Contents O	Motivation OO	Model 00000000	Diquark model O	Results 000	Decay widths 0000	Summary 00

Istituto Nazionale di Fisica Nucleare

A. Giachino, R. Ramirez-Morales, and E. Santopinto

Istituto Nazionale di Fisica Nucleare Sezione di Genova

October 17 2023

Hugo Garcia-Tecocoatzi	Istituto Nazionale di Fisica Nucleare Sezione di Genova
Hadron spectroscopy-MENU 2023	1/22

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
•	OO	00000000	O	000	0000	00

Contents

Motivation

- Heavy single baryon masses
- Three-quark and quark-diquark model
- Decay widths
- Conclusions
- References
 - Charm sector: H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales, and E. Santopinto, PRD107 034031 (2023)
 - Bottom sector: H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera e-Print: 2307.00505 [hep-ph] (2023)

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	●O	00000000	O	000	0000	00

New hadrons discovered at LHC

Hugo Garcia-Tecocoatzi

Hadron spectroscopy-MENU 2023

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	O●	00000000	O	000	0000	00

Motivation

Physics motivation:

- The internal configuration of baryons is still unknown.
- Number of states depend on the model, i.e. the combination of the quantum numbers.
- The three-quark model and the effective degrees of freedom
- The quark-diquark model

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	●0000000	O	000	0000	OO

Light baryons in the SU(3) flavor symmetry

"Baryons can be constructed from quarks by using the combination of (qqq), $(qqqq\bar{q})$...", M. Gell-Mann, "A schematic model of baryons and mesons", Phys. Lett. 8 (1964) 214

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	O●OOOOOO	O	000	0000	00

Heavy baryon with charm quarks

Wave function $\Psi = \sum \omega \psi \phi \chi$ Three particles of spin 1/2 $1/2 \times 1/2 \times 1/2 = 1/2 + 1/2 + 3/2$

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	00●00000	O	000	0000	00

Heavy baryon with a single charm quark

Wave function
$$\Psi = \sum \omega \psi \phi \chi$$

Three particles of spin 1/2
 $1/2 \times 1/2 \times 1/2 = 1/2 + 1/2 + 3/2$

$$\begin{split} \Xi_c^0 &:= \frac{1}{\sqrt{2}} (|dsc\rangle - |sdc\rangle) \\ \Xi_c^+ &:= \frac{1}{\sqrt{2}} (|usc\rangle - |suc\rangle) \\ \Lambda_c^+ &:= \frac{1}{\sqrt{2}} (|udc\rangle - |duc\rangle) \end{split}$$

$$\begin{split} & \Omega_c := |ssc\rangle \\ & \Xi_c^{*0} := \frac{1}{\sqrt{2}}(|dsc\rangle + |sdc\rangle) \\ & \Xi_c^{+1} := \frac{1}{\sqrt{2}}(|usc\rangle + |suc\rangle) \\ & \Sigma_c^{++} := |uuc\rangle \\ & \Sigma_c^0 := |ddc\rangle \\ & \Sigma_c^+ := \frac{1}{\sqrt{2}}(|udc\rangle + |duc\rangle) \end{split}$$

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summar
O	OO	000●0000	O	000	0000	00

The Ω_c states observed by LHCb, PRL 118 (2017) 18, 182001

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	0000●000	O	000	0000	00

Phenomenological model I

The masses of the heavy single baryon states are calculated as the eigenvalues of the Hamiltonian , E. Santopinto, A. Giachino, J. Ferretti, H. Garcia-Tecocoatzi, M.A. Bedolla, R. Bijker, E. Ortiz-Pacheco, EPJC 79(12), 1012 (2019), which is modeled as:

$$H = H_{\text{h.o.}} + P_s \,\mathbf{S}^2 + P_{sl} \,\mathbf{S} \cdot \mathbf{L} + P_l \,\mathbf{I}^2 + P_f \,\mathbf{C_2}(\text{SU}(3)_f), \qquad (1)$$

 ${\sf S}, {\sf L}, {\it I}$ and ${\sf C}_2({\sf SU}(3)_{\rm f})$ are the spin, orbital momentum, isospin and Casimir operators, respectively.

- We describe the observed excited states of Ω_c , Σ_c , Λ_c , Ξ_c , and Ξ'_c at the same time, PRD107 034031 (2023)
- We recently study the Ω_b , Σ_b , Λ_b , Ξ_b , and Ξ'_b states
- We work within the quark-model framework H. Garcia-Tecocoatzi, A. Giachino, A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera e-Print: 2307.00505 [hep-ph] (2023)

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	00000●00	O	000	0000	00

Predictions of Ω_b excited states

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	OO	000000●0	O	000	0000	00

The Hamiltonian of three quark model

• The Hamiltonian of the harmonic oscillator is given:

$$H_{\text{h.o.}} = \sum_{i=1}^{3} m_i + \frac{\mathbf{p}_{\rho}^2}{2m_{\rho}} + \frac{\mathbf{p}_{\lambda}^2}{2m_{\lambda}} + \frac{1}{2}m_{\rho}\omega_{\rho}^2\rho^2 + \frac{1}{2}m_{\lambda}\omega_{\lambda}^2\lambda^2$$
(2)

- It is written in terms of Jacobi coordinates, ρ and λ , and their conjugated momenta, \mathbf{p}_{ρ} and \mathbf{p}_{λ} , whose eigenvalues are $\sum_{i=1}^{3} m_i + \omega_{\rho} n_{\rho} + \omega_{\lambda} n_{\lambda}$,
- Will we observe all the predicted states?

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	0000000●	O	000	0000	OO

Mass splitting due to ρ and λ excitations

HO Frecuency

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	OO	00000000	•	000	0000	00

Diquark description

• When $\mathbf{p}_{\rho} = 0$, the three-quark Hamiltonian becomes

$$H_{\rm h.o.} = m_D + m_Q + \frac{\mathbf{p}_{\lambda}^2}{2m_{\lambda}} + \frac{1}{2}m_{\lambda}\omega_{\lambda}^2\lambda^2. \tag{3}$$

The quark-diquark Hamiltonian depends on the relative coordinate r and the momentum p_r and is

$$H_D = m_D + m_Q + \frac{p_r^2}{2\mu} + \frac{1}{2}\mu\omega_\lambda^2 \mathbf{r}^2, \qquad (4)$$

• We can find a match as follows: $\frac{p_{\lambda}^2}{2m_{\lambda}} \rightarrow \frac{p_r^2}{2\mu}$ and $\frac{1}{2}m_{\lambda}\omega_{\lambda}^2\lambda^2 \rightarrow \frac{1}{2}\mu\omega_{\lambda}^2\mathbf{r}^2$, where $\mu = \frac{m_Dm_Q}{m_D+m_Q}$ is the reduced mass, $\mathbf{p}_r = \frac{m_Q\mathbf{p}_D - m_D\mathbf{p}_Q}{m_D+m_Q}$

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	OO	00000000	O	●00	0000	00

Results for Ω_c , PRD107 034031 (2023)

Three-quark model vs quark-diquark model

H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales, and E. Santopinto, PRD107 034031 (2023)

New Ω_c states observed by LHCb, PRL131 131902(2023)

New state $\Omega_c(3327)$ with mass=3327.1 \pm 1.2 MeV and Γ = 20 \pm 5 MeV

H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales, and E. Santopinto, PRD107 034031 (2023)

Hugo Garcia-Tecocoatzi	
Hadron spectroscopy-MENU	J 2

023

Istituto Nazionale di Fisica Nucleare Sezione di Genova

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
	00	00000000		000	0000	00

Results for Ξ_c and Ξ_c , PRD107 034031 (2023)

$\Xi_c'(snc)$ $\mathcal{F} = 6_{\mathbf{f}}$	$^{2S+1}L_J$	Three-quark predicted mass (MeV)	Quark-diquark predicted mass (MeV)	Experimental mass (MeV)	Predicted Γ_{tot} (MeV)	Experimental Γ (MeV)
$ \begin{split} &N=0 \\ & l_{\lambda}=0, l_{\rho}=0, k_{\lambda}=0, k_{\rho}=0 \rangle \\ & l_{\lambda}=0, l_{\rho}=0, k_{\lambda}=0, k_{\rho}=0 \rangle \end{split} $	${}^{2}S_{1/2}$ ${}^{4}S_{3/2}$	$2571^{+8}_{-8}\\2640^{+7}_{-7}$	$2577^{+10}_{-10}\\2650^{+9}_{-9}$	$\begin{array}{c} 2578.0 \pm 0.9 \ (*) \\ 2645.9 \pm 0.71 \ (*) \end{array}$	$0 \\ 0.4^{+0.2}_{-0.2}$	† 2.25 ± 0.41 (*)
$\begin{split} N &= 1 \\ l_{2} = 1, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ l_{2} = 1, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ l_{2} = 1, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ l_{\lambda} = 1, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ l_{z} = 1, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ l_{z} = 0, l_{\rho} = 1, k_{\lambda} = 0, k_{\rho} = 0 \rangle \\ l_{z} = 0, l_{\rho} = 1, k_{\lambda} = 0, k_{\rho} = 0 \rangle \end{split}$	${}^{2}P_{1/2}$ ${}^{4}P_{1/2}$ ${}^{2}P_{3/2}$ ${}^{4}P_{3/2}$ ${}^{4}P_{5/2}$ ${}^{2}P_{1/2}$ ${}^{2}P_{3/2}$	$\begin{array}{c} 2893^{+9}_{-9} \\ 2935^{+14}_{-15} \\ 2920^{+9}_{-9} \\ 2962^{+9}_{-9} \\ 3007^{+12}_{-12} \\ 3040^{+10}_{-9} \\ 3067^{+10}_{-10} \end{array}$	$2893^{+11}_{-11}\\2941^{+14}_{-14}\\2919^{+13}_{-13}\\2966^{+10}_{-10}\\3009^{+14}_{-14}\\\dagger\dagger\\\dagger\dagger$		$7^{+4}_{-3} \\ 5^{+2}_{-3} \\ 28^{+14}_{-14} \\ 19^{+9}_{-9} \\ 43^{+21}_{-21} \\ 157^{+80}_{-80} \\ 100^{+47}_{-48}$	† 7.1 ± 2.0 15 ± 9 14.1 ± 1.6 (*) † 7.8 ± 1.9 (*) 4.6 ± 3.3 (*)
$\Xi_c(snc)$ $\bar{3}_f$	2S+1LJ	Three-quark predicted mass (MeV)	Quark-diquark predicted mass (MeV)	Experimental mass (MeV)	Predicted Γ _{tot} (MeV)	Experimental Γ (MeV)
	² S _{1/2}	2466^{+10}_{-10}	2473^{+10}_{-10}	2469.42 ± 1.77 (*)	0	≈0
$\begin{array}{l} N=1\\ l_{a}=1, l_{p}=0, k_{a}=0, k_{p}=0)\\ l_{a}=1, l_{p}=0, k_{1}=0, k_{p}=0)\\ l_{a}=0, l_{p}=1, k_{a}=0, k_{p}=0)\end{array}$	$\begin{array}{c} {}^2P_{1/2} \\ {}^2P_{3/2} \\ {}^2P_{1/2} \\ {}^4P_{1/2} \\ {}^2P_{3/2} \\ {}^4P_{3/2} \\ {}^4P_{5/2} \end{array}$	$\begin{array}{c} 2788^{+10}_{-10}\\ 2815^{+10}_{-10}\\ 2935^{+12}_{-12}\\ 2977^{+20}_{-20}\\ 2962^{-12}_{-12}\\ 3004^{+17}_{-17}\\ 3049^{+18}_{-19} \end{array}$	2789+9 2814+9 11 11 11 11 11 12 12 12 12 12 12 12 12	$\begin{array}{c} 2793.3 \pm 0.28 \ (*) \\ 2818.49 \pm 2.07 \ (*) \\ \dagger \\ 2968.6 \pm 3.3 \\ \dagger \\ \dagger \\ \dagger \end{array}$	$\begin{array}{c} 3^{+2}_{-2} \\ 5^{+2}_{-2} \\ 17^{+9}_{-8} \\ 13^{+6}_{-6} \\ 89^{+45}_{-45} \\ 56^{+29}_{-31} \\ 122^{+59}_{-60} \end{array}$	$\begin{array}{c} 9.5\pm2.0\;(^{*})\\ 2.48\pm0.5\;(^{*})\\ \stackrel{\dagger}{}\\ 20\pm3.5\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \stackrel{\dagger}{}\\ \end{array}$
$N = 2$ $ l_{\lambda} = 2, l_{\rho} = 0, k_{\lambda} = 0, k_{\rho} = 0\rangle$ coatzi	${}^{2}D_{3/2}$	3118^{+14}_{-14}	3113 ⁺¹⁴	3122.9 ± 1.23	50 ⁺²⁴ to Nazionale	4±4 di Fisica Nuclea

Hadron spectroscopy-MENU 2023

Hugo Garcia-Tecoo

re Sezione di Genova

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	00000000	O	000	●000	OO

Strong decay widths

We can use the decay properties to identify baryons

- Open-flavor strong decays
- Study of the decay channels
- At the moment, there is no decay model from first principles, i.e., a QCD decay model.
- There are many models inspired by QCD, such as the flux tube, the elementary emission model, effective Lagrangians, or ³P₀, none of them, of course, correspond to QCD!

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	00000000	O	000	○●○○	00

$^{3}P_{0}$ decay model

- The qq̄ pair is created with the vacuum quantum numbers: 0⁺⁺
- Due to parity conservation, the pair is created in P-wave
- The spin should be S = 1 to couple to J = 0
- It has only one coupling constant

Contents O	Motivation OO	Model 00000000	Diquark model O	Results 000	Decay widths 00●0	Summary OO
Decav	widths					

- The decay widths are calculated with the predicted masses and their predicted quantum numbers
- The ${}^{3}P_{0}$ model is used for calculating the strong-decay widths of a charm baryon A into a charm baryon B plus a meson C, or a charm baryon A into a light baryon B plus a charm meson C, $A \rightarrow BC$

$$\Gamma = \frac{2\pi\gamma_0^2}{2J_A + 1} \, \Phi_{A \to BC}(q_0) \sum_{M_{J_A}, M_{J_B}} |\mathcal{M}^{M_{J_A}, M_{J_B}}|^2 \tag{5}$$

The error propagation was obtained using the bootstrap method.

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	00000000	O	000	000●	00

Results, partial-decay widths PRD107 034031 (2023)

$\Omega_c(ssc) \ \mathcal{F} = 6_{\mathrm{f}}$	$\Xi_c K$	$\Xi_c' K$	$\Xi_c^* K$	$\Xi_c K^*$	$\Xi_c' K^*$	$\Xi_c^* K^*$	$\Omega_c \eta$	$\Omega_c^* \eta$	$\Omega_c \phi$	$\Omega_c^* \phi$	$\Omega_c \eta'$	$\Omega_c^*\eta'$	$\Xi_8 D$	$\Xi_{10}D$	Predicted Γ_{tot}
$\Omega_c(2709)^2 S_{1/2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Omega_c(2778)^4S_{3/2}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\Omega_c(3008)^2 P_{1/2}$	4.1	0	0	0	0	0	0	0	0	0	0	0	0	0	4.1
$\Omega_c(3050)^4 P_{1/2}$	7.5	0.1	0	0	0	0	0	0	0	0	0	0	0	0	7.6
$\Omega_c(3035)^2 P_{3/2}$	26.3	0	0	0	0	0	0	0	0	0	0	0	0	0	26.3
$\Omega_c(3077)^4 P_{3/2}$	6.3	0.4	0	0	0	0	0	0	0	0	0	0	0	0	6.7
$\Omega_c(3122)^4 P_{5/2}$	40.9	8.9	0.3	0	0	0	0	0	0	0	0	0	0	0	50.1
$\Omega_c(3129)^2 P_{1/2}$	_	8.9	5.5	0	0	0	0	0	0	0	0	0	0	0	14.4
$\Omega_c(3156)^2 P_{3/2}$	_	61.1	10.5	0	0	0	0	0	0	0	0	0	0	0	71.6
$\Omega_c(3315)^2 D_{3/2}$	1.9	1.8	2.3	0	0	0	0.3	_	0	0	0	0	4.3	0	10.6
$\Omega_c(3360)^2 D_{5/2}$	5.4	5.1	0.5	0	0	0	1.2	_	0	0	0	0	12.2	0	24.4
$\Omega_c(3330)^4 D_{1/2}$	0.2	0.2	3.3	0	0	0	0.1	0.1	0	0	0	0	12.3	0	16.2
$\Omega_c(3357)^4 D_{3/2}$	2.0	0.5	5.2	0.2	0	0	0.2	0.6	0	0	0	0	21.7	0	30.4
$\Omega_c(3402)^4 D_{5/2}$	5.0	1.2	5.0	1.6	0	0	0.3	1.2	0	0	0	0	46.9	1.1	62.3
$\Omega_c(3466)^4 D_{7/2}$	7.8	2.0	5.0	2.6	0	0	0.8	0.9	0	0	0	0	83.2	20.9	123.2
$\Omega_c(3342)^2S_{1/2}$	0.2	0.3	0.1	0	0	0	0.1	_	0	0	0	0	0.5	0	1.2
$\Omega_c(3411)^4S_{3/2}$	0.2	0.1	0.4	0.2	0	0	_	0.1	0	0	0	0	2.1	0.2	3.3
$\Omega_c(3585)^2S_{1/2}$	0.3	1.0	0.7	3.0	11.6	0.1	1.1	0.5	0	0	0	0	_	_	18.3
$\Omega_c(3654)^4S_{3/2}$	0.1	0.1	1.2	2.8	1.0	17.2	0.2	1.4	0	0	_	0	_	_	24.0
$\Omega_c(3437)^2 D_{3/2}$	_	6.5	107.0	53.5	0	0	4.0	27.0	0	0	0	0	_	_	198.0

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	00	0000000	O	000	0000	●O

Summary

- We calculated the mass spectra of the heavy single baryons (ρ and λ mode excitations up to the D-wave.
- We calculated the strong-decay widths of ground- and excited-heavy baryon into the single heavy baryon-(vector/pseudoscalar) meson pairs and the (octet/ decuplet) baryon-(pseudoscalar/vector) heavy meson pairs.
- The uncertainties are treated rigorously and propagated in full to the parameters of the model using a Monte Carlo bootstrap method.
- The identification of the states is a complex task
- The future experiments will help us to understand the structure of the hadrons
- The ${}^{3}P_{0}$ can describe the trend of the data with only one parameter.
- Single bottom baryons H. Garcia-Tecocoatzi, A. Giachino, , A. Ramirez-Morales, A. Rivero-Acosta, E. Santopinto, and C. Vaquera e-Print: 2307.00505 [hep-ph] (2023)

Contents	Motivation	Model	Diquark model	Results	Decay widths	Summary
O	OO	00000000	O	000	0000	O●

Thanks for listening!