

Small Angle Initial State Radiation Analysis of the Pion Form Factor at BESIII

Yasemin Schelhaas, Riccardo Aliberti & Achim Denig (JGU Mainz) on behalf of the BESIII collaboration

Anomalous Magnetic Moment of the Muon

- Magnetic moment of the muon: $\mu = g_{\mu} \frac{e}{2m_{\mu}} \vec{S}$, Dirac theory: $g_{\mu} = 2$
- Quantum field theory: $a_{\mu} = \frac{|g_{\mu}-2|}{2} \rightarrow \text{Muon g-2 Puzzle}$
- Standard Model (SM) prediction: $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{QCD}} + a_{\mu}^{\text{weak}}$
- Direct measurement: Experimental average of BNAL & FNAL

1		N	
	E O a		

$$e^+e^-
ightarrow \pi^+\pi^-$$

• Difficulty: a_{μ}^{HVP} cannot be calculated by perturbation theory

Dispersion relation:

$$\boldsymbol{a_{\mu}^{\text{HVP}}} = \frac{1}{4\pi} \int_{4m_{\pi}^2}^{\infty} K(s) \cdot \boldsymbol{\sigma_{e^+e^- \to \text{had}}} \, \mathrm{d}s$$

• Hadronic contributions dominate uncertainty for a_{μ}^{SM}

- Hadronic Light-by-Light Scattering (HLbL)
- Hadronic Vacuum Polarization (HVP)

$\frac{1}{\sigma^{2}(a_{\mu})} = \frac{1}{\sigma^{2}(hVP)} + \frac{1}{\sigma^{$

- Uncertainty for HVP dominated by multi-pion channels, mainly $\pi^+\pi^-$
- Region below 1 GeV has largest impact for a_{μ}^{HVP}
- At high energies only few results, e.g. from BaBar collaboration
 - This analysis: Pion form factor measurement above 0.8 GeV
 - Aiming for improved spectrum & interesting for hadron spectroscopy

BESIII Experiment at BEPCII

- Beijing Electron Positron Collider (BEPCII):
 - CM energy: 2.0 5.0 GeV
 - Design luminosity: $1.0 \cdot 10^{33}$ cm⁻² s⁻¹ at $\psi(3770)$
- Beijing Spectrometer III (BESIII) at BEPCII interaction point

Initial State Radiation (ISR) Technique

- Processes where e^- or e^+ emit γ_{ISR} before annihilation
- Measure whole $\pi^+\pi^-$ spectrum with one high statistics data set at fixed CM energy
- Radiator function W relates to non-radiative cross section:

 $\mathrm{d}\sigma_{\pi^+\pi^-\gamma}(m)$ 2m $-\cdot \epsilon(s,m) \cdot W(s,E_{\gamma},\theta_{\gamma}) \cdot \sigma_{\pi^{+}\pi^{-}}(m)$

- Used data set in this analysis: 1.9 fb⁻¹ at 3.77 GeV
 - Upcoming data set: 20 fb⁻¹ at 3.77 GeV

- Selection Scheme:
 - Up to four charged tracks
 - Vertex fit: intersection of charged tracks
- Kinematic 1C fit: assume missing γ_{ISR}
- Particle ID (PID): electron rejection

π/μ Separation Using a Multivariate Analysis Approach

- Signal: $e^+e^- \rightarrow \pi^+\pi^-\gamma_{ISR}$
- Main background contribution: $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$
- Difficult to distinguish pions from muons at BESIII
 - \rightarrow Optimized PID algorithm for π/μ separation needed!
 - Multivariate analysis using machine learning tools
 ROOT Toolkit for Multivariate Data Analysis

Boosted Decision Tree with Gradient Boost (BDTG)

- Two answers per question (node)
- Final state (leaf) after max. nodes
- Discriminating variables:
 - Information from EMC
 - Track Momentum
 - Prob. for π & e by dE/dx & TOF
- BDTG is a very powerful tool and suppresses a lot of muons

Next step: **2D PID corrections** for pions & muons:

- Independent control samples for pions & muons:
 - $\pi^+\pi^-\pi^+\pi^-$ with untagged γ_{ISR}
 - $\mu^+\mu^-$ with tagged $\gamma_{\rm ISR}$

