

Results on polarization observables in two pion photoproduction at CLAS

Alessandra Filippi INFN Torino, Italy

On behalf of the CLAS Collaboration

MENU2023, Mainz, Germany - October 19, 2023

The light baryon $\left(N^{*}, \Delta\right)$ spectrum in the Constituent Quark Model

 $\operatorname{cic}_{1}=$ $\square \square_{\square}-$ $\square+$ $\underset{\square}{\square}$ Ya $\square \square \square \square \square \square \square$ $\square \square=$ $\square \square \square \square$ ${ }_{-1}{ }^{-1}$

 -1 $\square \square=$ - \square $\square \square$ $\square \square \square \square$ -

- Quarks confined into colorless hadrons

mesons
- Description by first principle QCD and constituent Quark Models:
- Blue lines: expected states
- Yellow/orange boxes: observations

The light baryon spectrum: experimental status

- Lowest lying N^{*} and Δ^{*} resonances
- 1.3-2 GeV mass range: second resonant region
- Overlapping states in the same mass region
- Broad widths (short lifetimes)
- Shared decay modes
- Most of the available information from pion/kaon beams experiments
- Missing states: too small couplings with mesons
- How to disentangle each signal and spot missing resonances?
- Difficult task if based only on the measurement of cross-sections
- Use new approaches: analysis of polarization observables (additional information: spin)
- Perform precision measurements in as many reactions as possible

N^{*} / Δ^{*} in photoproduction reactions

Photonuclear cross sections

- Photon induced reaction could favor the formation of missing resonances which might couple strongly to the $\gamma \mathrm{N}$ vertex
- $\quad \gamma$ reactions not studied extensively in the past - lack of good enough (energy/intensity) photon beams
- Dominant contributions to the "second resonant region": doublepion and η channels
- Double-pion photoproduction: good tool to investigate this mass region

Photoproduction of $\pi^{+} \pi^{-}$pairs from protons

with circularly polarized beam

CLAS data: $1.35<\mathrm{W}<2.30 \mathrm{GeV}$

- Missing resonances predicted to lie in the region $W>1.8$ GeV

Circularly polarized photon beam, no polarization specified for target and recoil proton
First measurement of beam-helicity asymmetry distributions as a function of the helicity angle:

$$
I^{\odot}=\frac{1}{P_{\gamma}} \frac{\sigma^{+}-\sigma^{-}}{\sigma^{+}+\sigma^{-}}
$$

- Odd trend in all W sub-ranges

- Compared with models based on electroproduction of double-charged pions including a set of quasi-two body intermediate states (Mokeev et al.):
- $\pi \Delta, \rho N, \pi N(1520), \pi N(1680)+$ contributions from $\Delta(1600)$, $N(1700), N(1710), N(1720)$
- The agreement is not satisfactory, calls for a more detailed description
- The I^{\odot} observable is critically sensitive to interferences

Photoproduction of $\pi^{+} \pi^{-}$pairs off protons (unpolarized)

E. Golovatch (CLAS) PL B788 (2019), 371

Measurement of 9×1-fold differential cross sections of the $\gamma p \rightarrow \pi^{+} \pi^{-} p$ reaction in the $(1.6,2) \mathrm{GeV}$ range
Attempt to reproduce the cross-sections using the JM17 meson-baryon reaction model

- Reasonable description
- A PWA fit provides the intermediate resonances contributions \& parameters
- Intermediate channels: $\pi^{-} \Delta^{++}, \pi^{+} \Delta^{0}, \mathrm{p} \mathrm{\rho}^{0}, \pi^{-} \pi^{+} \mathrm{p}$ direct production, $\pi^{+} \mathrm{N}(1530) 3 / 2^{-}, \pi^{+} \mathrm{N}(1685)$ $5 / 2^{+}$
- Extraction of masses, widths, photocouplings
- (new) Excited states required in the model:
- $\mathbf{N}(\mathbf{1 4 4 0}) \mathbf{1 / 2} \mathbf{2}^{+}, \mathbf{N}(1520) \mathbf{3 / 2}, \mathbf{N}(1535) \mathbf{1 / 2} \mathbf{2}^{-}$, $N(1650) 1 / 2^{-}, N(1680) 5 / 2^{-}, N^{\prime}(1720) 3 / 2^{+}$, $N(2190) 7 / 2$
- $\Delta(1620) 1 / 2^{-}, \Delta(1700) 3 / 2^{-}, \Delta(1905) 5 / 2^{+}$, $\Delta(1950) 7 / 2^{+}$

Photoproduction of $\pi^{0} \pi^{0}$ pairs from protons and neutrons
M. Oberle et al. (CB, TAPS \& A2 @MAMI) PLB271 (2013), 237

Beam-helicity asymmetries in double- π^{0} production on $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target (free p + quasi-free p \& n) with circularly polarized photons up to 1.4 GeV @MAMI
${ }^{\ominus}$ evaluated through cross-section asymmetries
Identical beam-helicity asymmetry measured for free and quasi-free protons; very similar results from neutrons

Expected up to the second resonance region ($\mathrm{W}<1.6 \mathrm{GeV}$)
Surprising at larger energies due to difference resonances produced
Reasonable reproduction of I^{\odot} trend by Bonn-Gatchina and two-pion MAID models (much worse for Valencia), at least up to the second resonance region

$$
I^{\odot}(\varphi)=\sum_{n=1}^{\infty} A_{n} \sin (n \varphi)
$$

Free and quasi-free p

quasi-free n

Photoproduction of $\pi^{0} \pi^{ \pm}$pairs from protons and neutrons

M. Oberle et al. (CB, TAPS \& A2 @MAMI) EPJ A (2014), 50

Beam-helicity asymmetries in double mixed-charge π production on $\mathrm{LH}_{2} / \mathrm{LD}_{2}$ target (free $\mathrm{p}+$ quasi-free $\mathrm{p} \&$ n) with circularly polarized photons up to 1.4 GeV @MAMI

- Sensitive channels to $\rho^{ \pm}$production effects
- More background-populating channels compared to $2 \pi^{0}$
I^{\ominus} evaluated through cross-section asymmetries ordering particles by charge and by mass

Good agreement between measurements on free and quasi-free proton, reasonable with quasi-free neutrons

Worse agreement with models compared to $2 \pi^{0}$, especially at higher energies:

- more contributions from mixed charge channels, call to finer tuning of models
- Two-pions MAID model behaves better, overall
- Beam-helicity asymmetries are very sensitive to interference terms

Photoproduction of $\pi^{0} \pi^{0}$ pairs off protons

V. Sokhoyan (CB@ELSA/TAPS) EPJ A51 (2015), 95

- The double $-\pi^{0}$ production is suitable to investigate the $\Delta(1232) \pi$ intermediate channel
- Less channels contribute compared to the charged pion channel, especially to the non resonant background

- Diffractive ρ production
- Dissociation of the proton into $\Delta^{++} \pi^{-}$
- π exchange is not possible

Use of real linearly polarized photons (ELSA) from 600 MeV to 2500 MeV : access to the $4^{\text {th }}$ resonance region

Extraction of:

- total cross section
- PWA of the Dalitz plot
- Beam-helicity asymmetries for double- π^{0} production on the proton

 radiator

$$
x=\frac{E_{\gamma}}{E_{\text {beam }}}
$$

$$
\delta_{\odot}=P_{e l} \frac{4 x-x^{2}}{4-4 x+3 x^{2}}
$$

Experimental method - polarized beam and target

CLAS-g14 data taking (2011-2012): circularly polarized photon beam with momentum up to $2.5 \mathrm{GeV} / \mathrm{c}$ interacting on a cryogenic HD Iongitudinally polarized target

- Beam: circularly polarized photons by bremsstrahlung from a longitudinally polarized electron beam ($>85 \%$) through a gold foil
- Circular: \uparrow / \downarrow (960 Hz flip frequency)
- Energy dependent γ polarization

\square
- Target: "brute-force + aging" polarization method (< 30\%)
- Longitudinal (along beam direction): \Rightarrow / \Leftarrow
- Fixed in different data-sets
- Protons/neutrons

Study of polarization observables in the $\vec{\gamma} \vec{N} \rightarrow \pi^{+} \pi^{-} N$ reaction

- Differential cross-section

$$
\frac{d \sigma}{d x_{i}}=\sigma_{0}\left\{\left(1+\Lambda_{z} \cdot \mathbf{P}_{\mathbf{z}}\right)+\delta_{\odot}\left(\mathbf{I}^{\odot}+\Lambda_{z} \cdot \mathbf{P}_{z}^{\odot}\right)\right\}
$$ expressed as a function of polarization observables, weighted by the extent of beam δ_{\odot} and/or target Λ polarization

- The trend of the polarization observables depends on the resonance content in a given energy range
- Polarization observables are bilinear combinations of partial amplitudes (Roberts, Oed PRC71 (2005),
0552001): very sensitive to interference effects

Polarization observables extraction

Problem: extract from the number of collected events the I^{\odot}, P, P^{\odot} observables as a function of the Φ azimuthal angle in the helicity reference system, in W energy ranges

- Related to differential cross-section asymmetries

$$
\begin{aligned}
P_{z} & =\frac{1}{\Lambda_{z}} \frac{[N(\rightarrow \Rightarrow)+N(\leftarrow \Rightarrow)]-[N(\rightarrow \Leftarrow)+N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow)+N(\leftarrow \Rightarrow)]+[N(\rightarrow \Leftarrow)+N(\leftarrow \Leftarrow)]} \\
I^{\odot} & =\frac{1}{\delta_{\odot}} \frac{[N(\rightarrow \Rightarrow)+N(\rightarrow \Leftarrow)]-[N(\leftarrow \Rightarrow)+N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow)+N(\rightarrow \Leftarrow)]+[N(\leftarrow \Rightarrow)+N(\leftarrow \Leftarrow)]} \\
P_{z}^{\odot} & =\frac{1}{\Lambda_{z} \delta_{\odot}} \frac{[N(\rightarrow \Rightarrow)+N(\leftarrow \Leftarrow)]-[N(\rightarrow \Leftarrow)+N(\leftarrow \Rightarrow)]}{[N(\rightarrow \Rightarrow)+N(\leftarrow \Leftarrow)]+[N(\rightarrow \Leftarrow)+N(\leftarrow \Rightarrow)]}
\end{aligned}
$$

Polarization asymmetries in $\varphi_{\text {hel }}$ bins

$$
\frac{d \sigma}{d x_{i}}=\sigma_{0}\left\{\left(1+\Lambda_{z} \cdot \mathbf{P}_{\mathbf{z}}\right)+\delta_{\odot}\left(\mathbf{I}^{\odot}+\Lambda_{z} \cdot \mathbf{P}_{z}^{\odot}\right)\right\}
$$

\triangleright This equation (Roberts et al., PRC 718(2005), 055201) can be split in four depending on the orientation of beam helicity and target polarization (along z)
\triangleright Two data sets with opposite target polarization need to be used (but properly normalized) The system of equations can be solved analytically extracting, in every bin, $I^{\odot}, P_{z}, P_{z}^{\odot}$ and σ_{0}

$$
\begin{aligned}
& N_{\text {exp }}^{\vec{\Rightarrow}}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1+\Lambda_{z} P_{z}+\delta_{\odot}\left(I_{\odot}+\Lambda_{z} P_{z}^{\odot}\right)\right] \\
& N_{\text {exp }}^{\leftarrow} \Rightarrow=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1+\Lambda_{z} P_{z}-\delta_{\odot}\left(I_{\odot}+\Lambda_{z} P_{z}^{\odot}\right)\right] \\
& N_{\text {exp }}^{\bullet \leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1-\Lambda_{z} P_{z}+\delta_{\odot}\left(I_{\odot}-\Lambda_{z} P_{z}^{\odot}\right)\right] \\
& N_{\text {exp }}^{\leftarrow \leftarrow}=\left(\frac{d \sigma}{d \Omega}\right)_{0} \mathrm{~L} \varepsilon\left\lfloor 1-\Lambda_{z} P_{z}-\delta_{\odot}\left(I_{\odot}-\Lambda_{z} P_{Z}^{\odot}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& I_{\odot}=\frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow}}{\delta_{\odot 1}}+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{L_{\text {eff } 1}}{L_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{L_{\text {eff } 1}}{L_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)} \\
& P_{z}^{\odot}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow}-N_{1}^{\leftarrow}}{\delta_{\odot 1}}-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow}-N_{2}^{\leftarrow \leftarrow}}{\delta_{\odot 2}}}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \leftarrow}\right)} \\
& P_{z}=\frac{1}{\Lambda_{z 2}} \cdot \frac{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)-\frac{\mathrm{L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}} \cdot\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}{\left(N_{1}^{\rightarrow \Rightarrow}+N_{1}^{\leftarrow \Rightarrow}\right)+\frac{\Lambda_{z 1}}{\Lambda_{z 2}} \cdot \frac{\mathrm{~L}_{\text {eff } 1}}{\mathrm{~L}_{\text {eff } 2}}\left(N_{2}^{\rightarrow \Leftarrow}+N_{2}^{\leftarrow \Leftarrow}\right)}
\end{aligned}
$$

Data selection - exclusive $\vec{\gamma} \vec{p} \rightarrow \pi^{+} \pi^{-} p$ reaction

Description	Cut
Particle multiplicity	1 negative, 2 positives
Time coincidence	Time coincidenœ between: 1 proton, $1 \pi^{+}, 1 \pi^{-}$
$2 \pi p$ z-vertex in HD target	$-9.5<z_{\text {vertex }}<-5.8 \mathrm{~cm}$
$2 \pi p$ pId: $\beta_{\text {corr }}$	$p_{\pi^{ \pm}} / \sqrt{p_{\pi^{2}}^{2}+\left(m_{\pi}-80[\mathrm{MeV}]\right)^{2}} \leq \beta_{\pi^{ \pm}}^{\text {orr }} \leq p_{\pi^{ \pm}} / \sqrt{p_{\pi^{ \pm}}^{2}+\left(m_{\pi}+80[\mathrm{MeV}]\right)^{2}}$
	$p_{p} / \sqrt{p_{p}^{2}+\left(m_{p}-200[\mathrm{MeV}]\right)^{2}} \leq \beta_{p}^{\text {corr }} \leq p_{p} / \sqrt{p_{p}^{2}+\left(m_{p}+200[\mathrm{MeV}]\right)^{2}}$
	$\left\|\Delta\left(\beta_{p}\right)\right\|<0.08$
$2 \pi p$ pId: $\|\Delta \beta\|$	$p_{\pi^{ \pm}} \leq 500[\mathrm{MeV} / c]:\left\|\Delta\left(\beta_{\pi^{ \pm}}\right)\right\|<0.08$
	$p_{\pi^{ \pm}} \geq 500[\mathrm{MeV} / c]:\left\|\Delta\left(\beta_{p)^{ \pm}}\right)\right\|<0.2$
$2 \pi p$ fiducial cuts	$\pi^{+} \& \& \pi^{-} \& \& p$ within fiducial volume
Missing mass for proton pId	$0.824 \leq \mathrm{m} \cdot \mathrm{m} \cdot\left(\pi^{+} \pi^{-}\right) \leq 1.052\left[\mathrm{GeV} / c^{2}\right]$
Total missing mass	$\mathrm{m} . \mathrm{m} \cdot\left(\pi^{+} \pi^{-} p\right)<0\left[\mathrm{GeV} / c^{2}\right]$
Fermi momentum	$p_{F}<100 \mathrm{MeV} / c$
Coplanarity	$\mid c o p l a n a r i t y ~$

Particle ID for $\pi^{+} \pi^{-}$and p based on TOF Further selection on ($\pi^{+} \pi^{-}$) missing mass to identify the proton

```
#-
```

linear missing mass recoiling against $\left(\pi^{+} \pi^{-}\right)$

Total missing mass cut

Missing momentum cut: reject reactions without spectator at rest

Coplanarity cut for pion pairs

Experimental data: empty target subtraction

- Selection of events from the HD target: fiducial cut in r and z
- The events selected in the fiducial volume of the target contain the contribution from the target walls (unpolarized)
- Empty target subtraction needed
- Relative normalization of different runs: height of Kel-F wall peak
- Subtraction with empty-target runs

Events in the Kel-F peak also used for relative luminosity normalizations between different data sets

$\square \square$ تو $\square \square=$ \square -1 \square YR -1-
 $\square \square$ -
-$\stackrel{\square}{\square}-\square$ 븝 $\square \square$ $\square=-$ \square \square
 $\square-\square$ ■

Experimental angular distributions

Inputs: azimuthal angular distributions ($\varphi_{\text {hel }}$)
Bin by bin: number of events selected with

- Given helicity (positive/negative in the same data set)
- Given target polarization (in different data sets)
- Selection in W energy ranges ($\sim 100 \mathrm{MeV}$ wide window)
- Counts to be properly normalized between different data sets

Slight differences when selecting different combinations of helicities/target polarization: origin of the investigated asymmetries

Set w/ positive target polarization

Set w/ negative target polarization

preliminary

Evaluation of experimental beam-helicity asymmetries E*

E* can be extracted from all available data samples (with similar experimental conditions)
For each data set:

$$
E^{*}=\frac{1}{\delta_{\odot}} \frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

The E* values agree with previous measurements with polarized beam only (blue points) Systematic errors (grey bars) from the spread of values obtained with different data sets

Blue points from S. Strauch et al., CLAS Coll., PRL95 (2005), 162003
$\left\langle\mathrm{E}^{*}\right\rangle$ VS $\mathrm{O}_{\text {has }}\left(\pi^{\wedge}\right), \mathrm{W}=1.67 \mathrm{GeV}$

$\boldsymbol{P}_{\mathrm{vs} \mathrm{o}_{\text {hed }}\left(\pi^{+}\right), \mathrm{W}=(1.67 \pm 0.09) \mathrm{GeV},}$

Preliminary results - I° on proton

According to general symmetry principles I^{\odot} is expected to be an odd function of the helicity angle

- It depends only on the ratio of target polarizations

The trend is in reasonable agreement with the earlier observations by CLAS based on a different data-set (E* with unpolarized target)

Blue points from S. Strauch et al., CLAS Coll., PRL 95 (2005), 162003

Preliminary results - $\boldsymbol{P}_{\boldsymbol{z}}$ on proton

No other results available for comparisons: first results ever
P_{z} expected to be odd based on partial amplitudes symmetry
, Vanishing at zero angle: coplanarity condition

- When the helicity angle is oriented in the bottom hemisphere a sign flip occurs in Roberts' equations and, consequently, in the parity of the solutions

Improvingly symmetric odd trend with W increase

- The lack of left/right symmetry could be due to instrumental reasons (different acceptance, ...)
P_{2} vs $\mathrm{O}_{\text {ned }}\left(\pi^{+}\right), \mathrm{W}=(1.67 \pm 0.09) \mathrm{GeV}$

Preliminary results - $P_{z}{ }^{\ominus}$ on proton

No other results available for comparisons: first results ever $P_{z}{ }^{\ominus}$ expected to be even based on partial amplitudes symmetry $P_{z}{ }^{\circ}$ is compatible with zero (within errors)

- Large statistical uncertainties obtained from the error propagation of the system solutions - small extent overall of target polarization (23\% max.)

Summary and outlook

Double-pion photoproduction with polarized beam and/or target as a novel tool to extract information about the baryonic spectrum

- $\gamma \mathrm{p}$ channel
- Analysis completed on the richest data sets, extraction of results for other available compatible data sets pairs underway
- Final evaluation of systematics in progress (take care of correlations among the sets)
- Outlook: $\gamma \mathrm{n}$ channel - in progress
- Same data analysis chain used for $\gamma \mathrm{p}$ to be applied to the $\pi^{+} \pi^{-} \mathrm{n}(\mathrm{p})$ final state
- Use the same W binning and overall analysis approach

The interpretation of results in terms of partial amplitudes contributions calls for new models updating the interference patterns and reproducing the new observables

- So far, none of the available reaction models agrees satisfactorily with the extracted asymmetries

