Towards data-driven evaluation of the nucleon polarizability effects contributing to the Lamb shift

arXiv:2305.08814 [hep-ph]

Volodymyr Biloshytskyi, I. Ciobotaru-Hriscu, F. Hagelstein, V. Lensky and V. Pascalutsa

The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon,
Mainz, 15-20 October 2023

Lamb shift in $\mu \mathrm{H}$

$$
E_{2 S-2 P}^{\exp }(\mu \mathrm{H})=202.3706(23) \mathrm{meV}
$$

f.s. corr.

Table 1 Forward 2γ-exchange contributions to the $2 S$-shift in $\mu \mathbf{H}$, in units of $\mu \mathrm{eV}$.

Reference	$E_{2 S}^{\text {(subt) }}$	$E_{2 S}^{(\text {inel) }}$	$E_{2 S}^{(\text {pol })}$	$E_{2 S}^{(\mathrm{el})}$	$E_{2 S}^{\langle 2 \gamma\rangle}$
DATA-DRIVEN					
(73) Pachucki '99	1.9	-13.9	-12(2)	$-23.2(1.0)$	$-35.2(2.2)$
(74) Martynenko '06	2.3	-16.1	-13.8(2.9)		
(75) Carlson et al. '11	5.3(1.9)	$-12.7(5)$	-7.4(2.0)		
(76) Birse and McGovern '12	4.2(1.0)	$-12.7(5)$	-8.5(1.1)	$-24.7(1.6)$	-33(2)
(77) Gorchtein et al. ${ }^{\prime} 13^{\text {a }}$	$-2.3(4.6)$	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)
(78) Hill and Paz '16					-30(13)
(79) Tomalak'18	$2.3(1.3)$		$-10.3(1.4)$	-18.6(1.6)	-29.0(2.1)
LEADING-ORDER B χ PT					
(80) Alarcòn et al. '14			$-9.6{ }_{-2.9}^{+1.4}$		
(81) Lensky et al. ${ }^{\prime} 17{ }^{\text {b }}$	$3.5{ }_{-1.9}^{+0.5}$	-12.1(1.8)	$-8.6{ }_{-5.2}^{+1.3}$		
Lattice QCD					
(82) Fu et al. '22					-37.4(4.9)

[^0]A. Antognini et al., Ann.Rev.Nucl.Part.Sci. (2022)

Leading polarizability contribution to the Lamb shift

Doubly-virtual Compton scattering tensor:

$$
\begin{aligned}
& T^{\mu \nu}(q, p)=\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) T_{1}\left(\nu, Q^{2}\right)+\frac{1}{M^{2}}\left(p^{\mu}-\frac{p \cdot q}{q^{2}} q^{\mu}\right)\left(p^{\nu}-\frac{p \cdot q}{q^{2}} q^{\nu}\right) T_{2}\left(\nu, Q^{2}\right) \quad \text { Spin-independent } \\
&+\frac{i}{m} \epsilon^{\mu \nu \alpha \beta} q_{\alpha} s_{\beta} S_{1}\left(\nu, Q^{2}\right)+\frac{i}{m^{3}} \epsilon^{\mu \nu \alpha \beta} q_{\alpha}\left(p \cdot q s_{\beta}-s \cdot q p_{\beta}\right) S_{2}\left(\nu, Q^{2}\right) \quad \text { Spin-dependent part }
\end{aligned}
$$

$\sim(Z \alpha)^{6} \log Z \alpha$

A. Antognini et al.

Ann.Rev.Nucl.Part.Sci. (2022)
$T_{1}\left(\nu, Q^{2}\right)=T_{1}\left(0, Q^{2}\right)+\frac{32 \pi Z^{2} \alpha_{\mathrm{em}} M \nu^{2}}{Q^{4}} \int_{0}^{1} d x \frac{x F_{1}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}}$
$T_{2}\left(\nu, Q^{2}\right)=\frac{16 \pi Z^{2} \alpha_{\mathrm{em}} M}{Q^{2}} \int_{0}^{1} d x \frac{F_{2}\left(x, Q^{2}\right)}{1-x^{2}\left(\nu / \nu_{\mathrm{el}}\right)^{2}-i 0^{+}}$
$\nu=p \cdot q, \quad q^{2}=-Q^{2}, \quad p^{2}=M^{2}, \quad \nu_{\mathrm{el}}=Q^{2} / 2 M$
$F_{1}\left(x, Q^{2}\right), F_{2}\left(x, Q^{2}\right)$ are the proton structure functions
$x=Q^{2} / 2 M \nu$ is a Bjorken variable

Accessing the subtraction function $T_{1}\left(0, Q^{2}\right)$

Constraints: $\quad \lim _{Q^{2} \rightarrow 0} T_{1}^{\text {non-Born }}\left(0, Q^{2}\right)=4 \pi \beta_{M 1} Q^{2}+\mathcal{O}\left(Q^{4}\right), \quad \lim _{Q^{2} \rightarrow \infty} T_{1}^{\text {non-Born }}\left(0, Q^{2}\right)=\mathcal{O}\left(Q^{-2}\right)$

Covariant baryon $\chi \mathrm{PT}$
 Lensky et al., PRD (2018)
 Alarcón et al., PRD (2020)

Different types of models

e.g., heavy-baryon $\chi \mathrm{PT}+$ high- Q^{2} model
Birse \& McGovern, EPJA (2012)

$$
T_{1}^{\mathrm{non}-\mathrm{Born}}=4 \pi \beta_{M 1} \frac{Q^{2}}{\left(1+\frac{Q^{2}}{\Lambda^{2}}\right)^{4}}
$$

Data-driven evaluation

- Can be extracted from the dilepton electroproduction on the nucleon
Pauk, Carlson, Vanderhaeghen, PRC (2020)
- Can be obtained via another sum rule arXiv:2305.08814 (2023)

Sum rule for the subtraction function

1. Introduce the Compton helicity amplitude with two longitudinally polarized photons

$$
T_{L}\left(\nu, Q^{2}\right)=\left(1+\frac{\nu^{2}}{Q^{2}}\right) T_{2}\left(\nu, Q^{2}\right)-T_{1}\left(\nu, Q^{2}\right)
$$

2. Assume that $T_{L}\left(\nu, Q^{2}\right)$ obeys unsubtracted dispersion relation

Dispersion relation for T_{L}

$$
T_{L}\left(\nu, Q^{2}\right)=\frac{2}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime} \nu^{\prime 2} \frac{\sigma_{L}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}
$$

Equalling the amplitudes at the Siegert point $\nu=i Q$

$$
T_{1}\left(\nu=i Q, Q^{2}\right)=-T_{L}\left(\nu=i Q, Q^{2}\right)
$$

$$
T_{1}\left(\nu, Q^{2}\right)=T_{1}\left(0, Q^{2}\right)+\frac{2 \nu^{2}}{\pi} \int_{\nu_{\mathrm{el}}}^{\infty} d \nu^{\prime} \frac{\sigma_{T}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}-i 0^{+}}
$$

Dispersion relation for T_{1}

Verification of the sum rule for subtraction function

$$
T_{1}\left(0, Q^{2}\right)=\frac{2}{\pi} Q^{2} \int_{\nu_{0}}^{\infty} \frac{d \nu}{\nu^{2}+Q^{2}}\left[\sigma_{T}-\frac{\nu^{2}}{Q^{2}} \sigma_{L}\right]\left(\nu, Q^{2}\right)
$$

This sum rule is valid in the manifestly covariant baryon $\chi \mathrm{PT}$ for the $\mathcal{O}\left(p^{3}\right)$ contribution to the proton electric polarizability that comes from the charged pion loops.

Note that at this order we only verify the polarizability contribution(no contributions from the possible non-pole Born terms)

Non-Born part of the subtraction function

$$
\begin{aligned}
\bar{T}_{1}\left(0, Q^{2}\right)= & -\frac{\pi \alpha_{\mathrm{em}} Q^{2}}{M^{3}} F_{2}^{2}\left(Q^{2}\right) \\
& +\frac{2}{\pi} Q^{2} \int_{\nu_{0}}^{\infty} \frac{d \nu}{\nu^{2}+Q^{2}}\left[\sigma_{T}-\frac{\nu^{2}}{Q^{2}} \sigma_{L}\right]\left(\nu, Q^{2}\right)
\end{aligned}
$$

MAID
$\begin{array}{ll} & \text { NLO } \chi \text { PT }\end{array} \begin{aligned} & \text { Lensky et al., PRC (2014) } \\ & \text { Alarcón et al., PRD (2020) }\end{aligned}$

$$
\begin{aligned}
\bar{T}_{L}\left(i Q, Q^{2}\right)= & \frac{\pi \alpha_{\mathrm{em}} Q^{2}}{M^{3}} F_{2}^{2}\left(Q^{2}\right) \\
& +\frac{2}{\pi} \int_{\nu_{0}}^{\infty} d \nu \nu^{2} \frac{\sigma_{L}\left(\nu, Q^{2}\right)}{\nu^{2}+Q^{2}}=-\bar{T}_{1}\left(i Q, Q^{2}\right)
\end{aligned}
$$

— LO χ PT: πN-loops

HB χ PT Birse and McGovern, EPJA (2012)

Sum rules for spin-independent polarizabilities

1. The low-energy expansion of $T_{1}\left(\nu, Q^{2}\right)$: Baldin sum rule

- a powerful tool for data-driven evaluation of ($\alpha_{E 1}+\beta_{M 1}$)
- widely used in experimental data analysis

$$
\alpha_{E 1}+\beta_{M 1}=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d \nu \frac{\sigma_{\mathrm{T}}(\nu)}{\nu^{2}}
$$

Baldin, Nucl. Phys. 18, 310 (1960)

EXAMPLES:

> A2 at MAMI, PRL (2022): Baldin sum rule is treated as an "additional data point"

Hl $\gamma \mathrm{S}$, PRL (2022): Baldin sum rule is embedded in the fit function

2. The low-energy expansion of $T_{L}\left(\nu, Q^{2}\right)$: Bernabéu-Tarrach sum rule

- a data-driven determination of the electric polarizability alone

Is it a valid sum rule?
\varkappa is the anomalous magnetic moment of the nucleon

$$
\alpha_{E 1}-\frac{\alpha_{\mathrm{em}} \varkappa^{2}}{4 M^{3}}=\frac{1}{2 \pi^{2}} \int_{0}^{\infty} d \nu\left[\frac{\sigma_{L}\left(\nu, Q^{2}\right)}{Q^{2}}\right]_{Q^{2} \rightarrow 0}
$$

Validation of the Bernabéu-Tarrach sum rule

We have found cases when the Bernabéu-Tarrach sum rule holds exactly!

1) The sum rule is exactly valid in the manifestly covariant baryon $\chi \mathrm{PT}$ for the $\mathcal{O}\left(p^{3}\right)$ contribution to the proton electric polarizability that comes from the charged pion loops.

The results of [Bernard et al., PRL (1991),

NPB (1992)], were reproduced.

2) The sum rule is exactly valid in the naïve parton model

- Callan-Gross relation: $\quad F_{2}\left(x, Q^{2}\right)=2 x F_{1}\left(x, Q^{2}\right) \Leftrightarrow \sigma_{L}=\frac{Q^{2}}{\nu^{2}} \sigma_{T}$
$x=Q^{2} / 2 M \nu$
is a Bjorken variable
- T_{L} satisfies unsubtracted dispersion relation exactly:

$$
T_{L}\left(x, Q^{2}\right)=T_{2}\left(x, Q^{2}\right)=\frac{4 M \alpha_{\mathrm{em}}}{Q^{2}} \int_{0}^{1} \frac{d \zeta}{\zeta^{2}} \frac{x^{2} F_{2}\left(\zeta, Q^{2}\right)}{\left(\frac{x}{\zeta}\right)^{2}-1-i \epsilon}
$$

Bernabéu-Tarrach sum rule: (in)validation?

LO QED

[Llanta and Tarrach, PLB (1978)]

- the sum rule converges to the wrong answer

EFT for pions

Llanta and Tarrach, Phys.Lett. (1980)
L'vov, Sov. J. Nucl. Phys. (1981)

- $\alpha_{E 1}>0$ for both π^{0} and $\pi^{ \pm}$. It violated some of the EFT predictions

Regge theory arguments [L'vov, NPA (1998)]

- the sum rule is in general invalid since it is divergent without the subtraction.

Our checks in LO covariant baryon χ PT arXiv:2305.08814 (2023)

The Compton scattering off the neutron

$$
T_{L}^{\pi^{-} n-\mathrm{loops}}\left(\infty, Q^{2}\right)=-\frac{\alpha_{\mathrm{em}}}{6 \pi} \frac{g_{\pi N}^{2}}{M^{3}} Q^{2}+\mathcal{O}\left(Q^{4}\right)
$$

\Rightarrow In these cases the dispersion relation for T_{L} should be modified as follows:

$$
T_{L}\left(\nu, Q^{2}\right)=T_{L}\left(\infty, Q^{2}\right)+\frac{2}{\pi} \int_{\nu_{0}}^{\infty} d \nu^{\prime} \nu^{\prime} 2 \frac{\sigma_{L}\left(\nu^{\prime}, Q^{2}\right)}{\nu^{\prime 2}-\nu^{2}}
$$

Sugawara and Kanazawa, PhysRev (1961)

How to deal with asymptotic constants?

Our point: the sum rule is valid if convergent.

- The low-energy physics should not depend on the behavior at very high energies (i.e. physics at the Plank scale)
- The asymptotic constants are the artifacts of the low-energy theory, which is not valid at high energies.
- With proper ultraviolet completion, a theory does not produce the asymptotic constants in the sum rules.

In conclusion, we ought to treat the Bernabéu-Tarrach sum rule as the valid sum rule

Saturation of the sum rule integral

$$
I_{\mathrm{BT}}(\Lambda)=\frac{1}{2 \pi^{2}} \int_{\nu_{0}}^{\Lambda} d \nu\left[\frac{\sigma_{L}\left(\nu, Q^{2}\right)}{Q^{2}}\right]_{Q^{2} \rightarrow 0} \quad I_{\mathrm{Baldin}}(\Lambda)=\frac{1}{2 \pi^{2}} \int_{\nu_{0}}^{\Lambda} d \nu \frac{\sigma_{T}\left(\nu, Q^{2}\right)}{\nu^{2}}
$$

Source	$\alpha_{E 1}\left[\times 10^{-4} \mathrm{fm}^{3}\right]$
MAID (extrapolated)	$\begin{gathered} 5.4 \\ (\sim 7) \end{gathered}$
Kappa term	0.5
resonances	0.5-1*
Total (w/o Regge region)	8-8.5*
[PDG]	11.2 ± 0.4

*Currently, we have no parametrization of the existing data, which has a stable behavior within the limit $Q^{2} \rightarrow 0$

- Low-energy input:

O Improve the existing parametrizations of resonance region to make them valid at the limit $Q^{2} \rightarrow 0$
O Measurement of the two-pion photoproduction

\square Moderate and high-energy input:
O Detailed measurement of $F_{L}\left(x, Q^{2}\right)$ in the region $\nu=20 . .20000 \mathrm{GeV}$ at low Q^{2}

Summary

- The Bernabéu-Tarrach sum rule seems to be as valid as the Baldin sum rule. The dipole polarizabilities can be determined separately within the data-driven approach
- Consequently, the data-driven evaluation of the subtraction function in the proton polarizability contribution to the Lamb shift of hydrogen-like atoms is also possible
- Several experimental inputs on σ_{L} are needed in order to test the sum rules. At low energies, the most interesting one is the two-pion photoproduction on a proton.
- The high-quality parametrization of the current data on σ_{L} with the correct limit $Q^{2} \rightarrow 0$ is highly required!

Thank you for attention!

[^0]: ${ }^{3}$ Adjusted values due to a different decomposition into the elastic and polarizability contributions.
 ${ }^{\mathrm{b}}$ Partially includes the Δ (1232)-isobar contribution.

