

MENU2023, Mainz, Germany – October 19, 2023

Results on polarization observables in two pion photoproduction at CLAS

Alessandra Filippi INFN Torino, Italy

On behalf of the CLAS Collaboration

The light baryon (N*, ∆) spectrum in the Constituent Quark Model

 Quarks confined into colorless hadrons

- Description by first principle QCD and constituent Quark Models:
 - Blue lines: expected states
 - Yellow/orange boxes: observations

The light baryon spectrum: experimental status

• Lowest lying N* and Δ^* resonances

- 1.3-2 GeV mass range: second resonant region
- Overlapping states in the same mass region
- Broad widths (short lifetimes)
- Shared decay modes
- Most of the available information from pion/kaon beams experiments
 - Missing states: too small couplings with mesons
- How to disentangle each signal and spot missing resonances?
 - Difficult task if based only on the measurement of cross-sections
 - Use new approaches: analysis of polarization observables (additional information: spin)
 - Perform precision measurements in as many reactions as possible

$N*/\Delta*$ in photoproduction reactions

Photonuclear cross sections

- N baryon Photon induced reaction could favor the formation of missing resonances which might couple strongly to the γN vertex
- γ reactions not studied extensively
 in the past lack of good enough
 (energy/intensity) photon beams
- Dominant contributions to the "second resonant region": doublepion and η channels
 - Double-pion photoproduction: good tool to investigate this mass region

meson

Photoproduction of π⁺π⁻ **pairs from protons** with circularly polarized beam •

- S. Strauch et al. (CLAS) PLR95 (2005), 162003
- CLAS data: 1.35 < W < 2.30 GeV
 - Missing resonances predicted to lie in the region W > 1.8 GeV
- Circularly polarized photon beam, no polarization specified for target and recoil proton
 - First measurement of beam-helicity asymmetry distributions as a function of the helicity angle:

$$I^{\odot} = \frac{1}{P_{\gamma}} \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-}$$

Odd trend in all W sub-ranges

- Compared with models based on electroproduction of double-charged pions including a set of quasi-two body intermediate states (Mokeev et al.):
 - $π_Δ$, ρN, πN(1520), πN(1680) + contributions from Δ(1600), N(1700), N(1710), N(1720)
 - The agreement is not satisfactory, calls for a more detailed description
 - The I^{\odot} observable is critically sensitive to interferences

Photoproduction of $\pi^+\pi^-$ pairs off protons (unpolarized)

E. Golovatch (CLAS) PL B788 (2019), 371

- Measurement of 9x 1-fold differential cross sections of the $\gamma p \rightarrow \pi^+\pi^- p$ reaction in the (1.6, 2) GeV range Attempt to reproduce the cross-sections using the JM17 meson-baryon reaction model
 - Reasonable description

clas

- A PWA fit provides the intermediate resonances contributions & parameters
 - Intermediate channels: $\pi^{-}\Delta^{++}$, $\pi^{+}\Delta^{0}$, $p\rho^{0}$, $\pi^{-}\pi^{+}p$ direct production, $\pi^{+}N(1530) 3/2^{-}$, $\pi^{+}N(1685) 5/2^{+}$
 - Extraction of masses, widths, photocouplings
 - (new) Excited states required in the model:
 - N(1440) 1/2⁺, N(1520) 3/2⁻, N(1535) 1/2⁻, N(1650) 1/2⁻, N(1680) 5/2⁻, N'(1720) 3/2⁺, N(2190) 7/2⁻
 - Δ(1620) 1/2⁻, Δ(1700) 3/2⁻, Δ(1905) 5/2⁺,
 Δ(1950) 7/2⁺

Photoproduction of $\pi^0\pi^0$ **pairs from protons and neutrons**

M. Oberle et al. (CB, TAPS & A2 @MAMI) PLB271 (2013), 237

- Beam-helicity asymmetries in double-π⁰ production on LH₂/LD₂ target (free p + quasi-free p & n) with circularly polarized photons up to 1.4 GeV @MAMI
 - I^{\odot} evaluated through cross-section asymmetries
- Identical beam-helicity asymmetry measured for free and quasi-free protons; very similar results from neutrons
 - Expected up to the second resonance region (W < 1.6 GeV)</p>
 - Surprising at larger energies due to difference resonances produced
 - Reasonable reproduction of I^{\odot} trend by Bonn-Gatchina and two-pion MAID models (much worse for Valencia), at least up to the second resonance region

Photoproduction of $\pi^0\pi^{\pm}$ pairs from protons and neutrons

M. Oberle et al. (CB, TAPS & A2 @MAMI) EPJ A (2014), 50

- Beam-helicity asymmetries in double mixed-charge π production on LH₂/LD₂ target (free p + quasi-free p & n) with circularly polarized photons up to 1.4 GeV @MAMI
 - Sensitive channels to ρ^{\pm} production effects
 - More background-populating channels compared to $2\pi^0$
- I^{\odot} evaluated through cross-section asymmetries ordering particles by charge and by mass
- Good agreement between measurements on free and quasi-free proton, reasonable with quasi-free neutrons
- Worse agreement with models compared to $2\pi^0$, especially at higher energies:
 - more contributions from mixed charge channels, call to finer tuning of models
 - Two-pions MAID model behaves better, overall
 - Beam-helicity asymmetries are very sensitive to interference terms

Photoproduction of $\pi^0\pi^0$ **pairs off protons**

V. Sokhoyan (CB@ELSA/TAPS) EPJ A51 (2015), 95

- The double- π^0 production is suitable to investigate the $\Delta(1232)\pi$ intermediate channel
 - Less channels contribute compared to the charged pion channel, especially to the non resonant background
 - Diffractive ρ production
 - Dissociation of the proton into $\Delta^{++}\pi^{-}$
 - π exchange is not possible
- Use of real linearly polarized photons (ELSA) from 600 MeV to 2500 MeV: access to the 4th resonance region
 - Extraction of:
 - total cross section
 - PWA of the Dalitz plot
 - Beam-helicity asymmetries for double- π^0 production on the proton

 $x = \frac{E_{\gamma}}{E_{bean}}$

Experimental method – polarized beam and target

- CLAS-g14 data taking (2011-2012): *circularly polarized* photon beam with momentum up to 2.5 GeV/c interacting on a cryogenic HD *longitudinally* polarized target
- Beam: circularly polarized photons by bremsstrahlung from a longitudinally polarized electron beam (>85%) through a gold foil radiator
 - Circular: \uparrow/\downarrow (960 Hz flip frequency)
 - Energy dependent γ polarization

- Target: "brute-force + aging" polarization method (< 30%)</p>
 - Longitudinal (along beam direction): \Rightarrow/\Leftarrow
 - Fixed in different data-sets
 - Protons/neutrons

Study of polarization observables in the $\vec{\gamma} \vec{N} \rightarrow \pi^+ \pi^- N$ reaction

- Differential cross-section expressed as a function of polarization observables, weighted by the extent of beam δ_{\odot} and/or target Λ polarization
- The trend of the polarization observables depends on the resonance content in a given energy range
- Polarization observables are
 bilinear combinations of
 partial amplitudes (Roberts,
 Oed PRC71 (2005),
 0552001): very sensitive to
 interference effects

Polarization observables extraction

Problem: extract from the number of collected events the I^{\odot} , P, P^{\odot} observables as a function of the Φ azimuthal angle in the helicity reference system, in W energy ranges

$$P_{z} = \frac{1}{\Lambda_{z}} \frac{[N(\to\Rightarrow) + N(\leftrightarrow\Rightarrow)] - [N(\to\Leftarrow) + N(\leftarrow\Leftarrow)]}{[N(\to\Rightarrow) + N(\leftarrow\Rightarrow)] + [N(\to\Leftarrow) + N(\leftarrow\Leftarrow)]}$$
$$I^{\odot} = \frac{1}{\delta_{\odot}} \frac{[N(\to\Rightarrow) + N(\to\leftarrow]] - [N(\leftarrow\Rightarrow) + N(\leftarrow\leftarrow)]}{[N(\to\Rightarrow) + N(\to\leftarrow)] + [N(\leftarrow\Rightarrow) + N(\leftarrow\leftarrow)]}$$
$$= \frac{1}{\delta_{\odot}} \frac{[N(\to\Rightarrow) + N(\leftarrow\leftarrow)] - [N(\to\leftarrow) + N(\leftarrow\leftarrow)]}{[N(\to\pm) + N(\leftarrow\leftarrow)]}$$

$$P_z^{\odot} = \frac{1}{\Lambda_z \delta_{\odot}} \frac{[N(\to \Rightarrow) + N(\leftarrow \Leftarrow)] - [N(\to \Leftarrow) + N(\leftarrow \Rightarrow)]}{[N(\to \Rightarrow) + N(\leftarrow \Leftarrow)] + [N(\to \Leftarrow) + N(\leftarrow \Rightarrow)]}$$

- Related to differential cross-section asymmetries
- Depending on the relative beam/target spin configurations
- Two data sets with opposite target (⇒/⇐) polarizations needed (with proper normalization)

Polarization asymmetries in φ_{hel} **bins**

$$\frac{d\sigma}{dx_i} = \sigma_0 \{ (1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot} (\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot}) \}$$

- This equation (Roberts et al., PRC 718(2005), 055201) can be split in four depending on the orientation of beam helicity and target polarization (along z)
- Two data sets with opposite target polarization need to be used (but properly normalized) The system of equations can be solved analytically extracting, in every bin, I° , P_{τ} , P°_{τ} and σ_{0}

$$\begin{split} N_{exp}^{\rightarrow\Rightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 + \Lambda_{z} P_{z} + \delta_{\odot} (I_{\odot} + \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow\Rightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 + \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} + \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow\Rightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 + \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} + \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} + \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_{exp}^{\leftarrow=} &= \left(\frac{d\sigma}{d\Omega}\right)_{0} \mathbf{L} \, \boldsymbol{\varepsilon} \left[1 - \Lambda_{z} P_{z} - \delta_{\odot} (I_{\odot} - \Lambda_{z} P_{z}^{\odot})\right] \\ N_$$

 $-\frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} \cdot \frac{N_2^{\to \Leftarrow} - N_2^{\leftarrow \Leftarrow}}{\delta_{\odot 2}}$

Data selection – exclusive $\vec{\gamma}\vec{p} \rightarrow \pi^+\pi^-p$ reaction

Description	Cut
Particle multiplicity	1 negative, 2 positives
Time coincidence	Time coincidence between: 1 proton, 1 π^+ , 1 π^-
$2\pi p$ z-vertex in HD target	$-9.5 < z_{vertex} < -5.8$ cm
$2\pi p$ pId: β_{corr}	$p_{\pi^{\pm}}/\sqrt{p_{\pi^{p}m}^{2} + (m_{\pi} - 80 \text{ [MeV]})^{2}} \le \beta_{\pi^{\pm}}^{corr} \le p_{\pi^{\pm}}/\sqrt{p_{\pi^{\pm}}^{2} + (m_{\pi} + 80 \text{ [MeV]})^{2}}$
	$p_p / \sqrt{p_p^2 + (m_p - 200 \text{ [MeV]})^2} \le \beta_p^{corr} \le p_p / \sqrt{p_p^2 + (m_p + 200 \text{ [MeV]})^2}$
$2\pi p$ pId: $ \Delta\beta $	$ \Delta(\beta_p) < 0.08$
	$p_{\pi^{\pm}} \le 500 \; [\text{MeV}/c] : \; \Delta(\beta_{\pi^{\pm}}) < 0.08$
	$p_{\pi^{\pm}} \ge 500 \; [\text{MeV}/c] : \; \Delta(\beta_{p)^{\pm}}) < 0.2$
$2\pi p$ fiducial cuts	π^+ && π^- && p within fiducial volume
Missing mass for proton pId	$0.824 \le \text{m.m.}(\pi^+\pi^-) \le 1.052 [\text{GeV}/c^2]$
Total missing mass	$m.m.(\pi^+\pi^- p) < 0 \ [\text{GeV}/c^2]$
Fermi momentum	$p_F < 100 \text{ MeV}/c$
Coplanarity	$ coplanarity < 10^{\circ}$

Particle ID for $\pi^+\pi^-$ and p based on TOF Further selection on $(\pi^+\pi^-)$ missing mass to identify the proton

Coplanarity cut for pion pairs

Experimental data: empty target subtraction

clas

- Selection of events from the HD target: fiducial cut in r and z
- The events selected in the fiducial volume of the target contain the contribution from the target walls (unpolarized)
 - Empty target subtraction needed
 - Relative normalization of different runs: height of Kel-F wall peak
 - Subtraction with empty-target runs
- Events in the Kel-F peak also used for relative luminosity normalizations between different data sets

Experimental angular distributions

Inputs: azimuthal angular distributions (ϕ_{hel}) Bin by bin: number of events selected with

- Given helicity (positive/negative in the same data set)
- Given target polarization (in different data sets)
- Selection in W energy ranges (~100 MeV wide window)
- Counts to be properly normalized between different data sets

Slight differences when selecting different combinations of helicities/target polarization: origin of the investigated asymmetries

Set w/ negative target polarization

16

Evaluation of experimental beam-helicity asymmetries E*

- E* can be extracted from all available data samples (with similar experimental conditions)
 - For each data set:

$$E^{*} = \frac{1}{\delta_{\odot}} \frac{N^{+} - N^{-}}{N^{+} + N^{-}}$$

The E* values agree with previous measurements with polarized beam only (blue points)
 Systematic errors (grey bars) from the spread of values obtained with different data sets

Preliminary results - I° on proton

According to general symmetry principles I^{\odot} is expected to be an *odd* function of the helicity angle

- It depends only on the ratio of target polarizations
- The trend is in reasonable agreement with the earlier observations by CLAS based on a different data-set (E* with unpolarized target)

Blue points from S. Strauch et al., CLAS Coll., PRL 95 (2005), 162003

Preliminary results – P_z on proton

No other results available for comparisons: first results ever P_z expected to be odd based on partial amplitudes symmetry

- Vanishing at zero angle: coplanarity condition
- When the helicity angle is oriented in the bottom hemisphere a sign flip occurs in Roberts' equations and, consequently, in the parity of the solutions
- Improvingly symmetric odd trend with W increase
 - The lack of left/right symmetry could be due to instrumental reasons (different acceptance, ...)

Preliminary results – *P*^o **on proton**

No other results available for comparisons: first results ever P_z^{\odot} expected to be even based on partial amplitudes symmetry P_z^{\odot} is compatible with zero (within errors)

 Large statistical uncertainties obtained from the error propagation of the system solutions – small extent overall of target polarization (23% max.)

Summary and outlook

- Double-pion photoproduction with polarized beam and/or target as a novel tool to extract information about the baryonic spectrum
 - γp channel
 - Analysis completed on the richest data sets, extraction of results for other available compatible data sets pairs underway
 - Final evaluation of systematics in progress (take care of correlations among the sets)
 - Outlook: γn channel in progress
 - Same data analysis chain used for γp to be applied to the $\pi^+\pi^-n(p)$ final state
 - Use the same W binning and overall analysis approach
- The interpretation of results in terms of partial amplitudes contributions calls for new models updating the interference patterns and reproducing the new observables
 - So far, none of the available reaction models agrees satisfactorily with the extracted asymmetries