

Production of $d_{N\Omega}$ **dibaryon in kaon induced reactions**

Reporter: Jing Liu 2023.10.16 MENU 2023

Based on Jing Liu, Qi-Fang Lü ,Chun-Hua Liu, Dian-Yong Chen and Yu-Bing Dong Chinese Physics C Vol. 47, No. 5 (2023) 053107

• PRODUCTION PROCESSES

- NUMERICAL RESULTS AND DISCUSSIONS
- SUMMARY

dibaryon $B = 2$ six quar	ks deuteron -	proton neutron
SU(6) theory	Phys. Rev. Lett. 13(26), 815817	
quark model	Phys. Rev. D 37, 154-158	binding energy
quark-cluster	Phys. Rev. D 38, 298	2.22 MeV.
Skyrme	Nucl. Phys.A 549, 485-497	
quark potential	Phys. Rev. C 51, 3411	
quark delocalization and color screening	Phys. Rev. C 53, 1161-1166, Phys. Rev. Lett. 69, 2901-2904	
•••	•••	

 $N\Xi', N\Xi_c, N\Xi_{cc}, \Xi_{cc}\Xi_{cc} N\Omega \Delta\Omega$

4

WASA-at-COSY Collaboration

Phys. Lett. B 743, 325-332 $np \to np\pi^0\pi^0$

6

theoretical research

- three-body hadronic model
 - $N\Delta$ and $\Delta\Delta$ dibaryon states

Nucl. Phys. A 928, 73-88

• pion exchange potential model

H-like $\Lambda_c \Lambda_c$, $\Lambda_c N$ dibaryons

Phys. Lett. B 704, 547-550 Phys. Rev. D 85, 014015

• the quark delocalization color screening model

 $N\Sigma_{c,b} \Lambda_c \Lambda_c / \Lambda_b \Lambda_b$ dibaryons

Phys. Rev. C 89(3),035201 Phys. Rev. C 87(3),034002

 $\Delta^0 \Delta^0$, $\Omega \Omega$, $\Xi \equiv Phys. Rev. D 105(3),034006, Phys. Rev. C102(4),045202, Chin. Phys.C45(4), 041002, Phys. Rev. D 105(9), 094021$

...

- QCD sum rule Phys. Rev. D 103, 094011
 NΩ dibaryon bound state
- chiral SU(3) quark model arXiv:nucl-th/0606056
 may exist NΩ and ΔΩ dibaryons weakly bound systems
- phenomenological Lagrangian approach Phys. Rev. D 101,114032
 dynamical coalescence mechanism
 constituents and the strong decays of d_{NQ}
- HAL QCD Collaboration Nucl. Phys. A 928, 89-98
 near the physical point binding energy of pΩ became 2.46 MeV

The possibility of dibaryons with strangeness -3 $d_{N\Omega}$

Searching $d_{N\Omega}$ The key point of producing the $d_{N\Omega}$ is the production of the Ω baryon

abtain Ω baryon

- high energy heavy-ion collision
- pp collision processes
- $K^- p \rightarrow \Omega^- K^+ \bar{K}^{(*)0}$ $J(J^P) = \frac{1}{2}(2^+)$ $\Omega^- d \rightarrow \Xi^- \Lambda p$, $d_{N\Omega}$ invariant mass spectrum

abtain kaon beam

- J-PARC Nucl. Phys. A 805, 486
- **COMPASS** EPJ Web Conf. 37, 01016
- OKA@U-70 Nucl. Part. Phys. Proc. 273-275, 1330
- SPS@CERN Nucl. Part. Phys. Proc. 273-275, 2720

Fig. 1. (color online) Diagrams contributing to the process of $K^- p \to d_{N\Omega} \bar{\Xi}^0$, where the $d_{N\Omega}$ is considered as a *S*-wave $N\Omega$ dibaryon with $J^P = 2^+$.

The effective Lagrangian for the interaction reads:

$$\mathcal{L}_{d_{N\Omega}N\Omega} = g_{d_{N\Omega}N\Omega} d_{N\Omega}^{\mu\nu^{\dagger}} \bar{\Omega}_{\mu} \gamma_{\nu} N^{c} + \text{H.c.} \qquad \mathcal{L}_{\Omega \Xi K} = \frac{g_{\Omega \Xi K}}{m_{\pi}} \partial_{\beta} K \bar{\Omega}^{\beta} \Xi + \text{H.c.}$$
$$\mathcal{M} = \frac{g_{\Omega \Xi K}}{m_{\pi}} \left(-ip_{1\beta}\right) g_{d_{N\Omega}N\Omega} d_{N\Omega}^{\mu\nu} F(k^{2}, m_{\Omega}^{2}) \left[\bar{u}^{c}(p_{2}, m_{2})\gamma_{\nu} S(k, m_{\Omega})_{\mu\beta} \nu(p_{3}, m_{3})\right]$$

PRODUCTION PROCESSES

cross-section formula:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta} = \frac{1}{32\pi s} \frac{|\vec{p}_f|}{|\vec{p}_i|} \left(\frac{1}{2} |\overline{\mathcal{M}}|^2\right)$$

s is the center of mass energy and θ is the scattering angle $d\sigma = \frac{1}{8(2\pi)^4} \frac{1}{\Phi} |\mathcal{M}|^2 dp_5^0 dp_3^0 d\cos\theta d\eta$

the propagator of the Ω baryon and $d_{N\Omega}$:

$$S(k, m_{\Omega})_{\mu\beta} = i\frac{k+m_{\Omega}}{k^2-m_{\Omega}^2} \left[-g_{\mu\beta} + \frac{1}{3}\gamma_{\mu\beta} + \frac{2k_{\mu}k_{\beta}}{3m_{\Omega}^2} + \frac{\gamma_{\mu}k_{\beta} - \gamma_{\beta}k_{\mu}}{3m_{\Omega}} \right]$$
$$\mathcal{P}_{d_{N\Omega}}^{\mu\nu\lambda\omega}(q, m_{d_{N\Omega}}, \Gamma_{d_{N\Omega}}) = \frac{i}{q^2 - m_{d_{N\Omega}}^2 + im_{d_{N\Omega}}\Gamma_{d_{N\Omega}}}$$
$$\times \left[\frac{1}{2} \left(\tilde{g}_{\mu\lambda}\tilde{g}_{\nu\omega} + \tilde{g}_{\mu\omega}\tilde{g}_{\nu\lambda} \right) - \frac{1}{3}\tilde{g}_{\mu\nu}\tilde{g}_{\lambda\omega} \right]$$

PRODUCTION PROCESSES

NUMERICAL RESULTS AND DISCUSSIONS

Cross sections for $K^- p \rightarrow d_{N\Omega} \bar{\Xi}^0$

Fig. 3. (color online) Cross sections for the process $K^- p \to d_{N\Omega} \bar{\Xi}^0$ depending on the beam energy (diagram (a)), and differential cross sections depending on $\cos(\theta)$ (diagram (b)).

The cross sections increase sharply near the threshold and become very weakly dependent on the beam energy when the beam energy is greater than 9 GeV.

B. The $K^- p \to \Lambda \Xi^0 \bar{\Xi}^0$ and $K^- p \to \Sigma^+ \Xi^- \bar{\Xi}^0$ processes

NUMERICAL RESULTS AND DISCUSSIONS

Cross section for $K^- p \to \Xi^0 \Lambda \bar{\Xi}^0$ and $K^- p \to \Xi^- \Sigma^+ \bar{\Xi}^0$

Fig. 4. (color online) Cross sections for $K^- p \to \Xi^0 \Lambda \bar{\Xi}^0$ (diagram (a)) and $K^- p \to \Xi^- \Sigma^+ \bar{\Xi}^0$ (diagram (b)) depending on the beam energy.

- The production of the dibaryon is the crucial step for investigating its properties experimentally.
- The cross sections for $K^- p \rightarrow d_{N\Omega} \bar{\Xi}^0$ were estimated several hundreds nanobarns at P_K =20 GeV.
- The differential cross sections indicated that the produced $d_{N\Omega}$ dibaryons were concentrated in the forward angle area.
- $d_{N\Omega}$ dibaryon could be detected in the $\Xi^0 \Lambda$ and $\Xi^- \Sigma^+$ invariant mass spectrum.

Thanks for your attention