Recent and Future Measurements of Nucleon Polarizabilities at HIGS

Gerald Feldman

Department of Physics George Washington University

Compton@HIGS Collaboration

James E. Shepard, Founder

Mount Allison

Introduction

polarizability – measure of induced dipole moment in external field

electricmagnetic $D = \alpha E$ $M = \beta B$

$$\Delta \varepsilon = -\mathbf{d} \cdot \mathbf{E} - \frac{1}{2} \alpha |\mathbf{E}|^2 \qquad \Delta \varepsilon = -\mu \cdot \mathbf{B} - \frac{1}{2} \beta |\mathbf{B}|^2$$

 $q, \mu \Rightarrow \Rightarrow \Rightarrow 1^{st} \text{ order response}$

 $\alpha, \beta \implies \Rightarrow \Rightarrow \Rightarrow 2^{nd} \text{ order response}$

(lowest-order response of *internal* structure)

□ for the free nucleon:

fundamental structure constants (and not so well known)

test of models of nucleon structure

electric polarizability: separation of charge

polarizability: measure of induced dipole moment in external field

electric polarizability: separation of charge

D = 0

polarizability: measure of induced dipole moment in external field

paramagnetic polarizability:

M = 0

 $D = \alpha E$

electric polarizability: separation of charge

D = 0

 $D = \alpha E$

paramagnetic polarizability: moments align with *B*

diamagnetic polarizability: induced current opposes *B*

 $\boldsymbol{M} = \beta_{para} \boldsymbol{B}$

Measuring Nucleon Polarizability

Proton

Compton scattering

$$\sigma_p(\omega) \approx r_0^2 - 2 r_0 \alpha_p \omega^2$$

Measuring Nucleon Polarizability

Proton

Compton scattering

$$\sigma_p(\omega) \approx r_0^2 - 2 r_0 \frac{\alpha_p}{\omega} \omega^2$$

Neutron

- difficulties
 - no free neutron targets

$$\sigma_n(\omega) \approx {\alpha_n}^2 \omega^4$$

neutron is uncharged (no Thomson scattering)

Measuring Nucleon Polarizability

Proton

Compton scattering

$$\sigma_p(\omega) \approx r_0^2 - 2 r_0 \frac{\alpha_p}{\omega} \omega^2$$

Neutron

- difficulties
 - no free neutron targets

$$\sigma_n(\omega) \approx \alpha_n^2 \omega^4$$

neutron is uncharged (no Thomson scattering)

techniques

- neutron scattering by heavy nucleus
- ✓ quasi-free Compton scattering: $D(\gamma, \gamma' n)p$
- \checkmark elastic Compton scattering: $D(\gamma,\gamma)D$

$$\sigma_D(\omega) \approx r_0^2 - 2 r_0 (\alpha_p + \alpha_n) \omega^2$$

Duke University

TUNL

Triangle Universities Nuclear Laboratory

Duke University Univ. of North Carolina NC State University NC Central University

Duke Free-Electron Laser Lab

High Intensity Gamma-Ray Source

Storage Ring and Booster

Circularly and linearly polarized γ rays, nearly monoenergetic ($E_{\gamma} = 1-120$ MeV) Utilizes Compton backscattering to generate γ rays

HIGS Photon Beam

monoenergetic photons 1-100 MeV (soon 120 MeV)

- beam energy resolution depends on collimation
- nearly 100% linear or circular polarization

Iow beam-related background

no bremsstrahlung typical of tagged photons

Experimental Setup

HIGS Nal Detector Array Cryotarget LH₂/LD₂/LHe (3.5 K – 24 K)

upgrade to 1.7 K for ³He

NaI Detectors

energy and timing information

 $D(\gamma,\gamma)D$

$E_{\gamma} = 62.7 \text{ MeV}$

Elastic & Inelastic

M. Kovash (2018)

Experimental Setup

polarized Compton scattering on proton

beam polarization in horizontal plane

5 parallel NaI's 3 perpendicular

$$E_{\gamma} = 83 \text{ MeV}$$

X. Li (2022)

 $E_{\gamma} = 81 \text{ MeV}$

X. Li (2022)

New Experiment ³He(γ , γ)³He

experiment details

- > higher cross section for Z = 2 target (compared to ²H)
- > first breakup channel (d + p) at **5.5 MeV** (compared to ²H)
- > exploit different Compton scattering channel to access α and β
- no previous Compton data on ³He exists!
- modify cryotarget: lower base temperature and ³He recovery
 - **u** energies: $E_{\gamma} = 60, 80, 100, 120 \text{ MeV}$
 - \Box angles: $\theta_{\gamma} = 45^{\circ} 150^{\circ}$
 - target: liquid ³He cryogenic target
 - detectors: BUNI, DIANA, and 4 HINDA NaI's

Margaryan (2018)

big advantage for ⁴He over ³He

(especially at backward angles!)

Griesshammer

Summary

- □ ⁴He and ²H **unpolarized** data
- proton: photon beam asymmetry with **linearly polarized** beam
- □ ⁶Li, ¹²C and ¹⁶O unpolarized data

Summary

- ⁴He and ²H unpolarized data
- proton: photon beam asymmetry with **linearly polarized** beam
- □ ⁶Li, ¹²C and ¹⁶O unpolarized data
- ²H: high resolution run (separate elastic/inelastic)
- \Box ³He: first Compton on A = 3 (coming in Spring 2024)
- □ ⁴He: measure energy dependence (60-120 MeV)

Summary

- ⁴He and ²H unpolarized data
- proton: photon beam asymmetry with **linearly polarized** beam
- □ ⁶Li, ¹²C and ¹⁶O unpolarized data
- ²H: high resolution run (separate elastic/inelastic)
- \Box ³He: first Compton on A = 3 (coming in Spring 2024)
- ⁴He: measure energy dependence (60-120 MeV)

Strong EFT support (Griesshammer, McGovern, Phillips)

> next milestone – theory framework for A = 4

□ HIGS can contribute high-quality data!

stay tuned for further developments in the future...