

The 16th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon

Light Hadron Spectroscopy at BESIII

Tong CHEN Institute of High Energy Physics, CAS (on behalf of the BESIII Collaboration)

P国科学院為能物昭湖完備 Institute of High Energy Physics Chinese Academy of Sciences

QCD allows the existence of exotic hadrons

QCD allows also different combinations of quarks and gluons: EXOTIC hadrons

A lot of exotic states observed experimentally, but their nature is still far from being understood

World's Largest $\tau - charm$ Data Sets in e^+e^- Annihilation

BESIII:

- $rac{1}{5} \sqrt{s} = 2.0 4.9 \text{ GeV}$
- ▶ Peak luminosity : $1.05 \times 10^{33} cm^{-2} s^{-1}$ at $\psi(3770)$
- 2009 today: BESIII physics runs

 $\Gamma(J/\psi \to \gamma M) \sim O(\alpha \alpha_s^4)$

Ideal place for light hadron physics

Clean high statistics data sample

• Well defined initial and final states

 $\Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4)$

Exotic Gluonic Hadrons

- difficult to experimentally identify glueballs and hybrid mesons unambiguously
 - difficulty in differentiating them from conventional $q \overline{q}$ mesons
 - mixing with $q\bar{q}$ complicates clear identification
- LQCD spectrum of glueballs and hybrids

➤ glueballs

- low-lying glueballs with ordinary J^{PC} (0⁺⁺, 2⁺⁺, 0⁻⁺)
- mass of ground state $G_{0^+} \sim 1.5 1.7 \text{ GeV}/c^2$
- $f_0(1500), f_0(1710)$: mixed glueball- $q\bar{q}$ candidates

➢ hybrids

- low-lying hybrids can have **exotic quantum numbers**
- lightest spin-exotic: 1^{-+} around 2 GeV/ c^2
- only isovector candidates observed yet: $\pi_1(1400)$, $\pi_1(1600)$, $\pi_1(2015)$
 - $\pi_1(1400)$, $\pi_1(1600)$ can be explained as one pole
- search for isoscalar 1^{-+} to establish the hybrid nonet
 - can decay to $\eta \eta'$ in P-wave

Observation of An Exotic Isoscalar State $\eta_1(1855) (1^{-+}) \text{ in } J/\psi \rightarrow \gamma \eta \eta'$

• Partial wave analysis of $J/\psi \rightarrow \gamma \eta \eta'$

Quasi two-body decay amplitudes in the sequential decay processes $J/\psi \rightarrow \gamma X, X \rightarrow \eta \eta'$ and $J/\psi \rightarrow \eta X, X \rightarrow \gamma \eta'$ and $J/\psi \rightarrow \eta' X, X \rightarrow \gamma \eta$ are constructed using the **covariant tensor formalism**

• $J^{PC} = 0^{++}, 2^{++}, 4^{++} (\eta \eta'), J^{PC} = 1^{+-}, 1^{--} (\gamma \eta^{(\prime)})$ are considered

 $J^{PC} = 1^{-+}$ in $\eta \eta'$ is also considered

• An isoscalar resonance with exotic $J^{PC} = 1^{-+}$, $\eta_1(1855)$, has been observed with significance larger than 19σ

$$\begin{split} M &= 1855 \pm 9^{+6}_{-1}\,\mathrm{MeV}/c^2; \Gamma = (188 \pm 18^{+3}_{-8}\,\mathrm{MeV}) \\ \mathcal{B}(J\psi \to \gamma\eta_1(1855) \to \gamma\eta\eta') = (2.70 \pm 0.41^{+0.16}_{-0.35}) \times 10^{-6} \end{split}$$

- consistent with LQCD calculation for the 1⁻⁺ hybrid (1.7~2.1 GeV/c²)
 Eur. Phys. J. A 16, 537 (2003)
- ≻Hybrid? Molecule? Tetraquark? ... needs further study

10 billion of *J/ψ* data PRL 129, 192002 (2022) PRL 130, 159901 (2023) PRD 106,072012 (2022) PRD 107,079901 (2023)

 \triangleright cos θ_{η} distributions in different M($\eta\eta'$) regions

✓ Clear asymmetry in the region [1.7,2.0]GeV/ c^2 , largely due to η_1 (1855) signal

Tong Chen

Angular distribution expressed as an expansion in terms of Legendre polynomials (model-independently)
 N_k

$$\langle Y_l^0 \rangle \equiv \sum_{i=1}^{\kappa} W_i Y_l^0(\cos\theta_{\eta}^i)$$

• Related to the spin-0(S), spin-1(P), spin-2(D) amplitudes in $\eta\eta'$ by :

$$\sqrt{4\pi} \langle Y_0^0 \rangle = S_0^2 + P_0^2 + P_1^2 + D_0^2 + D_1^2 + D_2^2,$$

$$\sqrt{4\pi}\langle Y_1^0\rangle = 2S_0P_0\,\cos\,\phi_{P_0} + \frac{2}{\sqrt{5}}(2P_0D_0\,\cos(\phi_{P_0}-\phi_{D_0}) + \sqrt{3}P_1D_1\,\cos(\phi_{P_1}-\phi_{D_1})),$$

$$\sqrt{4\pi}\langle Y_2^0 \rangle = \frac{1}{7\sqrt{5}} (14P_0^2 - 7P_1^2 + 10D_0^2 + 5D_1^2 - 10D_2^2) + 2S_0D_0 \cos \phi_{D_0}$$

$$\begin{split} \sqrt{4\pi} \langle Y_3^0 \rangle &= \frac{6}{\sqrt{35}} (\sqrt{3}P_0 D_0 \, \cos(\phi_{P_0} - \phi_{D_0}) - P_1 D_1 \, \cos(\phi_{P_1} - \phi_{D_1})), \\ &\sqrt{4\pi} \langle Y_4^0 \rangle = \frac{1}{7} (6D_0^2 - 4D_1^2 + D_2^2). \end{split}$$

- $< Y_1^0 >$ Indicates significant P-wave needed
- In $\eta\eta'$ system, only $\eta_1 (1^{-+})$ contribute P-wave
- Other checks...

Data - Sideband
 PWA fit projection (baseline fit)
 PWA fit projection (exclude η₁)

Discussions about $f_0(1500) \& f_0(1710)$

➢ Components in the PWA fit

Decay mode	Resonance	$M (MeV/c^2)$	Γ (MeV)	B.F. (×10 ⁻⁵)	Sig.
	$f_0(1500)$	1506	112	$1.81 \pm 0.11^{+0.19}_{-0.13}$	≫30σ
	<i>f</i> ₀ (1810)	1795	95	$0.11{\pm}0.01^{+0.04}_{-0.03}$	11.1σ
	$f_0(2020)$	$2010\pm6^{+6}_{-4}$	$203 \pm 9^{+13}_{-11}$	$2.28{\pm}0.12^{+0.29}_{-0.20}$	24.6σ
$J/\psi ightarrow \gamma X ightarrow \gamma \eta \eta'$	$f_0(2330)$	$2312 \pm 7^{+7}_{-3}$	$65 \pm 10^{+3}_{-12}$	$0.10{\pm}0.02^{+0.01}_{-0.02}$	13.2 <i>σ</i>
	$\eta_1(1855)$	$1855 \pm 9^{+6}_{-1}$	$188 \pm 18^{+3}_{-8}$	$0.27{\pm}0.04^{+0.02}_{-0.04}$	21.4σ
	$f_2(1565)$	1542	122	$0.32{\pm}0.05^{+0.12}_{-0.02}$	8.7 <i>o</i>
	$f_2(2010)$	$2062\pm6^{+10}_{-7}$	$165 \pm 17^{+10}_{-5}$	$0.71{\pm}0.06^{+0.10}_{-0.06}$	13.4σ
	$f_4(2050)$	2018	237	$0.06{\pm}0.01^{+0.03}_{-0.01}$	4.6σ
	0 ⁺⁺ PHSP	-	-	$1.44 \pm 0.15^{+0.10}_{-0.20}$	15.7 <i>σ</i>
$J/\psi ightarrow \eta' X ightarrow \gamma \eta \eta'$	$h_1(1415)$	1416	90	$0.08{\pm}0.01^{+0.01}_{-0.02}$	10.2σ
	<i>h</i> ₁ (1595)	1584	384	$0.16 \pm 0.02^{+0.03}_{-0.01}$	9.9σ

> The decay of scalar glueball to the $\eta\eta'$ final state are suppressed due to gauge duality

 $\frac{\mathrm{Br}(\mathrm{G}\to\eta\eta')}{\mathrm{Br}(\mathrm{G}\to\pi\pi)} < 0.04$

• Significant $f_0(1500)$

 $\frac{\text{Br}(f_0(1500) \to \eta \eta')}{\text{Br}(f_0(1500) \to \pi \pi)} = (1.66^{+0.42}_{-0.40}) \times 10^{-1}$

• Absence of $f_0(1710)$

 $\frac{\text{Br}(f_0(1710) \to \eta \eta')}{\text{Br}(f_0(1710) \to \pi \pi)} < 2.87 \times 10^{-3} @ 90\% \text{ C.L}$

Supports to the hypothesis that $f_0(1710)$ overlaps with the ground state scalar (0^{++}) glueball

Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta' \eta'$

• $J^{PC} = 0^{++}, 2^{++}, 4^{++} \text{ in } \eta' \eta', J^{PC} = 1^{+-}, 1^{--} \text{ in } \gamma \eta'$

Resonance	$M(MeV/c^2)$	$\Gamma(MeV)$	B.F.	Significance (σ)
$f_0(2020)$	$1982 \pm 3^{+54}_{-0}$	$436 \pm 4^{+46}_{-49}$	$(2.63 \pm 0.06^{+0.31}_{-0.46}) \times 10^{-4}$	≫25
$f_0(2330)$	$2312 \pm 2^{+10}_{-0}$	$134 \pm 5^{+30}_{-9}$	$(6.09 \pm 0.64^{+4.00}_{-1.68}) \times 10^{-6}$	16.3
$f_0(2480)$	$2470 \pm 4^{+4}_{-6}$	$75\pm9^{+11}_{-8}$	$(8.18 \pm 1.77^{+3.73}_{-2.23}) \times 10^{-7}$	5.2
$h_1(1415)$	$1384\pm6^{+9}_{-0}$	$66 \pm 10^{+12}_{-10}$	$(4.69 \pm 0.80^{+0.74}_{-1.82}) \times 10^{-7}$	5.3
$f_2(2340)$	$2346 \pm 8^{+22}_{-6}$	$332 \pm 14^{+26}_{-12}$	$(8.67 \pm 0.70^{+0.61}_{-1.67}) \times 10^{-6}$	16.1
0 ⁺⁺ PHSP			$(1.17 \pm 0.23^{+4.09}_{-0.70}) \times 10^{-5}$	15.7

- F₀(2020), f₀(2330), f₂(2340) observed in η'η' decay mode for the first time
- \succ $f_0(2020)$:
 - large production rate in radiative J/ψ decay suggests a large overlap with scalar glueball
 - but its mass is lower than the mass of the first excitation of scalar glueball from the LQCD prediction
- ≻ $f_0(2048)$: new 0⁺⁺ state observed

PRD 105, 072002(2022)

Partial Wave Analysis of $J/\psi \rightarrow \gamma K_s K_s \pi^0$

- → Prominent structure around 1.45 GeV/ c^2 -> study the $\eta(1405)/(1475)$
- Mass independent PWA
 - The pseudoscalar component is the dominant contribution
 - $(K_S^0 K_S^0)_{S-wave} \pi^0$ and $(K_S^0 \pi^0)_{P-wave} K_S^0$ partial waves are of comparable magnitude, but with different lineshape and peaks
 - Non-trivial 0⁻⁺ line shape
- Mass Dependent PWA
 - two resonances parameterization needed

Resonance	$M({ m MeV}/c^2)$	$\Gamma({ m MeV})$	Decay Mode	B.F.	Sig.(σ)
$\eta(1405)$ 1391.7 ± 0.7 ^{+11.3} _{-0.3}	$1201.7 \pm 0.7^{+11.3}$	$60.8 \pm 1.2^{+5.5}$	$J/\psi \to \gamma \eta (1405) \to \gamma K^0_S (K^0_S \pi^0)_{\text{P-wave}} \to \gamma K^0_S K^0_S \pi^0$	$(5.84 \pm 0.12^{+2.03}_{-3.36}) \times 10^{-5}$	$\gg 35$
	$00.0 \pm 1.2_{-12.0}$	$J/\psi \to \gamma \eta (1405) \to \gamma (K_S^0 K_S^0)_{\text{S-wave}} \pi^0 \to \gamma K_S^0 K_S^0 \pi^0$	$(2.88\pm 0.04^{+1.64}_{-0.38})\times 10^{-5}$	18.4	
$\eta(1475)$ 1507.6 ± 1.6 ^{+15.5} _{-32.2}	$115.8 \pm 2.4^{+14.8}_{-10.9}$	$J/\psi \to \gamma \eta (1475) \to \gamma K^0_S (K^0_S \pi^0)_{\text{P-wave}} \to \gamma K^0_S K^0_S \pi^0$	$(6.58 \pm 0.12^{+3.98}_{-2.82}) \times 10^{-5}$	$\gg 35$	
		$J/\psi \to \gamma \eta (1475) \to \gamma (K_S^0 K_S^0)_{\text{S-wave}} \pi^0 \to \gamma K_S^0 K_S^0 \pi^0$	$(3.99\pm0.09^{+0.41}_{-0.66})\times10^{-5}$	$\gg 35$	
$f_1(1285)$	$1280.2\pm0.6^{+1.2}_{-1.5}$	$28.2 \pm 1.1^{+5.5}_{-2.9}$	$J/\psi \rightarrow \gamma f_1(1285) \rightarrow \gamma a_0(980)^0 \pi^0 \rightarrow \gamma K^0_S K^0_S \pi^0$	$(8.55 \pm 0.41^{+3.42}_{-1.04}) \times 10^{-6}$	$\gg 35$
$f_1(1420) \qquad 1433.5 \pm 1.1^{+27}_{-0.7}$	$14335 \pm 11^{+27.9}$	$95.9 \pm 2.3^{+13.6}_{-10.9}$	$J/\psi \rightarrow \gamma f_1(1420) \rightarrow \gamma K^*(892)^0 K^0_S \rightarrow \gamma K^0_S K^0_S \pi^0$	$(7.25 \pm 0.12^{+0.73}_{-1.25}) \times 10^{-5}$	$\gg 35$
	$1455.5 \pm 1.1 - 0.7$		$J/\psi \to \gamma f_1(1420) \to \gamma a_0(980)^0 \pi^0 \to \gamma K^0_S K^0_S \pi^0$	$(4.62 \pm 0.36^{+2.36}_{-1.94}) \times 10^{-6}$	17.8
$f_2(1525)$	$1515.4 \pm 2.5^{+3.2}_{-7.6}$	$64.0\pm4.3^{+2.0}_{-6.1}$	$J/\psi \rightarrow \gamma f_2(1525) \rightarrow \gamma K^*(892)^0 K^0_S \rightarrow \gamma K^0_S K^0_S \pi^0$	$(9.47\pm0.43^{+1.51}_{-0.66})\times10^{-6}$	23.8

JHEP03(2023)121

dominant decay modes for the pseudoscalar component

MENU 2023, Mainz, Oct. 19, 2023

10

Light hadron spectroscopy at BESIII

X States Observed in the Process $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ at BESIII

Additional structures: X(2120), X(2370), ?

Observation of a State X(2600) in the Process $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

10 Billion of J/ψ data $(\eta' \rightarrow \gamma \pi^+ \pi^- / \pi^+ \pi^- \eta)$

- A new state in $\pi^+\pi^-\eta'$ invariant mass spectrum is observed around 2.6 GeV/ c^2
- The state is correlated to a structure in M(π⁺π⁻) around
 1.5 GeV/c²

Observation of a State X(2600) in the Process $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$

Simultaneous fit to $\pi^+\pi^-\eta'$ and $\pi^+\pi^$ mass spectra is performed

Resonance	Mass (MeV/ c^2)	Width (MeV)
	$\begin{array}{c} 1492.5\pm3.6^{+2.4}_{-20.5}\\ 1540.2\pm7.0^{+36.3}_{-6.1}\\ 2618.3\pm2.0^{+16.3}_{-1.4}\end{array}$	$\begin{array}{c} 107 \pm 9^{+21}_{-7} \\ 157 \pm 19^{+11}_{-77} \\ 195 \pm 5^{+26}_{-17} \end{array}$

- > X(2600) resonance observed for the first time with a statistical significance greater than 20σ
- The structure in $M(\pi^+\pi^-)$ around 1.5 GeV/ c^2 can be well described with the interference between $f_0(1500)$ and the X(1540) resonances
- > Pseudoscalar glueballs or excited $q\bar{q}$ state ?
 - $f_0(1500)$ is a scalar glueball or not

Light hadron spectroscopy at BESIII

Observation of J/ ψ EM Dalitz Decays to X(1835), X(2120), and X(2370)

10 Billion of J/ψ data

$$J/\psi \rightarrow e^+ e^- \pi^+ \pi^- \eta'$$

➤ The observation of the EM Dalitz decay $J/ψ → e^+e^-π^+π^-η'$. This is also the first observation of the states X(1835), X(2120), and X(2370) in the EM Dalitz decays.

> Access to the EM transition form factor between J/ψ and X(1835) states:

$$\frac{d\Gamma(J/\psi \to X(1835)e^+e^-)}{dq^2\Gamma(J/\psi \to X(1835)\gamma)} = |F(q^2)|^2 \times [\text{QED}(q^2)]$$
$$F(q^2) = \frac{1}{1 - q^2/\Lambda^2}$$
$$\Lambda = 1.75 \pm 0.29 \pm 0.05 \ GeV/c^2$$

 \succ Exciting results from new J/ψ data are presented

- > Isoscalar 1^{-+} exotic : $\eta_1(1855)$
- > New state X(2600) in J/ψ radiative decays

▶ ...

BESIII will continue to run ~2030

Excellent opportunities for light hadron spectroscopy

More interesting results are expected!

backup

Tong Chen

Narrow structure in $\langle Y_1^0 \rangle$ cannot be described by resonances in $\gamma \eta(\eta')$ $\gamma_1(1855) \rightarrow \eta \eta'$ needed

Tong Chen

Light hadron spectroscopy at BESIII

- Change J^{PC} of η₁(1855): log-likelihood ↓235
 > J^{PC} prefer 1⁻⁺
- Remove **BW** phase motion of $\eta_1(1855)$: log-likelihood \downarrow 43
 - Resonance structure needed
- Assuming $\eta_1(1855)$ as additional resonance, evaluate its significance with various masses and widths

➢ Significant 1^{−+} contribution around 1.8 GeV/c² needed

• Systematic uncertainties are studied, and significance of $\eta_1(1855)$ remains larger than 19σ in all cases

significance of $\eta_1(1855)$ with various masses and widths

X(18xx) between 1.8-1.9GeV

