

Study of the X17 anomaly with the PADME Experiment

Danilo Domenici on behalf of the PADME Collaboration

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DI FRASCATI

The Dark Sector Paradigm

can be produced at accelerators can decay back to ordinary matter

Dark Photon Production

only positron beam experiments

electron and positron beam experiments

A'-strahlung ± A'

 ρ^{\pm}

Resonant production

~~~~~~

Cross-section enhancement if  $m_{A'}$  known and  $\sqrt{s} = m_{A'}$ 

$$\sigma_{res}(E_{e^+}) = \frac{12\pi}{m_{A'}^2} \frac{\Gamma_{A'}^2/4}{(\sqrt{s} - m_{A'})^2 + \Gamma_{A'}^2/4}$$

MENU2023 Oct-23

### **Dark Photon Decay and Experimental Approaches**

### Visible decays to SM particles

 $A' \rightarrow e^+ e^-$ ;  $A' \rightarrow \mu^+ \mu^-$ 

- Thick target electron/proton beam (NA64)
- Thin target beam and search peak in e<sup>+</sup>e<sup>-</sup> invariant mass



Invisible decays (+ visible but long-lived mediators)

 $A' \rightarrow \chi \chi$ 

Missing energy/momentum: *A*' produced in the interaction of an electron beam with thick/thin target (NA64/LDMX)

• Missing mass:  $e^+e^- \rightarrow A'(\gamma)$  search for invisible particle using kinematics (Belle II, PADME)



D. Domenici LNF-INFN

 $10^{-1}$ 

CHARM

E137

SN1987A

 $10^{-2}$ 

ω 10-

10-

10-

10

 $10^{-6}$ 

 $10^{-}$ 

 $10^{-8}$ 

10

 $10^{-}$ 

NA64(e

E141

MENU2023 Oct-23

### The ATOMKI Anomaly



MENU2023 Oct-23

# The Hypothetical X17 Boson





All anomalies are explainable with the existence of a **new boson** dubbed **X17** with these characteristics:

$$\begin{split} m_X c^2 &= 16.84 \pm 0.16 (\text{stat}) \pm 0.20 (\text{syst}) \text{ MeV} \\ J^P &= 1^- (\text{vector}) \text{ or } 1^+ (\text{axial-vector}) \\ Br(e^+e^- \to X_{17}) &\simeq 5 \times 10^{-6} Br(e^+e^- \to \gamma\gamma) \\ \Gamma_{A'} &\simeq \epsilon^2 \alpha m_{A'}/3 < 10^{-2} \text{ eV} \end{split}$$

CERNCOURIER Kovenber/December 2019 cerencourier com Reporting on international high-energy physics

SEARCHES FOR NEW PHYSICS | NEWS Rekindled Atomki anomaly merits closer scrutiny 20 December 2019







MENU2023 Oct-23

D. Domenici LNF-INFN

7

### the accelerator complex of INFN Frascati National Laboratory

main

rings

damping

ring

MEN

• Energy: up to 550 MeV – 1% spread

Piezzale Enrico Ea

- Bunch spacing: 50 Hz
- Intensity: 1 ÷ 25x10<sup>3</sup> e<sup>+</sup>/bunch
- Bunch lenght: 10 ÷ 300 ns
- Beam spot:  $\sigma_{xv} \sim 1 \text{ mm}$
- Divergence: ~ 1 mrad

and man million hores

linac

electrons positrons both

# **A PADME Picture**



#### [2022 JINST 17 P08032]

MENU2023 Oct-23

D. Domenici LNF-INFN

9

### **The PADME Detector**



### **Detector: Beam Monitors**

### Diamond active annihilation target



single bunch XY profile and beam multiplicity

20x20x0.1 mm<sup>3</sup> pCVD sensor 16+16 XY graphite strips 1 mm pitch 60 µm resolution 10% intensity measurement [NIM A 162354 (2019)]



#### **Downstream Timepix**



2x6 matrix of 14x14 mm<sup>2</sup> Timepix3 0.13 μm CMOS technology 256x256 pixel matrix, 55x55 μm<sup>2</sup>



### **Detector: Calorimeter and Tagger**

#### Electromagnetic Calorimeter ECAL

annihilation events bremmstrahlung suppression Electron Tagger ETAG



616 scintillating BGO crystals  $21 \times 21 \times 230 \text{ mm}^3$ PMT readout  $\sigma E/E = 2.8\%$  at 490 MeV BGO decay time = 300 ns Radiation length = 20.5 X<sub>0</sub> [JINST 15 (2020) T10003]

#### photon veto for X17 run

16 scintillators 600x45x5 mm<sup>3</sup> 4 SiPM direct readout on both sides installed in 2022

### **PADME Detector for X17 Boson**



### **PADME Detector for X17 Boson**



### PADME Detector for X17 Boson



### X17 Resonance Scan

### PADME Run3

September – December 2022 Energy scan around X17 Mass

5 points below resonance: 205 ÷ 211 MeV Spacing: 1.5 MeV Statistics: 10<sup>10</sup> POTs/point Used to validate analysis

47 points on resonance:  $263 \div 299 \text{ MeV}$ Mass region 16.4 MeV <  $M_{X17}$  < 17.5 MeV Spacing: 0.75 MeV (equal to the energy resolution) Statistics:  $10^{10} \text{ POTs/point}$ Precision on  $M_{X17}$  measurement: ~20 keV

1 point above resonance: 402 MeV Statistics: 2x10<sup>10</sup> POTs Used to validate NPOT measurement



Signal should emerge on top of Bhabha and  $\gamma\gamma$  backgrounds



MENU2023 Oct-23

### First Look at Off-Resonance Data





### X17 Expected Limits



We made a unique scan with width of blu and density of green

projected sensitivity for vector



New plots coming soon

#### Darmé et al. Phys. Rev. D 106,115036

#### projected sensitivity for pseudo-scalar



### Conclusions

In 2022 the PADME experiment, with a modified setup, was dedicated to the search of X17 with resonant production of a positron beam on target

Energy scan performed in range 16.35 MeV  $< M_{X17} < 17.5$  MeV

Current analysis on off-resonance data shows <1% observable stability and very good background separation

Next step is move to sidebands closer to  $M_{X17}$ 

PADME results on X17 coming soon. Stay tuned!

**SPARES** 

### **Detector: Vetoes and SAC**

#### **Electron-Positron Vetos EVETO-PVETO**



P veto (90 bars)



**HEP veto** (16 bars)



bremmstrahlung suppression detection of visible decays.

plastic scintillators bars 10x10x178 mm<sup>3</sup> WLS fiber + 3x3 mm<sup>2</sup> SiPM 500 ps time resolution 2% momentum resolution [NIM A 936 (2019) 259] [JINST 15 (2020) 06, C06017]

**Small Angle Calorimeter** SAC



25 Cherenkov PbF<sub>2</sub> crystals 30×30×140 mm<sup>3</sup> **PMT** readout  $PbF_{2}$  signal time = 3 ns Time resolution = 80 ps Rate capability = 40 cluster/bunch [NIM A 919 (2019) 89]

MENU2023 Oct-23

D. Domenici LNF-INFN

21

### **Data Taking Runs**

![](_page_21_Figure_1.jpeg)

RUN1 – 2019 Secondary Beam 7x10<sup>12</sup> POT 250 µm Be window 545 MeV 25kPOT / 250 ns bunch

#### RUN1 – 2019 Primary Beam 250 µm Be window 490 MeV 25kPOT / 250 ns bunch

#### RUN2 - 2020 Primary Beam 6x10<sup>12</sup> POT 125 µm Mylar window 430 MeV 28kPOT / 280 ns bunch

#### RUN3 – 2022 – X17 search Primary Beam 6x10<sup>11</sup> POT

125 μm Mylar window283 MeV2kPOT / 260 ns bunch

### **Energy beam selection and Resolution**

![](_page_22_Figure_1.jpeg)

TimePix monitor

First dipole used to select energy

Second dipole used to correct trajectory and center beam on PADME axis

Measure displacement with TimePix to compute energy step

## $e^+e^- \rightarrow \gamma\gamma$ Cross-Section

#### Physics case:

- known only with 20% accuracy below 0.6 GeV
- Most recent measurement is 60 y old
- Used data of Run2

![](_page_23_Figure_5.jpeg)

Exploit energy vs polar angle correlation to select photons

![](_page_23_Figure_7.jpeg)

 $\sigma(e^+e^- 
ightarrow \gamma\gamma)$  = (1.930  $\pm$  0.029<sub>stat</sub>  $\pm$  0.156<sub>syst</sub>) mb

most precise measurement in this energy regime