Nucleon Polarizabilities

Recent Results and Future Measurements at MAMI

David Hornidge, Mount Allison University Edoardo Mornacchi, Johannes Gutenberg University

MENU 2023 Erbacher Hof Mainz, GERMANY

October 16, 2023

Outline

Motivation

- 2 Proton Recent MAMI Results
- 3 Proton Global Extraction
- 4 Neutron Future Plans
- 5 Pion Recent Measurement
- 6 Outlook and Plans

2/38

- Regime where the coupling is too strong and perturbative QCD (pQCD) is not appropriate.
- Very important for a thorough understanding of QCD.
- An understanding of the transition from non-pQCD (confinement) to pQCD (asymptotic freedom) is integral to the overall understanding of QCD.

How do we test QCD in the non-perturbative regime?

High-precision measurements with polarization observables.

Hadron Polarizabilities

- Fundamental structure constants
- Response of internal structure to external fields
- Fertile meeting ground between theory and experiment
- Best measured via Compton scattering, both real and virtual

Theoretical Approaches

- Dispersion Relations (both subtracted and unsubtracted)
- Chiral Perturbation Theory
- Lattice QCD

Why else do we care about the nucleon polarizabilities?

Limit precision in other areas of physics:

- Lamb shift and hyperfine structure (proton radius)
- EM contribution to n p mass difference
- Neutron star properties

Real Compton Scattering – Hamiltonian

Expand the Hamiltonian in incident-photon energy.

- 0th order \longrightarrow charge, mass
- 1st order \longrightarrow magnetic moment

2nd order \longrightarrow scalar polarizabilities:

$$\mathcal{H}_{\mathsf{eff}}^{(2)} = -4\pi \left[\frac{1}{2} \alpha_{\boldsymbol{E1}} \vec{E}^2 + \frac{1}{2} \beta_{\boldsymbol{M1}} \vec{H}^2 \right]$$

3rd order \rightarrow spin (or vector) polarizabilities:

$$\begin{aligned} H_{\text{eff}}^{(3)} &= -4\pi \left[\frac{1}{2} \gamma_{E1E1} \vec{\sigma} \cdot (\vec{E} \times \dot{\vec{E}}) + \frac{1}{2} \gamma_{M1M1} \vec{\sigma} \cdot (\vec{H} \times \dot{\vec{H}}) \right. \\ &\left. -\gamma_{M1E2} E_{ij} \sigma_i H_j + \gamma_{E1M2} H_{ij} \sigma_i E_j \right] \end{aligned}$$

where $E_{ij} = \frac{1}{2} (\nabla_i E_j + \nabla_j E_i)$ and $H_{ij} = \frac{1}{2} (\nabla_i H_j + \nabla_j H_i)$

Previous Results - Proton

Various α_{E1} and β_{M1} extractions:

- Different experimental inputs
- Different theoretical inputs
- Different fitting strategies

Previous Results - Proton

Various α_{E1} and β_{M1} extractions:

- Different experimental inputs
- Different theoretical inputs
- Different fitting strategies

New high-precision dataset needed!

The Mainzer Mikrotron (MAMI)

Run Conditions

Standard A2 Equipment was required:

- MAMI electrons
- Glasgow-Mainz Tagger
- CB-TAPS detector system
- Cryogenic Target

Run Parameter	Value
Electron Beam Energy	883 MeV
Target	LH_2
Radiator	Diamond
Tagged Energy Range	100 – 400 MeV
Channel Energy Resolution	2 MeV
Beam Polarization	linear
Target Polarization	none

Schematic of the A2 Hall

CB-TAPS Detector System

D. Hornidge (Mount Allison University)

CB-TAPS Detector System

Run Summary

- Ph.D. work of Edoardo Mornacchi.
- Phys. Rev. Lett. **128**, 132503 (2022).
- Low-energy Compton scattering.
- Linearly polarized beam, (unpolarized) LH₂ target.
- High-statistics cross sections, $d\sigma/d\Omega$, and beam asymmetry, Σ_3 . Most important data are below pion threshold.
- Upgraded tagger, improved systematic errors:
 - higher $\gamma\text{-flux}$ with better flux monitoring
 - improved linpol peak stability
 - improved background subtraction
- 1.2×10^6 events, an improvement of $\times 6$ compared to the pilot measurement.
- Approximately ×10 the statistics of the previous world best measurement with TAPS (also A2!) [OdL et al., EPJA 10 207 (2001)], which make up of about 50% of the existing world data.

Beam Asymmetry

The beam asymmetry can be **extracted** by measuring the polarized cross-section with two orthogonal orientation of the polarization plane:

$$A(\varphi) = \Sigma_3 \cos(2\varphi) = \frac{N^{\parallel}(\omega_{\gamma}, \theta_{\gamma'}, \varphi) - N^{\perp}(\omega_{\gamma}, \theta_{\gamma'}, \varphi)}{p_{\gamma}^{\perp} N^{\parallel}(\omega_{\gamma}, \theta_{\gamma'}, \varphi) + p_{\gamma}^{\parallel} N^{\perp}(\omega_{\gamma}, \theta_{\gamma'}, \varphi)}$$

Beam Asymmetry

A2: Phys. Rev. Lett. **128** (2022) Systematic errors

Born contribution DR: Phys. Rev. C **76**, 015203 (2007)

 B_{χ} PT: Eur. Phys. J. C **65**, 195 (2010) HB $_{\chi}$ PT: Eur. Phys. J. A **49**, 12 (2013)

The unpolarized cross-section can be determined by precisely measuring the detection, reconstruction and tagging efficiencies:

$$\frac{d\sigma}{d\Omega}(\omega_{\gamma},\theta_{\gamma'}) = \frac{N_{\gamma'}(\omega_{\gamma},\theta_{\gamma'})}{d\Omega} \frac{1}{N_p} \frac{1}{\epsilon_{rec}(\omega_{\gamma},\theta_{\gamma'})} \frac{1}{N_{e^-}(\omega_{\gamma})\epsilon_{tagg}(\omega_{\gamma})}$$

The unpolarized cross-section can be determined by precisely measuring the detection, reconstruction and tagging efficiencies:

$$\frac{d\sigma}{d\Omega}(\omega_{\gamma},\theta_{\gamma'}) = \frac{N_{\gamma'}(\omega_{\gamma},\theta_{\gamma'})}{d\Omega} \frac{1}{N_{\rho}} \frac{1}{\epsilon_{rec}(\omega_{\gamma},\theta_{\gamma'})} \frac{1}{N_{e^{-}}(\omega_{\gamma})\epsilon_{tagg}(\omega_{\gamma})}$$

	Event selection and MC correction	2%
	Target density	1%
UCS	Flux normalization	2%
	Background	uncorr.
	TOTAL	3%
	Linear polarization	5%
Σ3	Background	uncorr.
	TOTAL	5%

Systematic Errors

- Higher for low ω_γ and forward θ_{γ'} (~ 17%)
- Lower for high ω_{γ} and backward $\theta_{\gamma'}$ (~ 0.5%)
- + Average $\sim 2\%$

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)

	HDPV	BChPT	HBChPT
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
S_{σ}	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)

		HDPV	BChPT	HBChPT
ĺ	α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
	$\beta_{\rm M1}$	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
ĺ	S_{σ}	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
	SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
ĺ	χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)

	HDPV	BChPT	HBChPT
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
Sσ	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

$$\begin{aligned} \alpha_{\rm E1} &= 10.99 \pm 0.16 \pm 0.47 \pm 0.17 \pm 0.34 \\ \beta_{\rm M1} &= 3.14 \pm 0.21 \pm 0.24 \pm 0.20 \pm 0.35 \end{aligned}$$

E. Mornacchi (A2), Phis. Rev. Lett. **128**, 132503 (2022)

	HDPV	BChPT	HBChPT
α_{E1}	11.23 ± 0.49	10.65 ± 0.50	11.10 ± 0.52
β_{M1}	2.79 ± 0.32	3.28 ± 0.33	3.36 ± 0.38
Sσ	1.011 ± 0.015	1.013 ± 0.015	1.043 ± 0.016
SΣ	0.994 ± 0.015	0.996 ± 0.015	1.001 ± 0.015
χ^2/DOF	82.10/93 = 0.89	82.96/93 = 0.89	83.16/93 = 0.89

- Highest precision Compton scattering dataset below π -photoproduction threshold!
- Precise extraction of the scalar polarizabilities from one single dataset

21/38

Bootstrap Technique

- fixed-t Dispersion relation model
- Three different PWA solution used: MAID-2021, SAID-MA19, BnGA-2019
- All six polarizabilities are treated as free parameters
- Parametric bootstrap technique needed to include all possible sources of systematic uncertainties

$$e_{i,j}^{(0)} \rightarrow e_{i,j}^{(b)} = (1 + \delta_{j,b})(e_{i,j}^{(0)} + r_{i,j,b}\sigma_{i,j}^{(0)})$$

- inclusion of common systematic uncertainties without any a priori distribution assumption
- probability distribution of the fit parameters obtained by the procedure
- uncertainties on nuisance model parameters are taken into account in the sampling procedure
- + fit *p*-value is provided if goodness-of-fit distribution is not given by the χ^2

As many data points as possible were initially included in the fit!

- \cdot All existing unpolarized low-energy data ($E_{\gamma} <$ 150 MeV)
 - 14 datasets, 218 points¹
- + New-generation (a.k.a. photon-tagged) unpolarized high-energy data ($E_{\gamma} = [150 300]$ MeV)
 - 6 datasets, 156 points
- + Polarized ($\sigma_{\parallel},\,\sigma_{\perp},\,\Sigma_{2x},\,\Sigma_{2z},\,$ and $\Sigma_{3})$ data
 - 7 datasets, 137 points²

¹including 10 above-thr points from TAPS ²65 below- and 72 above-thr

Compton Scattering Datasets

First author # of points		$\theta_{\gamma'}$ [°]	E_{γ} [MeV]
Ur	polarized low	-energy data	1
Baranov	7	90,150	82 — 111
Bernardini	2	135	120, 139
de Leon	55	59 — 155	59 — 150
Federspiel	16	60,135	30 - 70
Goldansky	5	75 — 150	55
Hallin	13	45 — 135	130 — 150
Hyman	12	50,90	60 - 130
Li	8	55,90,125	81
MacGibbon	8	90,135	70 - 100
MacGibbon	10	90,135	100 - 140
Mornacchi	60	35 — 145	85 — 140
Oxley	4	70 — 150	60
Pugh	16	45,90,135	55 — 125
Zieger	2	180	98,132

First auth	or #ofp	oints	$\theta_{\gamma'}$ [°]	E_{γ} [MeV]	
	Unpolarized high-energy data				
Blanpied	57	7	51 — 126	213 — 298	
Camen	5		136	210 - 293	
Molinari	4		90 (cms)	250 - 289	
Peise	8		75 (cms)	200 - 291	
Wissmanr	n 6		131	199 – 295	
Wolf	76	ô	48 — 148	264 - 294	
First author	Observable	# of poin	ts $\theta_{\gamma'}$ [°]	E_{γ} [MeV]	
	Polarize	ed low-ene	rgy data		
Li	σ_{\parallel}	5	55, 90, 125	5 83	
Li	σ_{\perp}	3	55, 90, 125	5 83	
Mornacchi	Σ_3	36	35 — 145	92, 108, 129	
Sokhoyan	Σ_3	21	60 - 150	87, 109, 129	
Polarized high-energy data					
Blanpied	Σ_3	58	65 — 135	213 — 298	
Martel	Σ_{2x}	4	90 — 150	285	
Paudval	Σ_{2Z}	10	85 - 150	275, 295	

Excluded Datasets

Inconsistencies among unpolarized high-energy data are known to exist, especially between the LARA (Wolf) and LEGS (Blanpied) datasets! A consistency check of the database was performed:

- Fit all 6 polarizabilities using MAID-2021 alternatively including LARA or LEGS.
- Using the polarizability best-values, the residuals were calculated.
- For every big dataset, the residual normal distribution was assessed using a probability plot.

All datasets had normally distributed residual, except both LARA and LEGS:

D. Hornidge (Mount Allison University)

LARA and LEGS DCS datasets were excluded from the fit!

The final database included

- $\cdot\,$ All existing unpolarized low-energy data ($E_{\gamma}<$ 150 MeV)
 - 14 datasets, 218 points³
- New-generation (a.k.a. photon-tagged) unpolarized high-energy data ($E_{\gamma} = [150 300]$ MeV)
 - 4 datasets, 23 points
- Polarized ($\sigma_{\parallel}, \sigma_{\perp}, \Sigma_{2x}, \Sigma_{2z}$, and Σ_{3}) data
 - 7 datasets, 137 points⁴

For a total of 388 data points divided in 25 datasets!

³including 10 above-thr points from TAPS ⁴65 below- and 72 above-thr

- Six free parameters
 - $\alpha_{\text{E1}} + \beta_{\text{M1}}, \alpha_{\text{E1}} \beta_{\text{M1}}, \gamma_{\text{E1E1}}, \gamma_{\text{M1M1}}, \gamma_0$, and $\gamma_{\pi}^{\text{disp}}$
- $N = 10^4$ bootstrap cycles
- Point-to-point systematic errors added in quadrature to statistical ones
- Common systematic errors are assumed to be uniform distributed (unless otherwise specified)
- Polarizability best-values are the mathematical average of the three results using the three different PWAs

Global Fitting Results

E.M., S. Rodini, B. Pasquini, P. Pedroni, Phys. Rev. Lett. 129, 102501 (2022).

Global Fitting Results

D. Hornidge (Mount Allison University)

Global Fitting Results

 E.M. et al. (A2), Phys. Rev. Lett. 128, 132503 (2022)

$$\begin{split} \alpha_{\rm E1} &= 10.99 \pm 0.16 \pm 0.47 \pm 0.17 \pm 0.34 \\ \beta_{\rm M1} &= 3.14 \pm 0.21 \pm 0.24 \pm 0.20 \pm 0.35 \end{split}$$

 Li et al. (HIGS), Phys. Rev. Lett. 128, 132502 (2022)

$$\begin{split} \alpha_{\rm E1} &= 13.8 \pm 1.2 \pm 0.1 \pm 0.3 \\ \beta_{\rm M1} &= 0.2 \mp 1.2 \pm 0.1 \mp 0.3 \end{split}$$

• E.M., S. Rodini, B. Pasquini, and P. Pedroni, Phys. Rev. Lett. **129**, 102501 (2022) $\alpha_{E1} = 12.7 \pm 0.8 \pm 0.1$ $\beta_{M1} = 2.44 \pm 0.6 \pm 0.1$

30 / 38

The "Other" Nucleon - The Neutron

Situation is considerably worse than for the proton:

- No free neutron target.
- Neutron is uncharged.
- Small data set!

Techniques:

- Low-energy neutron scattering.
- Elastic Compton scattering from deuterium.
- QF Compton scattering from deuterium.
- Compton scattering from heavier nuclei.

Nuclear Effects are NOT negligible!

New PDG Result and Reanalysis - Proton and Neutron

McGovern, Phillips, Grießhammer, EPJA 49, 12 (2013)

Situation for both the Neutron could be improved...

D. Hornidge (Mount Allison University)

Nucleon Polarizabilities

Compton scattering from deuterium and Helium isotopes.

- HIGS: See previous talk.
- Mainz: High-pressure mini-TPC for detecting target recoil along with the CB-TAPS setup.

Pion Polarizabilities

- Mesons are "simpler" systems than baryons. Two quarks vs. three.
- Very challenging to measure/extract from measurements.
- Important tests of chiral dynamics.

Techniques:

- $\pi Z \rightarrow \pi Z \gamma$
- $\gamma N \rightarrow \gamma N \pi$
- $\gamma p \rightarrow \gamma n \pi^+$
- $\gamma\gamma \to \pi^+\pi^-$

Pion Polarizability in Hall D at JLab

Pion Polarizability in Hall D at JLab

Configuration	Nominal GlueX I	Charged Pion Polarizability	Neutral Pion Polarizability
Electron Beam Energy	11.6 GeV	11.6 GeV	11.6 GeV
Coherent Peak Energy	8.4-9.0 GeV	4.5-6 GeV	4.5-6 GeV
Current	150 nA	30 nA	30 nA
Radiator thickness	50 µm diamond	50 µm diamond	50 µm diamond
Collimator aperture	5 mm	3.4 mm	3.4 mm
Peak polarization	35%	73%	73%
Tagging ratio	0.6	0.56	0.56
Flux 5.5-6.0 GeV	-	11 MHz	11 MHz
Flux 8.4-9.0 GeV	20 MHz	-	-
Flux 0.3-11.3 GeV	367 MHz	56 MHz	56 MHz
Target Position	65 cm	1 cm	1 cm
Target, length	LH2, 30 cm	²⁰⁸ Pb, 0.03 cm	²⁰⁸ Pb, 0.03 cm
Start Counter and DIRC	Nominal	Removed	Removed
Tagger microscope	Nominal for Peak at 9 GeV	Moved for Peak at 6 GeV	Moved for Peak at 6 GeV
Muon Detector	None	Installed behind FCAL	Not needed
Trigger	FCAL/BCAL (40 kHz)	TOF (30 kHz)	FCAL/BCAL (10 kHz)

- Summer 2022
- 25 PAC Days
- ${f 0}~pprox$ 130 billion triggers
- 589 total "good" full-target production runs
- In Analysis is underway ⇒ UMass Amherst

Polarizabilities – Outlook and Plans

It's been a good couple of years for proton Compton scattering:

- The highest statistics Compton scattering dataset below pion threshold was finally published by the A2 Collaboration.
- Ompton@HIGS published a complemetary dataset at lower energy.
- Fixed-t DR Bootstrap technique extraction of 6 leading-order proton polarizabilities has been performed.

Also in other news:

- A high-pressure TPC target/detector has been for approved neutron polarizability (and threshold pion) experiments at MAMI. Preliminary design work has begun.
- **②** JLab Hall-D experiment ran in 2022. Measured the Primakoff effect with the modified Glue-X detector with the hope of extracting $\alpha_{\pi} \beta_{\pi}$ for both the π^{\pm} and π^{0} .
- Solution Lots of good stuff up and coming at HIGS as well.