

Towards data-driven evaluation of the nucleon polarizability effects contributing to the Lamb shift

arXiv:2305.08814 [hep-ph]

Volodymyr Biloshytskyi, I. Ciobotaru-Hriscu, F. Hagelstein, V. Lensky and V. Pascalutsa

Lamb shift in μ H

$E_{2S-2P}^{\exp}(\mu H) = 202.3706(23) \mathrm{meV}$						
$E_{2P-2S}^{\text{th}}(\mu\text{H}) = \left[\underbrace{205.0074}_{1.0153} + \underbrace{1.0153}_{1.0153} + 0.0114(3) + 0.0006(1) - 5.2275(10)\left(\frac{r_p}{\text{fm}}\right)^2 - \underbrace{E_{2S}^{\{2\gamma\}}}_{2S}\right] \text{meV}$						
Uehling r_p indep.		nVP	γ 2γ exch.			
			1.5. COII.		1	
Table 1 Forward 2γ -exchange contributions to the 2S-shift in μ H, in units of μ eV.						
Reference	$E_{2S}^{(\mathrm{subt})}$	$E_{2S}^{(\text{inel})}$	$E_{2S}^{(\text{pol})}$	$E_{2S}^{(\mathrm{el})}$	$E_{2S}^{\langle 2\gamma \rangle}$	
DATA-DRIVEN						
(73) Pachucki '99	1.9	-13.9	-12(2)	-23.2(1.0)	-35.2(2.2)	
(74) Martynenko '06	2.3	-16.1	-13.8(2.9)			
(75) Carlson <i>et al.</i> '11	5.3(1.9)	-12.7(5)	-7.4(2.0)			
(76) Birse and McGovern '12 $$	4.2(1.0)	-12.7(5)	-8.5(1.1)	-24.7(1.6)	-33(2)	
(77) Gorchtein et al.'13 $^{\rm a}$	-2.3(4.6)	-13.0(6)	-15.3(4.6)	-24.5(1.2)	-39.8(4.8)	
(78) Hill and Paz '16					-30(13)	
(79) Tomalak'18	2.3(1.3)		-10.3(1.4)	-18.6(1.6)	-29.0(2.1)	
leading-order $B\chi PT$						
(80) Alarcòn <i>et al.</i> '14			$-9.6^{+1.4}_{-2.9}$			
(81) Lensky et al. '17 $^{\rm b}$	$3.5^{+0.5}_{-1.9}$	-12.1(1.8)	$-8.6^{+1.3}_{-5.2}$			
LATTICE QCD						
(82) Fu et al. '22					-37.4(4.9)	

^aAdjusted values due to a different decomposition into the elastic and polarizability contributions.

^bPartially includes the $\Delta(1232)$ -isobar contribution.

A. Antognini et al., Ann.Rev.Nucl.Part.Sci. (2022)

Leading polarizability contribution to the Lamb shift

Doubly-virtual Compton scattering tensor:

 $\sim (Z\alpha)^5$

$$T^{\mu\nu}(q,p) = \begin{pmatrix} -g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2} \end{pmatrix} T_1(\nu,Q^2) + \frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2} q^{\mu} \right) \left(p^{\nu} - \frac{p \cdot q}{q^2} q^{\nu} \right) T_2(\nu,Q^2)$$
 Spin-independent part
$$+ \frac{i}{m} \epsilon^{\mu\nu\alpha\beta} q_{\alpha} s_{\beta} S_1(\nu,Q^2) + \frac{i}{m^3} \epsilon^{\mu\nu\alpha\beta} q_{\alpha} \left(p \cdot q s_{\beta} - s \cdot q p_{\beta} \right) S_2(\nu,Q^2)$$
 Spin-dependent part

$$\Delta E(nS) = 8\pi\alpha m \phi_n^2 \frac{1}{i} \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \int \frac{d\mathbf{q}}{(2\pi)^3} \frac{(Q^2 - 2\nu^2)T_1(\nu, Q^2) - (Q^2 + \nu^2)T_2(\nu, Q^2)}{Q^4(Q^4 - 4m^2\nu^2)}$$

A. Antognini et al., Ann.Rev.Nucl.Part.Sci. (2022)

 $\sim (Z\alpha)^6 \log Z\alpha$

$$T_1(\nu, Q^2) = T_1(0, Q^2) + \frac{32\pi Z^2 \alpha_{\rm em} M \nu^2}{Q^4} \int_0^1 dx \frac{x F_1(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+} \qquad T_2(\nu, Q^2) = \frac{16\pi Z^2 \alpha_{\rm em} M}{Q^2} \int_0^1 dx \frac{F_2(x, Q^2)}{1 - x^2 (\nu/\nu_{\rm el})^2 - i0^+}$$

$$\nu = p \cdot q, \quad q^2 = -Q^2, \quad p^2 = M^2, \quad \nu_{\rm el} = Q^2/2M$$

 $F_1(x, Q^2)$, $F_2(x, Q^2)$ are the proton structure functions $x = Q^2/2M\nu$ is a Bjorken variable

Accessing the subtraction function $T_1(0,Q^2)$

Sum rule for the subtraction function

1. Introduce the Compton helicity amplitude with two longitudinally polarized photons

$$T_L(\nu, Q^2) = \left(1 + \frac{\nu^2}{Q^2}\right) T_2(\nu, Q^2) - T_1(\nu, Q^2)$$

2. Assume that $T_L(\nu, Q^2)$ obeys <u>unsubtracted</u> dispersion relation

Verification of the sum rule for subtraction function

arXiv:2305.08814 (2023)

$$T_1(0,Q^2) = \frac{2}{\pi}Q^2 \int_{\nu_0}^{\infty} \frac{d\nu}{\nu^2 + Q^2} \left[\sigma_T - \frac{\nu^2}{Q^2}\sigma_L\right](\nu,Q^2).$$

This sum rule is valid in the manifestly covariant baryon χ PT for the $\mathcal{O}(p^3)$ contribution to the proton electric polarizability that comes from the <u>charged</u> pion loops.

Note that at this order we only verify the polarizability contribution(no contributions from the possible non-pole Born terms)

Non-Born part of the subtraction function

arXiv:2305.08814 (2023)

Sum rules for spin-independent polarizabilities

- 1. The low-energy expansion of $T_1(\nu, Q^2)$: <u>Baldin sum rule</u>
 - a powerful tool for data-driven evaluation of $(\alpha_{E1} + \beta_{M1})$
 - widely used in experimental data analysis

$$\alpha_{E1} + \beta_{M1} = \frac{1}{2\pi^2} \int_0^\infty d\nu \frac{\sigma_{\rm T}(\nu)}{\nu^2}$$

Baldin, Nucl. Phys. 18, 310 (1960)

EXAMPLES:

A2 at MAMI, PRL (2022): Baldin sum rule is treated as an "additional data point"

- 2. The low-energy expansion of $T_L(\nu, Q^2)$: Bernabéu-Tarrach sum rule
 - a data-driven determination of the electric polarizability <u>alone</u>

Is it a valid sum rule?

 λ is the anomalous magnetic moment of the nucleon

$$\alpha_{E1} - \frac{\alpha_{\rm em} \varkappa^2}{4M^3} = \frac{1}{2\pi^2} \int_0^\infty d\nu \left[\frac{\sigma_L(\nu, Q^2)}{Q^2} \right]_{Q^2 \to 0}$$

Bernabéu and Tarrach, PLB (1975)

Validation of the Bernabéu-Tarrach sum rule

arXiv:2305.08814 (2023) We have found cases when the Bernabéu-Tarrach sum rule holds exactly!

1) The sum rule is exactly valid in the manifestly covariant baryon χ PT for the $\mathcal{O}(p^3)$ contribution to the proton electric polarizability that comes from the <u>charged</u> pion loops.

The results of [Bernard et al., PRL (1991), NPB (1992)], were reproduced.

2) The sum rule is exactly valid in the naïve parton model

- Callan-Gross relation: $F_2(x, Q^2) = 2xF_1(x, Q^2) \iff \sigma_L = \frac{Q^2}{R^2}\sigma_T$
- $x = Q^2/2M\nu$ is a Bjorken variable

• T_L satisfies unsubtracted dispersion relation exactly:

$$T_{L}(x,Q^{2}) = T_{2}(x,Q^{2}) = \frac{4M\alpha_{\rm em}}{Q^{2}} \int_{0}^{1} \frac{d\zeta}{\zeta^{2}} \frac{x^{2}F_{2}(\zeta,Q^{2})}{\left(\frac{x}{\zeta}\right)^{2} - 1 - i\epsilon}$$

Bernabéu-Tarrach sum rule: (in)validation?

LO QED [Llanta and Tarrach, PLB (1978)]

 the sum rule converges to the wrong answer EFT for pions Llanta and Tarrach, Phys.Lett. (1980) L'vov, Sov. J. Nucl. Phys. (1981)

• $\alpha_{E1} > 0$ for both π^0 and π^{\pm} . It violated some of the EFT predictions

Regge theory arguments [L'vov, NPA (1998)]

 the sum rule is in general invalid since it is divergent without the subtraction.

The Compton scattering off the neutron

 $T_L^{\pi^- n - \text{loops}}(\infty, Q^2) = -\frac{\alpha_{\text{em}}}{6\pi} \frac{g_{\pi N}^2}{M^3} Q^2 + \mathcal{O}(Q^4)$

Our checks in LO covariant baryon χPT arXiv:2305.08814 (2023)

 π^0 contribution to the Compton scattering off the proton

$$T_L^{\pi^0 p - \text{loops}}(\infty, Q^2) = -\frac{\alpha_{\text{em}}}{12\pi} \frac{g_{\pi N}^2}{M^3} Q^2 + \mathcal{O}(Q^4)$$

➡In these cases the dispersion relation for T_L should be modified as follows:

$$T_L(\nu, Q^2) = T_L(\infty, Q^2) + \frac{2}{\pi} \int_{\nu_0}^{\infty} d\nu' \nu'^2 \frac{\sigma_L(\nu', Q^2)}{\nu'^2 - \nu^2}$$

Sugawara and Kanazawa, PhysRev (1961)

How to deal with asymptotic constants?

Our point: the sum rule is valid if convergent.

- The low-energy physics should not depend on the behavior at very high energies (i.e. physics at the Plank scale)
- The asymptotic constants are the artifacts of the low-energy theory, which is not valid at high energies.
- With proper ultraviolet completion, a theory does not produce the asymptotic constants in the sum rules.

In conclusion, we ought to treat the Bernabéu–Tarrach sum rule as the valid sum rule

Saturation of the sum rule integral

arXiv:2305.08814 (2023)

$$I_{\rm BT}(\Lambda) = \frac{1}{2\pi^2} \int_{\nu_0}^{\Lambda} d\nu \left[\frac{\sigma_L(\nu, Q^2)}{Q^2} \right]_{Q^2 \to 0}$$

$$I_{\text{Baldin}}(\Lambda) = \frac{1}{2\pi^2} \int_{\nu_0}^{\Lambda} d\nu \frac{\sigma_T(\nu, Q^2)}{\nu^2}$$

Useful experimental input to σ_L

- □ Low-energy input:
 - Improve the existing parametrizations of resonance region to make them valid at the limit $Q^2 \rightarrow 0$

Moderate and high-energy input:

O Detailed measurement of $F_L(x,Q^2)$ in the region $\nu = 20..20\,000\,{\rm GeV}$ at low Q^2

Summary

- The Bernabéu-Tarrach sum rule seems to be as valid as the Baldin sum rule. The dipole polarizabilities can be determined separately within the data-driven approach
- Consequently, the data-driven evaluation of the subtraction function in the proton polarizability contribution to the Lamb shift of hydrogen-like atoms is also possible
- Several experimental inputs on σ_L are needed in order to test the sum rules. At low energies, the most interesting one is the two-pion photoproduction on a proton.
- The high-quality parametrization of the current data on σ_L with the correct limit $Q^2 \rightarrow 0$ is highly required!

Thank you for attention!