

Study of Neutral-Pion Pair Production in Two-Photon Scattering at BESIII

Max Lellmann, Christoph F. Redmer & Achim Denig on behalf of the BESIII collaboration

Anomalous Magnetic Moment of the Muon

- Magnetic moment of the muon: $\mu = g_{\mu} \frac{e}{2m_{\mu}} \vec{S}$
- Quantum Field Theory: $a_{\mu} = \frac{g_{\mu}-2}{2} \neq 0 \implies$ Muon anomaly
- Standard Model (SM) prediction:

- $a_{\mu}^{SM} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{QCD}}$
 - Sizeable Discrepancy! Hint for New Physics? Poor understanding of QCD?
 - Discrepancy to Lattice?

The Hadronic Light-by-Light Contribution to a_{μ}

- Next to leading order hadronic contribution
- Characterized by the coupling of four (virtual) photons to a hadronic state

- Hadronic contributions dominate the uncertainty uncertainty for a_{μ}^{SM}
 - Hadronic Vacuum Polarization (HVP)
 - Hadronic Light-by-Light Scattering (HLbL)

- Dominated by the exchange of pseudoscalars, pion loops, scalars, tensors ...
- Dispersive calculations of this process need knowledge of hadrons coupling to two photons
- The coupling is typically described by **Transition Form Factors** $F(q_1^2, q_2^2)$

Two-Photon Physics at e^+e^- **Colliders**

• Transition form factors can be accessed in the two-photon fusion process $e^+e^- \rightarrow e^+e^-M$

Goal of this Work

- Photon Virtuality q^2 can be connected to the scattered leptons energy and angle $q^2 = -4EE' \sin^2 \frac{\theta}{2}$
- Strong drop of the cross section with increasing -q²
 - Restricting on of the lepton to small angles allows one dimensional mapping of the Transition Form Factor
 - → "Single Tag Analysis"

The BESIII Experiment

- Symmetric Electron-Positron Collider in Beijing/China
 - $\sqrt{s} = 2 5 \text{ GeV}$
 - Luminosity 1.1 nb⁻¹/s

$\gamma\gamma^* ightarrow \pi^0\pi^0$ at BESIII

Monte Carlo Simulations

- Simulation of signal channel process and two-photon background with Ekhara3.1
- Dispersive input for $\gamma^*\gamma^* \to \pi^0\pi^0$ dynamics by Danilkin, Deineka & Vanderhaeghen
- Simulation of $\gamma^*\gamma^* \rightarrow \eta \ / \ \eta'$ with 3-octet TFF model

Event Selection

- Selection of $e^+e^- \rightarrow e^+e^-\pi^0\pi^0$ with one missing final state lepton
- Reconstruction of pion decay into 2 photons
- Kinematic Fit to combine 4 photons to 2 pions and reconstruction of missing lepton

Background Suppression

- Requiring small χ^2 of Kinematic Fit
- Restricting $-q^2$ of missing lepton to small numbers

• World's largest data sets in the τ and charmonium energy range

MENU 2023

- Here: twelve data samples with more than 12 fb⁻¹ integrated luminosity between 3.773 GeV and 4.599 GeV
- Soon 20 fb⁻¹ at 3.773 GeV

- Suppression of two-photon background by requiring small transverse momentum of measured particles
 Subtraction of Monte Carlo simulations of remaining
- Subtraction of Monte Carlo simulations of remaining two-photon background

Results

JGU

- 10000 selected signal events
- Mass coverage from threshold to 2 GeV
- First measurement in the a_{μ} relevant virtuality range ($-q^2 = 0.1 \text{ GeV}^2 - 2 \text{ GeV}^2$)

Max Lellmann

JGU Mainz

- Full helicity angle coverage
- Much more data to come!

lellmann@uni-mainz.de