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Non-Perturbative QCD

@ Regime where the coupling is too strong and perturbative QCD
(pQCD) is not appropriate.

@ Very important for a thorough understanding of QCD.

@ An understanding of the transition from non-pQCD (confinement) to
pQCD (asymptotic freedom) is integral to the overall understanding
of QCD.
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How do we test QCD in the non-perturbative regime?

High-precision measurements with polarization observables.

Hadron Polarizabilities
@ Fundamental structure constants
@ Response of internal structure to external fields
o Fertile meeting ground between theory and experiment
°

Best measured via Compton scattering, both real and virtual

Theoretical Approaches

e Dispersion Relations (both subtracted and unsubtracted)
@ Chiral Perturbation Theory
@ Lattice QCD
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Why else do we care about the nucleon polarizabilities?

Limit precision in other areas of physics:
@ Lamb shift and hyperfine structure (proton radius)
@ EM contribution to n — p mass difference

o Neutron star properties
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Real Compton Scattering — Hamiltonian

Expand the Hamiltonian in incident-photon energy.
Oth order —  charge, mass

1st order —  magnetic moment

2nd order ——  scalar polarizabilities:

1 — 1 .
Hé?f) = —4m [EaElEz + §5M1H2

3rd order —  spin (or vector) polarizabilities:
3 5 — 5 5 - 5
Héff) = —4r [%’751510‘ (ExE)+ %’7/\/]1/\/]10 -(H x H)
—ymie2EijoiH; + vermo Hijo Ej
where E;j = %(V,EJ + VJ‘E;) and H,'J' = %(V,HJ + VJ'H,')
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Previous Results — Proton
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Previous Results — Proton
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The Mainzer Mikrotron (MAMI)

Johannes Gutenberg University
Mainz, Germany

3 Race-Track Microtrons (832 MeV) 7N\
High-Quality 100% Duty Factor (CW) Beam _—
HDSM in Production Mode (1.6 GeV) | !

RTM2

¥
A2 Collaboration: k
Al
High-Flux, Tagged, Bremsstrahlung Photon Beam /"""EE
(Unpolarized, Linear, and Circular)
Polarized and Unpolarized Targets
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Run Conditions

Standard A2 Equipment was required:
- MAMI electrons
- Glasgow-Mainz Tagger
- CB-TAPS detector system
- Cryogenic Target

Run Parameter Value
Electron Beam Energy 883 MeV
Target LH,
Radiator Diamond
Tagged Energy Range 100 — 400 MeV
Channel Energy Resolution 2 MeV
Beam Polarization linear
Target Polarization none
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Schematic of the A2 Hall
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CB-TAPS Detector System
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CB-TAPS Detector System

Crystal Ball TARGET TAPS
Highly segmented EM calorimeter Liquid Hydrogen Highly segmented EM calorimeter
AE/E =0.020 - E[GeV]0-36 10-cm capton cell AE/E = 0.018 + 0.008/ E[GeV]°->

op =14...0.95°

/ og < 1°

oy =0g/sinf

g =2—3°
Particle ID

f Photon b _
Barrel of thin oton beam o .TAPS Veto
scintillators Thin scintillators before
Ad = 15° each TAPS crystal

Multiwire Proportional Chambers

Precise charged tracking/positioning
gg ~ 2°

n':6=9 MeV

PID Energy

oy~ 3° nio =21 Me!

0000 500 600
MV CB Energy
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Run Summary

e Ph.D. work of Edoardo Mornacchi.

@ Phys. Rev. Lett. 128, 132503 (2022).

o Low-energy Compton scattering.

e Linearly polarized beam, (unpolarized) LH, target.

e High-statistics cross sections, do/d{2, and beam asymmetry, ¥ 3.
Most important data are below pion threshold.

o Upgraded tagger, improved systematic errors:
o higher ~-flux with better flux monitoring
o improved linpol peak stability
e improved background subtraction
@ 1.2 x 10° events, an improvement of x6 compared to the pilot
measurement.

o Approximately x10 the statistics of the previous world best
measurement with TAPS (also A2!) [OdL et al., EPJA 10 207
(2001)], which make up of about 50% of the existing world data.
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Beam Asymmetry

The beam asymmetry can be extracted by measuring the polarized cross-section with two
orthogonal orientation of the polarization plane:

NH(WM 05 9) = N*(ws, 0, )
PENI(w,, 01, 0) + PINL (w5, 0,1, )

A(p) = X3 cos(2¢p) =

wy =129.5MeV and 6, = 65°

= ¥, =-0.56 +0.05
< I 2/ ndf = 0.50

1
-100 0 100 ¢Y. 6]
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Beam Asymmetry

, =86.3-98.2 MeV
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A2: Phys. Rev. Lett. 128 (2022)
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The unpolarized cross-section can be determined by precisely measuring the detection,
reconstruction and tagging efficiencies:

d_ﬂ'(w /] /) — N"I'(w’We’Y')i 1 1
eIt dQ Np €rec(wny, 07) Ne— (w- )€tagg (w~)

©, 145 [MeV]

0,10




Cross Sections

The unpolarized cross-section can be determined by precisely measuring the detection,
reconstruction and tagging efficiencies:

Ny (wy,04) 1 1 1

dﬁ(w 6,) = .
T T Ny cln, 0r) Ne- (1) etogg (w5)
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Cross Sections

o, =86.3 -98.2 MeV
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Cross Sections
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Systematic Errors

D. Hornidge (Mount Allison University) Nucleon Polarizabilities

Event selection and MC correction | 2%
Target density 1%
UCS | Flux normalization 2%
Background uncorr.
TOTAL 3%
Linear polarization 5%
Y3 | Background uncorr.
TOTAL 5%
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Systematic Errors

- Higher for low w, and
forward 0., (~ 17%)

Systematic Error [%]

- Lower for high w, and
backward 6., (~ 0.5%)

- Average ~ 2%

0, ]
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Extracted Proton Polarizabilities

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)

HDPV BChPT HBChPT
g 11.23 £0.49 10.65 £ 0.50 11.10 £ 0.52
I 2.79+0.32 3.28+0.33 3.36+0.38
So 1.01140.015 1.013 £ 0.015 1.043 £ 0.016
Sy 0.994 + 0.015 0.996 + 0.015 1.001+ 0.015
X%/DOF | 82.10/93 = 0.89 | 82.96/93 = 0.89 | 83.16/93 = 0.89
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Extracted Proton Polarizabilities

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)

HDPV BChPT HBChPT
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B 2.79+0.32 3.28+0.33 3.36+0.38
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\2/DOF | 82.10/93 = 0.89 | 82.96/93 = 0.89 | 83.16/93 = 0.89
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Extracted Proton Polarizabilities

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)
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Extracted Proton Polarizabilities

E. Mornacchi (A2), Phis. Rev. Lett. 128, 132503 (2022)
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Bootstrap Technique

- fixed-t Dispersion relation model
- Three different PWA solution used: MAID-2021, SAID-MA19, BnGA-2019
- All six polarizabilities are treated as free parameters
- Parametric bootstrap technique needed to include all possible sources of systematic
uncertainties
e,(?) — efﬂ?) =01+ (S,)b)(efﬂ?) + r,ﬂ_,_b(ri(‘?))

- inclusion of common systematic uncertainties without any a priori distribution assumption

- probability distribution of the fit parameters obtained by the procedure

+ uncertainties on nuisance model parameters are taken into account in the sampling
procedure

- fit p-value is provided if goodness-of-fit distribution is not given by the x’
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Compton Scattering Datasets

As many data points as possible were initially included in the fit!

- All existing unpolarized low-energy data (E, < 150 MeV)
- 14 datasets, 218 points’

- New-generation (a.k.a. photon-tagged) unpolarized high-energy data
(E, = [150 — 300] MeV)
- 6 datasets, 156 points
- Polarized (o, o1, ¥ax, T2z, and ¥3) data
- 7 datasets, 137 points®

Tincluding 10 above-thr points from TAPS
265 below- and 72 above-thr
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Compton Scattering Datasets

First author

# of points 6, [°]

E, [MeV]

First author # of points 0, [°]
Unpolarized low-energy data

Baranov 7 90, 150
Bernardini 2 135

de Leon 55 59 —155
Federspiel 16 60,135
Goldansky 5 75 — 150
Hallin 13 45 — 135
Hyman 12 50,90
Li 8 55,90,125
MacGibbon 8 90,135
MacGibbon 10 90,135
Mornacchi 60 35—145
Oxley 4 70 — 150
Pugh 16 45,90, 135
Zieger 2 180

D. Hornidge (Mount Allison University)

E, [MeV] - .
- Unpolarized high-energy data
82— 111 Blanpied 57 51—-126 213 —298
120,139 Camen . 5 136 210 — 293
59 _ 150 Mqlmam 4 90 (cms) 250 — 289
30-70 Pglse 8 75 (ems) 200 — 291
55 Wissmann 6 131 199 — 295
130 — 150 Wolf 76 48 — 148 264 — 294
60 —130 First author Observable # of points 0 [°] E, [MeV]
81 Polarized low-energy data
70 — 100 Li ) 5 55,90, 125 83
Li oL 3 55,90,125 83
100==150 Mornacchi T, 36 35145 92,108,129
85 —140 Sokhoyan 55 2 60-150 87,109,129
60 Polarized high-energy data
55 —125 Blanpied pay 58 65135 213 —298
98.132 Martel Tox 4 90 — 150 285
Paudyal Ty 10 85-150 275,295
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Excluded Datasets

Inconsistencies among unpolarized high-energy data are known to exist,
especially between the LARA (Wolf) and LEGS (Blanpied) datasets!
A consistency check of the database was performed:
o Fit all 6 polarizabilities using MAID-2021 alternatively including
LARA or LEGS.

@ Using the polarizability best-values, the residuals were calculated.
@ For every big dataset, the residual normal distribution was assessed
using a probability plot.
All datasets had normally distributed residual, except both LARA and
LEGS:

41 —— LARA . 5 4 —— A2
—=— LEGS DCS —— LEGST;
3 TAPS

Experimental quantiles
Experimental quantiles

2
1
o
1

-2

=y

-4

Lo
AW N b o oW

-3 -2 -1 o 1 2 3 -4 -3 -2 -1 ) 1 2 4
Theoretical quantiles Theoretical quantiles
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Final Dataset

LARA and LEGS DCS datasets were excluded from the fit!

The final database included

- All existing unpolarized low-energy data (E, < 150 MeV)
- 14 datasets, 218 points’
- New-generation (a.ka. photon-tagged) unpolarized high-energy data
(E, = [150 — 300] MeV)
- 4 datasets, 23 points
+ Polarized (o, 01, X2\, X2, and 3) data
- 7 datasets, 137 points*

For a total of 388 data points divided in 25 datasets!

3including 10 above-thr points from TAPS
“65 below- and 72 above-thr
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Bootstrap Technique

- Six free parameters
- g+ B, aer — Bun, Yerer, Y, Yo, and 2P
- N =10 bootstrap cycles
- Point-to-point systematic errors added in quadrature to statistical ones
- Common systematic errors are assumed to be uniform distributed (unless otherwise
specified)

- Polarizability best-values are the mathematical average of the three results using the
three different PWAs
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Global Fitting Results
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E.M,, S. Rodini, B. Pasquini, P. Pedroni, Phys. Rev. Lett. 129, 102507 (2022).
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Global Fitting Results
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Global Fitting Results

- EM. et al. (A2), Phys. Rev. Lett. 128, 132503

(2022) ’ P
g = 10.99 + 0.16 + 0.47 + 0.17 4+ 0.34 6 =t
[ PDG

Bur = 314+ 0.21+ 0.24 + 0.20 + 0.35 o] Taps

B Morn et al., A2
[ Morn et al., global
44 [ Lietal, HIGS

- Lietal (HIGS), Phys. Rev. Lett. 128, 132502
(2022)

Bm[10~4fm3]
w

ap =13.8412+£01+03
B =02F12+01F0.3

- EM,, S. Rodini, B. Pasquini, and P. Pedroni,

Phys. Rev. Lett. 129, 102501 (2022) o1
ap =12.7+£0.8+0.1 -1 ; : . . : : .
7 8 9 10 1 12 13 14 15
B = 2.44 £ 0.6+ 0.1 ap[1074m?]
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The “Other” Nucleon — The Neutron

Situation is considerably worse than for the proton:
@ No free neutron target.
@ Neutron is uncharged.

@ Small data set!

Techniques:

o Low-energy neutron scattering.

Elastic Compton scattering from deuterium.

QF Compton scattering from deuterium.

Compton scattering from heavier nuclei.

Nuclear Effects are NOT negligible!
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New PDG Result and Reanalysis — Proton and Neutron

McGovern, Phillips, GrieBhammer, EPJA 49, 12 (2013)

exp(stat+sys)+theory/model 1o—error in quadrature

neutron free

proton free

Bui [107* fm?)
N

3f 1
n PDG
1
proton 2013
2f 1
p PDG 2013
Gneﬁhamme‘r 2013 ) ) ) ) ) .
7 8 9 0 I 2 13 14

ag; [1074 fm?]

Situation for both the Neutron could be improved. ..
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Upcoming Measurements — Neutron

Compton scattering from deuterium and Helium isotopes.
@ HIGS: See previous talk.

@ Mainz: High-pressure mini-TPC for detecting target recoil along with
the CB-TAPS setup.
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Pion Polarizabilities

@ Mesons are “simpler” systems than baryons. Two quarks vs. three.

@ Very challenging to measure/extract from measurements.

@ Important tests of chiral dynamics.

’W7 et
~ - B \\ 7 (x0)
g ~Jd -
= ot (711)
¢
z
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Pion Polarizability in Hall D at JLab

Solenoid High Field Region
1 New detector for p/m

r Ll
identification
Primakoff process: ——
FDC
—

very low-t photoproduction YA—m'n |H H H H HH

7 § 3 8= N
’yr\f\zhi7775;77H777?7ﬂ7777777g || | N ' w

5cm Iead

10cm s'eel

o

o(yy>n'n)

15 cm steel

Geant4 simulations give acceptable m/u / 35 cm steel
6 x MWPCs, 60" x 60"

identification with 5 cm of lead, 95 cm of

steel, and 6 muon chambers.
CTOF (4 scintillator paddles)
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Pion Polarizability in Hall D at JLab

Configuration

Nominal GlueX |

Charged Pion

Neutral Pion Polarizability

Polarizability
Electron Beam Energy 11.6 GeV 11.6 GeV 11.6 GeV
Coherent Peak Energy 8.4-9.0 GeV { 456Gev 3 { 456Gev 3
Current 150 nA 30nA 30 nA

Radiator thickness

50 um diamond

50 um diamond

50 um diamond

Collimator aperture 5mm ( 34mm ) (: 3.4 mm )
Peak polarization 35% £ 7% 3 £ 7% 3
Tagging ratio 0.6 0.56 0.56

Flux 5.5-6.0 GeV - 11 MHz 11 MHz

Flux 8.4-9.0 GeV 20 MHz - -

Flux 0.3-11.3 GeV 367 MHz 56 MHz 56 MHz

Target Position 65cm 1cm 1cm

Target, length LH2, 30 cm { =#Pb,0.03cm 3 { Pb,0.03cm §
Start Counter and DIRC Nominal Removed Removed
Tagger microscope Nominal for Peak at 9 GeV Moved for Peak at 6 GeV Moved for Peak at 6 GeV

Muon Detector

None

Installed behind FCAL

Not needed

Trigger

FCAL/BCAL (40 kHz)

£ ToF GokHz) 3

{ FeauBcAL (10 kHz) ¥

Hornidge (Mount Allison University)
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Pion Polarizability in Hall D at JLab — Run Stats

@ Summer 2022

@ 25 PAC Days

© =~ 130 billion triggers

@ 589 total “good” full-target production runs
© Analysis is underway = UMass Amherst
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Polarizabilities — Outlook and Plans

It's been a good couple of years for proton Compton scattering:

© The highest statistics Compton scattering dataset below pion
threshold was finally published by the A2 Collaboration.

@ Compton@HIGS published a complemetary dataset at lower energy.

© Fixed-t DR Bootstrap technique extraction of 6 leading-order proton
polarizabilities has been performed.

Also in other news:

© A high-pressure TPC target/detector has been for approved neutron
polarizability (and threshold pion) experiments at MAMI. Preliminary
design work has begun.

@ JLab Hall-D experiment ran in 2022. Measured the Primakoff effect
with the modified Glue-X detector with the hope of extracting
o — B for both the 7% and 7°.

© Lots of good stuff up and coming at HIGS as well.
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