R-Value Measurement at BESIII

Christoph Florian Redmer for the BESIII collaboration

MENU 2023 – The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

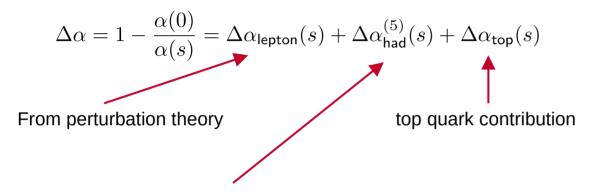
OF THE STANDARD MODEL

October 16, 2023

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Definition of R-Value

Ratio of leading-order cross sections of hadron and muon pair production in e⁺e⁻annihilation

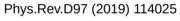

$$R \equiv \frac{\sigma^0(e^+e^- \to \text{hadrons})}{\sigma^0(e^+e^- \to \mu^+\mu^-)} \equiv \frac{\sigma_{\text{had}}^0}{\sigma_{\mu\mu}^0}$$

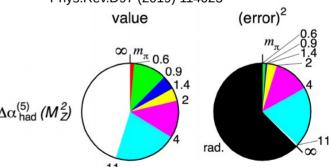
With
$$\sigma^0_{\mu\mu}$$
 directly from QED: $\sigma^0_{\mu\mu}=\frac{4\pi\alpha}{3s}\frac{\beta_\mu(3-\beta_\mu^2)}{2}$, with $\beta_\mu=\sqrt{1-\frac{4m_\mu^2}{s}}$

Important input to current tests of Standard Model

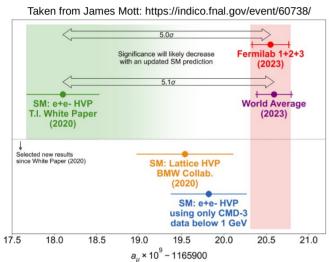
Running of the Fine Structure Constant $\Delta lpha_{ m em}$

 $\alpha(m_Z^2)$ one of three essential observables for electroweak precision physics

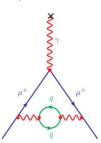

Hadronic Vacuum Polarization contribution


$$\Delta \alpha_{\mathsf{had}}^{(5)}(s) = -\frac{\alpha s}{3\pi} P \int_{s_{th}}^{\infty} \mathrm{d}s' \frac{R(s')}{s'(s'-s)}$$

R-Value over wide energy range important input:


Source	Contribution($\times 10^{-4}$)
$\Delta \alpha_{\text{lepton}}(M_Z^2)$	314.979 ± 0.002
$\Delta \alpha_{ m lepton}(M_Z^2)$ $\Delta \alpha_{ m had}^{(5)}(M_Z^2)$ $\Delta \alpha_{ m top}(M_Z^2)$	276.0 ± 1.0
$\Delta \alpha_{\text{top}}(M_Z^2)$	-0.7180 ± 0.0054

Eur.Phys.J. 80 (2020) 241



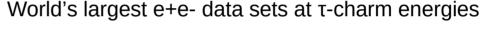
Anomalous Magnetic Moment of the Muon

Muon anomaly
$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

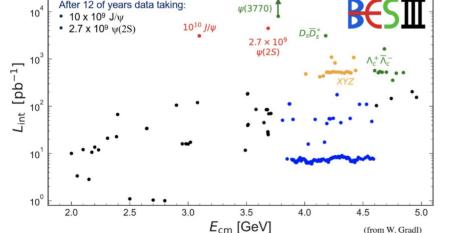
- Acuracy better than 0.5 ppm in experiment and theory
 - Exp: $116 592 059(22) \times 10^{-11}$ (arXiv:2308.06230)
 - SM: $116 591 810(43) \times 10^{-11}$ (Physics Reports 887 (2020) 1–16)
- Discrepancy between SM prediction and experiment
- ullet Hadronic contributions dominate uncertainty of $a_{\mu}^{\circ n}$

Hadronic Vacuum Polarization contribution:

- Dispersion integral
- R-Value as experimental input

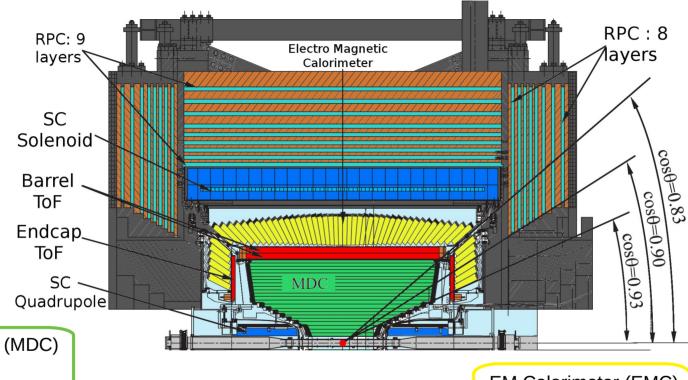

$$a_{\mu}^{\mathsf{HVP}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int\limits_{2m_{\pi}}^{\infty} \mathrm{d}s \frac{R(s)K(s)}{s^2}$$

Tensions with latest Lattice QCD calculations and cross section measurements


Beijing e⁺e⁻Collider – BEPCII

- Center-of-mass energies from 2 5 GeV
- Design luminosity exceeded: 1.1×10³³cm⁻²s⁻¹ at 3.77 GeV

- 10¹⁰J/ψ and 2.7×10⁹ψ(2s) directly produced
- More than 40 fb⁻¹ collected between 3.773 and 5 GeV
- Currently collecting 20 fb⁻¹ at 3.773 GeV



This work:

- 14 R scan data points (~110 pb⁻¹)
- 2.23 GeV 3.67 GeV

After 12 of years data taking:

Beijing Spectrometer – BESIII

Drift Chamber

 $\sigma(p)/p = 0.5\%$

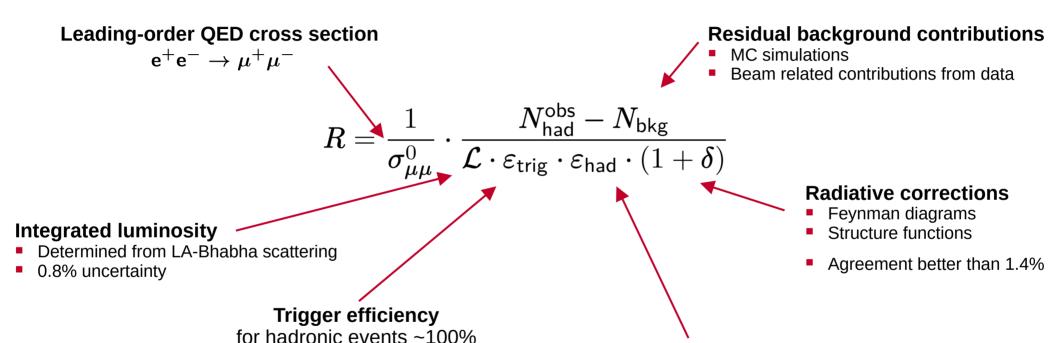
 $\sigma_{\rm dE/dx} = 6.0\%$

Time-of-flight system (TOF)

 $\sigma(t) = 60$ ps

Superconducting Magnet

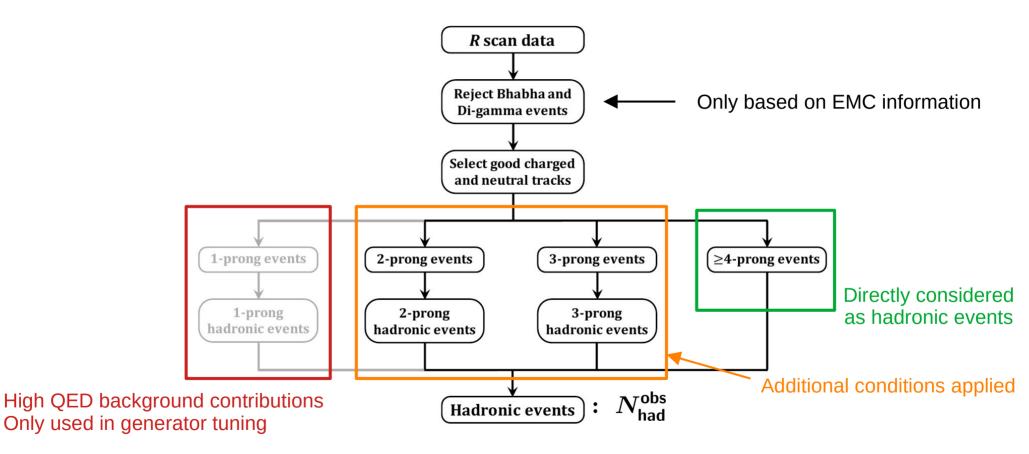
1 T magnetic field


EM Calorimeter (EMC)

- 6240 CsI(Tl) crystals
- $\sigma(E)/E = 2.5\%$
- $\sigma_{Z,\Phi}(E) = 0.5 0.7 \text{ cm}$

Muon Chambers

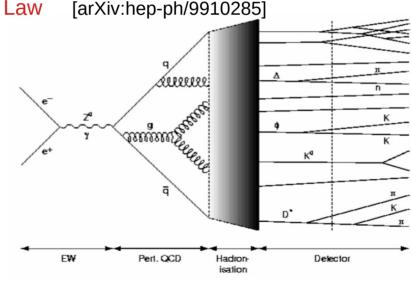
- 8 9 layers of RPC
- p > 400 MeV/c
- δRΦ = 1.4 ~ 1.7 cm


Determination of R-Value

Detection efficiency for hadronic events

- Most crucial source of uncertainties
- Evaluated using two different generator models

Analysis Stategy

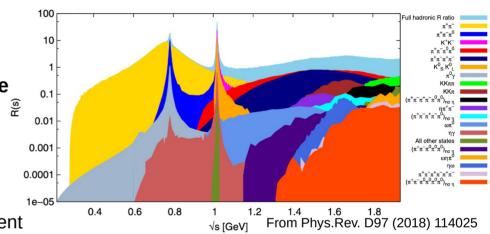


October 16, 2023 R Measurement at BESIII MENU2023 JG U

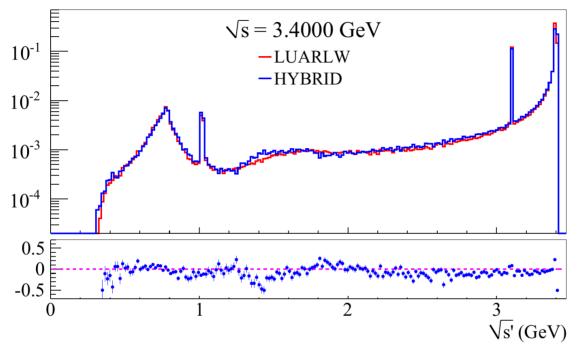
LUARLW: Nominal Model for Signal Simulation

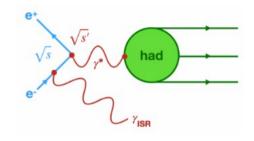
- **Inclusive** event generator
- Self-consistent model
- Developed from JETSET for low energies
- Kinematics of initial hadrons determined from Lund Area Law
- Generation of resonant and continuum states
- Initial state radiation implemented from $m_{\pi\pi}$ to \sqrt{s}
- Phenomenological Parameters tuned to data

Used in most previous R-Value measurements

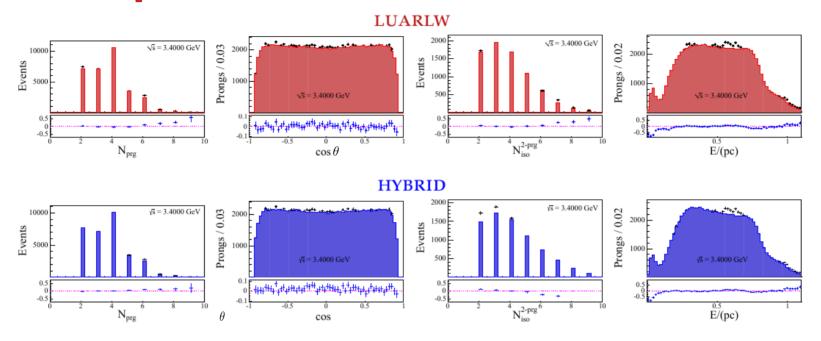

MFNU2023

Alternative Model: "Hybrid Generator"


New event generator developed:

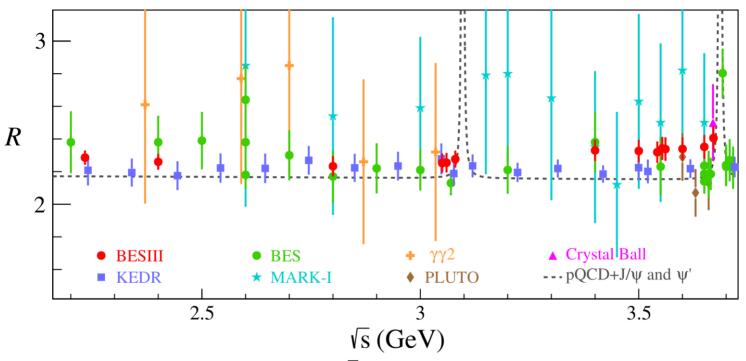

Idea: Use as much experimental information as possible

- Combination of three established event generators
 - Phokhara
 - 10 exclusive channels, hadronic models tuned to experiment
 - ConExc
 - More than 50 channels with cross sections from experiment
 - LUARLW
- Alternative ISR and VP correction schemes implemented


Comparison of the two Generators

- Effective energy spectrum of simulated ISR processes
- Consistent spectra from two different generators (different ISR schemes)

Comparison of the two Generators

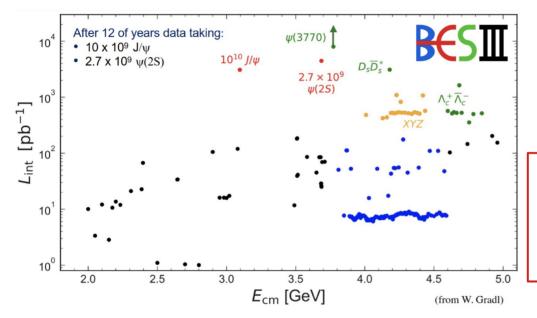

 \blacksquare N_{prg} , θ : Number and polar angle of selected charged tracks

■ E/(pc) : Ratio of deposited energy and measured momentum per track

• $N_{\rm iso}^{\rm 2prg}$: Number of isolated clusters in 2-prong events

Good agreement of both generator models and data!

Resulting R-Values



• Accuracy better than **2.6%** for $\sqrt{s} < 3.1 \text{GeV}$ and better than **3%** above

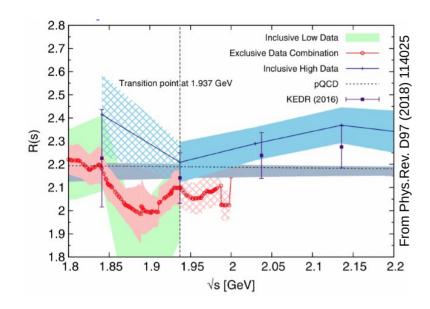
MENU2023

Exceeding pQCD prediction by 2.7σ between 3.4 and 3.6 GeV

Further R-Value Measurements at BESIII

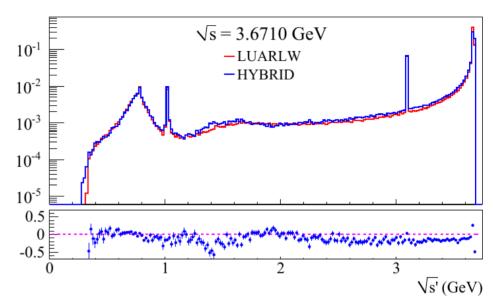
This work:

- 14 R scan data points (~110 pb⁻¹)
- 2.23 GeV 3.67 GeV


For future analysis:

- 21 R scan data points
- 2.00 GeV 3.08 GeV
- ~550 pb⁻¹

- 104 R scan data points
- 3.85 GeV 4.59 GeV
- ~800 pb⁻¹


- Large amounts of additional data already collected
 - 139 energy scan points with >10⁵ hadrons
- High accuracy R-Value measurements in continuum and open-charm region

Alternative Approach to R-Value Measurement

- **Inclusive** measurements for $\sqrt{s} > 2 \, \mathrm{GeV}$
- Tensions in transition region

- Use ISR technique
- Exploit large charmonium data sets at BESIII
- **Better detection efficiency** due to ISR kinematics
- Comparison of inclusive and exclusive measurements

Summary

High accuracy determination of R-Value important for Standard Model tests

- Running of $\alpha_{\sf em}(M_Z^2)$
- Muon anomaly a_{μ}

Pilot R-Value measurement at BESIII published in 2022

- $2.2324 < \sqrt{s} [GeV] < 3.6710$
- Accuracy better than
 - 2.6% below 3.1 GeV
 - 3% in the region above
- Additional high statistics energy scan data samples available
- Alternative approach exploiting ISR being developed at BESIII

Phys. Rev. Lett. 128 (2022) 062004

MFNU2023