Search for Light Dark Matter with the DarkMESA Experiment

MESA Experiments

The MESA Accelerator

MAGIX

- Electron accelerator dedicated to low-energy precision physics
- 2 operating modes:
 - Energy-recovering mode:
 - Up to 1 mA @ 105 MeV
 - Serves MAGIX
 - Extracted-beam mode:
 - Up to 0.15 mA @ 150 MeV
 - Serves P2 and DarkMESA

3 Experiments: MAGIX, P2 and **DarkMESA**:

- MAGIX
 - Spectrometer-based detector system combined with a gas jet target
 - Research objectives: Dark Sector searches and Few-body physics

P2

- Utilises 150 MeV electron beam with a liquid hydrogen target
- Research objective: Measurement of the weak mixing angle
- DarkMESA
 - Parasitic Dark Sector experiment behind the beam dump of P2
 - Research objective: Direct detection of Dark Matter scattering processes

The DarkMESA Experiment

- Lead glass detector placed 23 m behind high-power beam dump of P2
- High beam intensities for fast aquisition of large data sets
- Staged approach:

DarkMESA

- **Phase A:** PbF₂ crystals, 7.45 × 10²¹ EOT @ 55 MeV
- Phase B: PbF₂ crystals + SF5 crystals, 2.22 × 10²² EOT @ 150 MeV
- Phase C: Phase B setup + DRIFT detector (proposed), 4.45 × 10²² EOT @ 150 MeV

- Experimental concept [1]:
 - Light Dark Matter could interact with SM matter through a Dark Photon
 - Production of Dark Photons in the beam dump through Dark Bremsstrahlung
 - Decay of a Dark Photon to a Dark Matter pair
 - Dark Matter scatters off electrons inside DarkMESA detector

Simulation Studies for the DarkMESA Experiment

- **GEANT4**-based detector simulation to estimate experimental reach and optimise detector setup [2,3]
- Simulation workflow:

- Dark Photon decays can be simulated in two ways:
 - Dark Bremsstrahlung processes only
 - Dark Bremsstrahlung and positron annihilation processes
- Cross section calculations are performed after Bjorken [4]

DarkMESA is especially sensitive to Dark Matter masses of $m_v \approx 5$ MeV!

Outlook: Expanding the research programme of DarkMESA

- GEANT4 simulation limited to invisible Dark Photon decays
- Utilise DMG4 package [5]:
 - Direct integration into GEANT4 simulation possible \rightarrow reduces computation time
 - **Includes several Dark Matter models**
- **Introduce Axion Dark Sector models**
 - Axions/ALPs could solve the strong CP problem [6]

[6] R.D. Peccei and H.R. Quinn. "CP Conservation in the Presence of Pseudoparticles", DOI: 10.1103 / PhysRevLett.38.1440

Simulate decay via **Primakoff processes**

Model	Parent PDG
Dark Photon (Annihilation)	e- (e+)
Dark Scalar (Annihilation)	e- (e+)
Dark Pseudoscalar (Annihilation)	e- (e+)
Dark Axial (Annihilation)	e- (e+)
Spin-2 Dark Matter (Annihilation)	e- (e+)
ALP	γ
Dark Vector	e ⁻
Dark Z	μ
Dark Muphilic Scalar	μ
Dark Muphilic Pseudoscalar	μ
Dark Matter Models implemented in DMG4	

[1] L. Doria et al.: "Dark Matter at the Intensity Frontier: the new MESA electron accelerator facility", DOI: 10.22323/1.360.0022 [2] M. Christmann et al.: "Instrumentation and optimization studies for a beam dump experiment (BDX) at MESA — DarkMESA, DOI: 10.1016/j.nima.2019.162398

[3] M. Christmann: "Design studies for the beam-dump experiment DarkMESA", DOI: 10.25358/openscience-9076 [4] J. Bjorken, R. Essig, P. Schuster and N. Toro: "New Fixed-Target Experiments to Search for Dark Gauge Forces", DOI: 10.1103/PhysRevD.80.075018 [5] M. Bondi et al: "Fully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments", DOI: 10.1016/j.cpc.2021.108129

Images: MESA, https://www.mesa.uni-mainz.de/eng/ Beam Dump Experiment principle, https://magix.uni-mainz.de/physics.php DarkMESA Phase B, https://magix.uni-mainz.de/DarkMESA.php DMG4, https://indico.cern.ch/event/1106990/contributions/4997221/attachments/2535513/4363626/hsieber-bari-DMG4-v1.pdf Axion/ALP parameter space: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.075018

