Probing the meson photoproduction mechanism through spin-density matrix elements at GlueX

MENU conference 2023

Farah Afzal for the GlueX Collaboration 19.10.2023

University of Bonn

Light meson spectroscopy

Light meson spectroscopy

- Fundamental question in hadron physics: How do hadrons emerge?
- QCD allows for a much richer meson spectrum beyond $q \bar{q}$ states

- Quark model: $J = L + S, P = (-1)^{L+1}, C = (-1)^{L+S}$
- How to identify exotics in the meson spectrum?
 - Supernumerary states
 - Spin-exotic: $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+} \dots$ (not allowed for $q\bar{q}$ states!)
 - \rightarrow "Smoking gun" for finding evidence for exotic mesons!
- Experimental confirmation of exotic mesons is an essential direct test of QCD!

Light meson spectrum and search for exotic mesons

Lattice QCD

• Lightest spin-exotic state: π_1 with $J^{PC} = 1^{-+}$

Light meson spectrum and search for exotic mesons

6

1.6

mass = 1564 + 24 + 86

width = 492 + 54 + 102

Lattice QCD

- Lightest spin-exotic state: π_1 with $J^{PC} = 1^{-+}$
- Experimentally two hybrid meson candidates: $\pi_1(1400), \pi_1(1600)$.
 - \rightarrow coupled channel analysis requires only a single pole to describe both peaks

Light meson spectrum and search for exotic mesons

1 1

√s (GeV)

1.4 √s (GeV)

mass = 1564 + 24 + 86

width = 492 + 54 + 102

Lattice QCD

- Lightest spin-exotic state: π_1 with $J^{PC} = 1^{-+}$
- Experimentally two hybrid meson candidates: $\pi_1(1400), \pi_1(1600)$ •
 - \rightarrow coupled channel analysis requires only a single pole to describe both peaks
- Important to establish π_1 through several production and decay modes! .

The GlueX experiment at CEBAF (JLab)

- Complementary to πN production mechanism used at COMPASS, E852, VES
- 12 GeV electron beam from CEBAF accelerator
- Coherent Bremsstrahlung on diamond radiator
- Beam intensity: $1-5 \times 10^7 \gamma/s$ in peak
- GlueX Phase-I completed ($\int L =$ 400 pb⁻¹), Phase-II: ongoing, 3-4 \times Phase-I data

Ongoing analyses at GlueX e.g. $\pi_1(1600) \rightarrow \eta^{(')}\pi$

• Many analyses ongoing with recoil **p**: $\eta^{(')}\pi^{0}p$, ρp , $\omega\pi^{0}p$... **\Delta**⁺⁺: $\eta^{(')}\pi^{-}\Delta^{++}$, $\rho^{-}\Delta^{++}$, $\omega\pi^{-}\Delta^{++}$...

Ongoing analyses at GlueX e.g. $\pi_1(1600) \rightarrow \eta^{(')}\pi$

- Many analyses ongoing with recoil
 p: η^(')π⁰p, ρp, ωπ⁰p...
 Δ⁺⁺: η^(')π⁻Δ⁺⁺, ρ⁻Δ⁺⁺, ωπ⁻Δ⁺⁺...
- Different spin-projection states populated in neutral vs. charged meson systems
- Understanding of production mechanism is crucial for search of exotic states!

Probing photoproduction mechanism with $\boldsymbol{\Sigma}$ and SDMEs

Probing photoproduction mechanism with $\boldsymbol{\Sigma}$

- Measurement with linearly polarized photon beam: $\sigma_{pol}(\phi) = \sigma_{unpol} \left[1 - p_{\gamma} \Sigma \cos 2\phi\right]$
- Measurement with two perpendicular settings
- Σ is sensitive to exchanged particle J^{PC} Sign of $\Sigma \rightarrow$ naturality: $\eta = P(-1)^J$
- natural parity exchange $(\eta = +1)$: $J^P = 0^+, 1^-, 2^+...$
- unnatural parity exchange $(\eta = -1)$: $J^{P} = 0^{-}, 1^{+}, 2^{-} \dots$

Probing photoproduction mechanism with $\boldsymbol{\Sigma}$

- Σ is sensitive to exchanged particle J^{PC} Sign of $\Sigma \rightarrow$ naturality: $\eta = P(-1)^J$
- natural parity exchange $(\eta = +1)$: $J^P = 0^+, 1^-, 2^+...$
- unnatural parity exchange $(\eta = -1)$: $J^P = 0^-, 1^+, 2^- \dots$

neutral exchange:

- $\pi^0 p$: natural parity (ρ, a_2) exchange dominates
- Similar observations ($\Sigma \approx 1$) for ηp , $\eta' p$ and $K^+ \Sigma^0$ GlueX: PRC 100, 052201 (2019) GlueX: PRC 101, 065206 (2020)

charge exchange:

- Low -t: unnatural exchange $(\Sigma < 0 \rightarrow \pi, b_1)$ preferred
- High -t: natural exchange ($\Sigma > 0 \rightarrow
 ho, a_2$) preferred

Analyzing decay angles of $\Delta^{++} o p\pi^+$ gives access to Spin-density matrix elements!

Study of exchange mechanism with SDMEs in $\gamma p \to \pi^- \Delta^{++} \to \pi^- \pi^+ p$

- Spin-density matrix elements (SDMEs) ρ_{ii}^k describe full angular distribution of Δ^{++} production and decay
- Linearly polarized beam provides access to nine linearly independent SDMEs

$$W(\theta,\varphi,\Phi) = \frac{3}{4\pi} (\rho_{33}^0 \sin^2 \theta + \rho_{11}^0 \left(\frac{1}{3} + \cos^2 \theta\right) - \frac{2}{\sqrt{3}} Re[\rho_{31}^0 \cos \varphi \sin 2\theta + \rho_{3-1}^0 \cos 2\varphi \sin^2 \theta] - P_\gamma \cos 2\Phi \left[\rho_{33}^1 \sin^2 \theta + \rho_{11}^1 \left(\frac{1}{3} + \cos^2 \theta\right) - \frac{2}{\sqrt{3}} Re[\rho_{31}^1 \cos \varphi \sin 2\theta + \rho_{3-1}^1 \cos 2\varphi \sin^2 \theta] \right] - P_\gamma \sin 2\Phi \frac{2}{\sqrt{3}} Im[\rho_{31}^2 \sin \varphi \sin 2\theta + \rho_{3-1}^2 \sin 2\varphi \sin^2 \theta])$$

UNIVERSITÄT BONN

Spin-Density Matrix Elements in Δ^{++} production

GlueX data (not full data set, only statistical uncertainties)
SLAC: J. Ballam et al., Phys. Rev. D 7 (1973), 3150
JPAC: PLB 779, 77 (2018)

Spin-Density Matrix Elements in Δ^{++} production

GlueX data (not full data set, only statistical uncertainties)
SLAC: J. Ballam et al., Phys. Rev. D 7 (1973), 3150
JPAC: PLB 779, 77 (2018)

Integrating over Δ^{++} decay angles leads to systematic deviations! Important for including Δ^{++} in amplitude analyses!

Separation of natural and unnatural exchanges using combinations of SDMEs

Spin-Density Matrix Elements in $\rho(770)$ production

Spin-Density Matrix Elements in $\rho(770)$ production

GlueX: arXiv:2305.09047 (2023), Accepted for publication in Phys. Rev. C

- High-precision data, uncertainties dominated by systematics
- s-channel helicity conservation: $\rho_{1-1}^1 = 0.5$, $Im\rho_{1-1}^2 = -0.5$ (valid at very low -t)
- Good agreement to JPAC: Regge model at low -t [JPAC: PRD 97 094003 (2018)]
- Natural-parity exchange (\mathbb{P}) dominates

Spin-Density Matrix Elements in $\rho(770)$ production

GlueX: arXiv:2305.09047 (2023), Accepted for publication in Phys. Rev. C

- High-precision data, uncertainties dominated by systematics
- s-channel helicity conservation: $\rho_{1-1}^1=0.5$, $Im\rho_{1-1}^2=-0.5$ (valid at very low -t)
- Good agreement to JPAC: Regge model at low -t [JPAC: PRD 97 094003 (2018)]
- Natural-parity exchange (P) dominates

Summary

- Photoproduction mechanism can be studied with polarization observables: Beam asymmetry Σ and Spin-density matrix elements (SDMEs)
 Σ:
 - neutral exchange e.g. $\pi^0 p$: natural parity exchange dominates ($\Sigma pprox 1$)
 - charge exchange e.g. $\pi^- \Delta^{++}$: unnatural parity exchange dominant at low -t

Important to not integrate over Δ^{++} decay angles

SDMEs:

- High-precision GlueX data
- $\pi^- \Delta^{++}$: unnatural parity exchange not well understood
- *ρp*: SCHC + NPE fulfilled at very low −t Natural parity exchange (ℙ) dominates
- More ongoing analyses: pω, pφ, K⁺Λ(1520) (GlueX: Phys.Rev.C 105 035201 (2022))
- Σ, SDMEs provide important input for modeling exchange mechanism and search for exotic states
 - Many exciting amplitude analyses ongoing:
 - **p**: $\eta^{(')}\pi^0 p$, ρp , $\omega \pi^0 p$...
 - Δ^{++} : $\eta^{(')}\pi^-\Delta^{++}$, $\rho^-\Delta^{++}$, $\omega\pi^-\Delta^{++}$...
- GlueX gratefully acknowledges the support of several funding agencies and computing facilities: