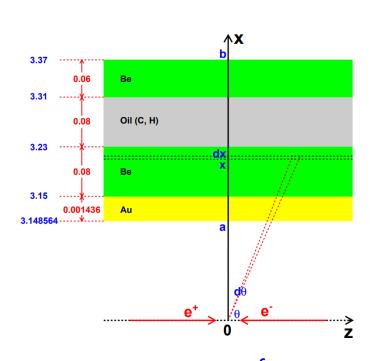

Using  $\Xi^0$  to tag the event and requiring the recoiling mass in  $\Xi^0$  region. Then reconstructing  $\Xi^-$  and p in the signal side.

# Study of $\Xi^0 n \to \Xi^- p$



Inner wall of MDC

#### Beam pipe



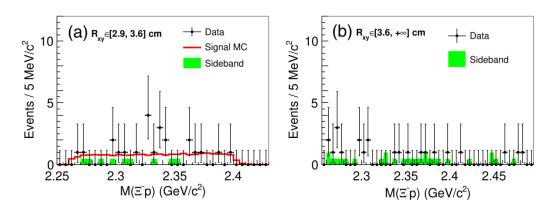

$$N = 22.9 \pm 5.5$$
  
 $S = 7.1\sigma$ 

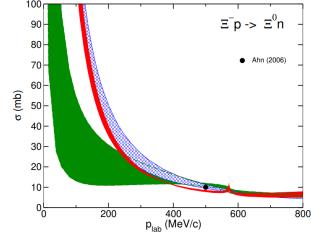
## Cross section of $\Xi^0 + {}^9\text{Be} \rightarrow \Xi^- + p + {}^8\text{Be}$

$$\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = \frac{N^{\text{sig}}}{\epsilon \mathcal{B} \mathcal{L}_{\text{eff}}}$$

$$\mathcal{L}_{\text{eff}} = \frac{N_{J/\psi} \mathcal{B}_{J/\psi}}{2 + \frac{2}{3} \alpha} \int_{a}^{b} \int_{0}^{\pi} (1 + \alpha \cos^{2}\theta) e^{-\frac{x}{\sin\theta\beta\gamma L}} N(x) C(x) d\theta dx$$




| Parameter              | Result                                                                                                                                                                      |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $N^{\mathrm{sig}}$     | $22.9 \pm 5.5$                                                                                                                                                              |
| $\epsilon$             | 1.873%                                                                                                                                                                      |
| $\mathcal{B}$          | $(40.114 \pm 0.444)\%$ [53]                                                                                                                                                 |
| $N_{J/\psi}$           | $(1.0087 \pm 0.0044) \times 10^{10}$ [46]                                                                                                                                   |
| $\mathcal{B}_{J/\psi}$ | $(0.117 \pm 0.004)\%$ [53]                                                                                                                                                  |
| $\alpha$               | $0.514 \pm 0.016$ [56]                                                                                                                                                      |
| L                      | $(8.69 \pm 0.27)$ cm [53]                                                                                                                                                   |
| $E_{ m beam}$          | 1.5485 GeV                                                                                                                                                                  |
| $m_{\Xi^0}$            | $(1.31486 \pm 0.00020) \text{ GeV}/c^2 \text{ [53]}$                                                                                                                        |
| a                      | 3.148564 cm [45]                                                                                                                                                            |
| b                      | 3.37 cm [45]                                                                                                                                                                |
| N(x)                   | $\int 5.91 \times 10^{22} \text{ cm}^{-3}$ , $3.148564 \le x \le 3.15 \text{ cm}$                                                                                           |
|                        | $\int 1.24 \times 10^{23} \text{ cm}^{-3},  3.15 < x \le 3.23 \text{ cm}$                                                                                                   |
|                        | $3.45 \times 10^{22} \text{ cm}^{-3}$ , $3.23 < x \le 3.31 \text{ cm}$                                                                                                      |
|                        | $1.24 \times 10^{23} \text{ cm}^{-3}$ , $3.31 < x \le 3.37 \text{ cm}$                                                                                                      |
| C(x)                   | $(8.437(23.6), 3.148564 \le x \le 3.15 \text{ cm}$                                                                                                                          |
| . ,                    | $\begin{cases} 8.437(23.6), & 3.148564 \le x \le 3.15 \text{ cm} \\ 1.000(1.00), & 3.15 < x \le 3.23 \text{ cm} \\ 1.090(1.20), & 3.23 < x \le 3.31 \text{ cm} \end{cases}$ |
|                        | $1.090(1.20)$ , $3.23 < x \le 3.31$ cm                                                                                                                                      |
| mption                 | $(1.000(1.00), 3.31 < x \le 3.37 \text{ cm}$                                                                                                                                |


pure surface process assumption (proportional to number of neutrons)

# Study of $\Xi^0 n \to \Xi^- p$

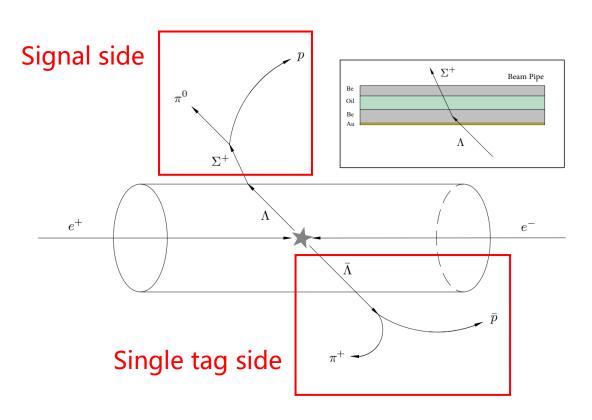
The measured cross section of the reaction process  $\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}$  is  $\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3_{\text{stat}} \pm 4.5_{\text{sys}})$  mb at  $P_{\Xi^0} \approx 0.818 \text{ GeV}/c$ .

If we take the effective number of reaction neutrons in  ${}^9\mathrm{Be}$  nucleus as 3, the cross section of  $\Xi^0 n \to \Xi^- p$  for single neutron is determined to be  $\sigma(\Xi^0 n \to \Xi^- p) = (7.4 \pm 1.8_{\mathrm{stat}} \pm 1.5_{\mathrm{sys}})$  mb, consistent with theoretical predictions.



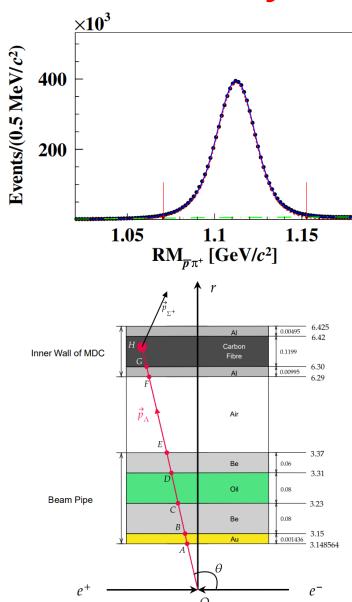


LO: H. Polinder, J.H., U.-G. Meißner, PLB 653 (2007) 29 NLO16: J.H., U.-G. Meißner, S. Petschauer, NPA 954 (2016) 273 NLO19: J.H., U.-G. Meißner, EPJA 55 (2019) 23

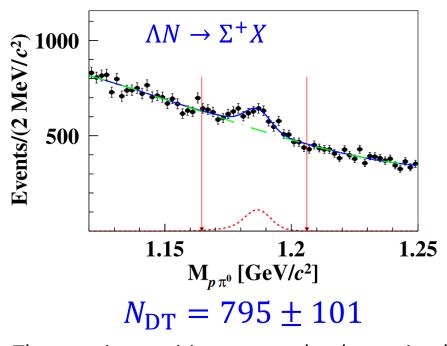

No significant H-dibaryon signals are seen

This work is the first study of hyperon-nucleon interaction in electron-positron collisions, and opens up a new direction for such research.

# Study of $\Lambda N \to \Sigma^+ X$


#### Reaction chain:

$$J/\psi \to \Lambda \overline{\Lambda}, \ \overline{\Lambda} \to \overline{p}\pi^+, \ \Lambda + N(\text{nucleus}) \to \Sigma^+ + X(\text{anything}), \ \Sigma^+ \to p\pi^0, \ \pi^0 \to \gamma\gamma.$$

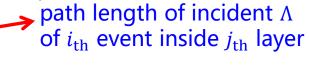


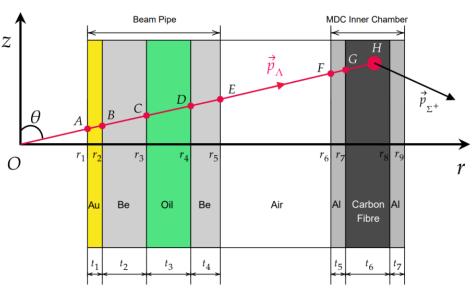

Two-body decay,  $P_{\Lambda} \approx 1.074 \text{ GeV/}c$ , a very small horizontal crossing angle of 11 mrad for  $e^+$  and  $e^-$  beams, resulting in a small range of 0.017 GeV/c above and below 1.074 GeV/c for  $P_{\Lambda}$ .

# Study of $\Lambda N \rightarrow \Sigma^+ X$



$$N_{\rm ST} = 7207565 \pm 3741$$





The reaction position can not be determined. These signal events mainly come from the reaction with beam pipe and inner wall of MDC.

### Cross section of $\Lambda + {}^{9}\text{Be} \rightarrow \Sigma^{+} + X$

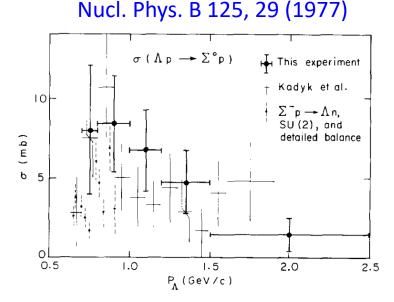
$$\sigma(\Lambda + {}^{9}\text{Be} \to \Sigma^{+} + X) = \frac{N_{\text{DT}}}{\epsilon_{\text{sig}} \cdot \mathcal{L}_{\Lambda}} \cdot \frac{1}{\mathcal{B}(\Sigma^{+} \to p\pi^{0})}$$

$$\mathcal{L}_{\Lambda} = N_{\mathrm{ST}} \cdot \frac{N_{A}}{N_{\mathrm{ST}}^{\mathrm{MC}}} \cdot \sum_{j}^{7} \sum_{i}^{N_{\mathrm{ST}}^{\mathrm{MC}}} \frac{\rho_{T}^{j} \cdot l^{ij}}{M^{j}} \cdot \mathcal{R}_{\sigma}^{j}$$



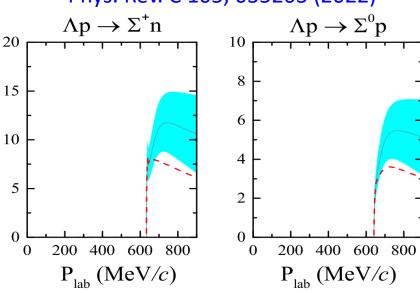


pure surface process assumption (proportional to number of protons)


| Parameter                          | Value                                             |  |
|------------------------------------|---------------------------------------------------|--|
| $N_{ m DT}$                        | $795 \pm 101$                                     |  |
| $\epsilon_{ m sig}$                | 24.32%                                            |  |
| $\mathcal{L}_{\Lambda}$            | $(17.00 \pm 0.01) \times 10^{28} \text{ cm}^{-2}$ |  |
| $\mathcal{B}(\Sigma^+ \to p\pi^0)$ | $(51.57 \pm 0.30)\%$                              |  |

# Study of $\Lambda N \rightarrow \Sigma^+ X$

The measured cross section of the reaction process  $\Lambda + {}^9\mathrm{Be} \to \Sigma^+ + X$  is  $\sigma(\Lambda + {}^9\mathrm{Be} \to \Sigma^+ + X) = (37.3 \pm 4.7_{\mathrm{stat}} \pm 3.5_{\mathrm{sys}})$  mb at  $P_\Lambda \approx 1.074$  GeV/c. This work represents the first attempt to investigate  $\Lambda$ -nucleus interaction at an  $e^+e^-$  collider.


If taking the effective number of reaction protons in  ${}^9\mathrm{Be}$  nucleus as 1.93, the cross section of  $\Lambda p \to \Sigma^+ X$  for single proton is determined to be  $\sigma(\Lambda p \to \Sigma^+ X) = (19.3 \pm 2.4_{\mathrm{stat}} \pm 1.8_{\mathrm{svs}})$  mb.

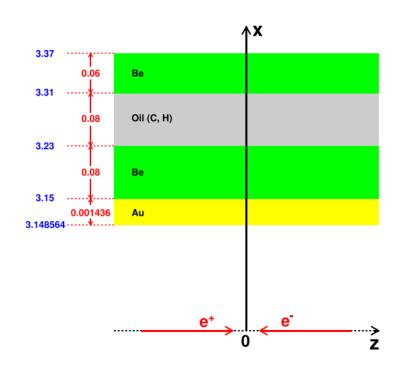
Nucl. Dbvs. P.125, 20 (1077)



 $\sigma(\Lambda p \to \Sigma^+ n)$  is twice of  $\sigma(\Lambda p \to \Sigma^0 p)$ 

Phys. Rev. C 105, 035203 (2022)




### Some ongoing researches on hyperonnucleon scattering at BESIII

$$\blacktriangleright$$
  $\Lambda p \rightarrow \Lambda p$ ,  $\overline{\Lambda} p \rightarrow \overline{\Lambda} p$ 

$$ightarrow$$
  $\Sigma^+ n 
ightarrow \Lambda p$ ,  $\Sigma^+ n 
ightarrow \Sigma^0 p$ 

$$ightrightarrow$$
  $\Xi^0 n 
ightarrow \Lambda \Lambda$ ,  $\Xi^- p 
ightarrow \Lambda \Lambda$ 

• • • • •



#### More results will come out soon !!!



# Summary



- 1. The hyperon-nucleon reaction  $\Xi^0 n \to \Xi^- p$  is observed and measured with  $\Xi^0$  beam from the decay  $J/\psi \to \Xi^0 \bar{\Xi}^0$  based on 10 billion  $J/\psi$  data at BESIII.The measured cross section of the reaction process  $\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}$  is  $\sigma(\Xi^0 + {}^9\text{Be} \to \Xi^- + p + {}^8\text{Be}) = (22.1 \pm 5.3_{\text{stat}} \pm 4.5_{\text{sys}})$  mb. This is the first study of hyperon-nucleon interaction in electron-positron collisions, and opens up a new direction for such research.
- 2. The inelastic scattering  $\Lambda + {}^9\text{Be} \to \Sigma^+ + X$  is studied with  $\Lambda$  from  $J/\psi \to \Lambda \overline{\Lambda}$ , and the cross section is measured to be  $\sigma(\Lambda + {}^9\text{Be} \to \Sigma^+ + X) = (37.3 \pm 4.7_{\text{stat}} \pm 3.5_{\text{sys}})$  mb. This study represents the first attempt to investigate  $\Lambda$ -nucleus interaction at an  $e^+e^-$  collider.
- 3. With more statistics in future super tau-charm facilities, we can also study the momentum-dependent cross section or differential cross section distributions based on the hyperons from multibody decays of  $J/\psi$  or other charmonia.

## Thanks for your attention!