Nucleon self-energy including two-loop contributions

Nils Dirk Conrad Ashot Gasparyan, Evgeny Epelbaum

Institute of Theoretical Physics II - Hadron and Particle Physics Ruhr University Bochum, Germany

October 16, 2023

MENU 2023, October 15-20, Mainz

Contents

- 2 Basics
 - Chiral perturbation theory
 - Diagrams
- 3 Reduction
- 4 Renormalization
- 5 Solutions
 - 1/m solution
 - Numeric solution

6 Comparison

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
●	000	00	0	00	00	O	00
Motiva	tion						

Study the pion mass dependence of the nucleon mass $m_N(M_\pi)$ by computing the self self-energy Σ

$$m_N = m^{\mathsf{Bare}} + \Sigma(p^2 = m_N^2) = m^{\mathsf{Bare}} + \xrightarrow{p} (\mathsf{1Pl} \xrightarrow{p} \Big|_{p^2 = m_N^2})$$

.

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
●	000	00	0	00	00	O	00
Motiva	tion						

Study the pion mass dependence of the nucleon mass $m_N(M_\pi)$ by computing the self self-energy Σ

$$m_N = m^{\mathsf{Bare}} + \Sigma(p^2 = m_N^2) = m^{\mathsf{Bare}} + \xrightarrow{p} \underbrace{\mathsf{1Pl}}_{p^2 = m_N^2} \Big|_{p^2 = m_N^2}$$

Calculate $\Sigma(p)$ up to $\mathcal{O}(q^6) \rightarrow {\rm include}$ two-loop diagrams

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
●	000	00	0	00	00	O	00
Motiva	tion						

Study the pion mass dependence of the nucleon mass $m_N(M_\pi)$ by computing the self self-energy Σ

$$m_N = m^{\mathsf{Bare}} + \Sigma(p^2 = m_N^2) = m^{\mathsf{Bare}} + \xrightarrow{p} (1\mathsf{Pl}) \xrightarrow{p} \Big|_{p^2 = m_N^2}$$

Calculate $\Sigma(p)$ up to $\mathcal{O}(q^6) \rightarrow$ include two-loop diagrams 1999 HBChPT [McGovern and Birse, Phys. Lett. B 446, 1999] non-relativ., conserves PC, $\mathcal{O}(q^5)$ ($\mathcal{O}(q^6)$ from below)

$$m_N = m_0 + k_1 M^2 + k_2 M^3 + k_3 M^4 \ln \frac{M}{\mu} + k_4 M^4 + k_5 M^5 \ln \frac{M}{\mu} + k_6 M^5 + k_7 M^6 \ln \frac{M}{\mu} + k_8 M^6 \ln^2 \frac{M}{\mu} + k_9 M^6$$

with $k_i(m, g_A, F, l_3, l_4, c_{1-4}, d_{16}, d_{18}, e_i, \hat{g}_1)$ 2008 IR [Schindler et al., Nuc.Phys.A 803.1, 2008] $\mathcal{O}(q^6)$ 2024 EOMS: fully covariant, $\mathcal{O}(q^{6+})$ (∞ -order 1/m for integrals) (based on [Fuchs et al., Phys.Rev.D 68, 056005, 2003])

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
O	●○○	00	0	00	00	O	00
Chiral	pertur	bation t	theory				

 \bullet Quantum chromodynamics (QCD) $\hat{=}$ strong interaction

• Chiral perturbation theory (ChPT) = EFT for low energies Chiral Lagrangian up to chiral order $\mathcal{O}(q^4)$ in SU(2) [Fettes and Meißner., APhy 283.2, 2000]:

$$\begin{split} \mathcal{L} &= \mathcal{L}_{\pi}^{(2)} + \mathcal{L}_{\pi}^{(4)} + \mathcal{L}_{\pi N}^{(1)} + \mathcal{L}_{\pi N}^{(2)} + \mathcal{L}_{\pi N}^{(3)} + \mathcal{L}_{\pi N}^{(4)} \\ \mathcal{L}_{\pi}^{(2)} &= -\frac{1}{2} M^2 \vec{\pi} \cdot \vec{\pi} + \frac{1}{2} \partial_{\mu} \vec{\pi} \cdot \partial^{\mu} \vec{\pi} + \frac{8\alpha - 1}{8F^2} M^2 \left(\vec{\pi} \cdot \vec{\pi} \right)^2 + \dots + O(\pi^6) \\ \mathcal{L}_{\pi}^{(4)} &= -\frac{(l_3 + l_4) M^4}{F^2} \left(\vec{\pi} \cdot \vec{\pi} \right) + \dots + O(\pi^3) \\ \mathcal{L}_{\pi N}^{(1)} &= -\bar{\Psi} m \Psi + i \bar{\Psi} \partial \!\!\!/ \Psi + \frac{g_A}{2F} \bar{\Psi} \gamma_5 \vec{\tau} \cdot \partial \!\!\!/ \vec{\pi} \Psi + \dots + O(\pi^5) \\ l_i \in \mathcal{L}_{\pi}^{(4)}, \quad c_i \in \mathcal{L}_{\pi N}^{(2)}, \quad d_i \in \mathcal{L}_{\pi N}^{(3)}, \quad e_i \in \mathcal{L}_{\pi N}^{(4)} \\ \text{with } M/m < 1 \ (M = \mathcal{O}(q^1), \ m = \mathcal{O}(\Lambda), \ q/\Lambda < 1) \end{split}$$

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	○●○	00	0	00	00	O	00
D'			1 1	1			

Diagrams – tree level and one-loop

Tree level

One-loop

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	00	0	00	00	0	00

Diagrams – two-loop

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	○●	0	00	00	O	00

Reduced expression of a diagram

$$\rightarrow (1) \rightarrow (1$$

$$\begin{split} &= -i\Sigma_g^{(2)} = -\frac{ig_A^2 \left((2d-3)m^2 - (d-2)M^2\right)}{2(3d-4)F^4m} (T_\pi^{(1)})^2 - \frac{3ig_A^2}{8F^4m^3} \\ &\times \left(8m^4 - 3m^2(p^2 - m^2) + 4m^3(\not p - m) - 3m(\not p - m)(p^2 - m^2) + 3(p^2 - m^2)^2\right) (T_N^{(1)})^2 \\ &+ \frac{ig_A^2 \left(4(2d-3)m^2 - (d-2)M^2\right) + (\ldots)}{2(3d-4)F^4m} T_N^{(1)} T_\pi^{(1)} - \frac{3ig_A^2mM^2 + (\ldots)}{F^4} T_N^{(1)} T_{\pi N}^{(1)} \\ &- \frac{ig_A^2 \left((8d^2 - 32d + 30)m^4 + \left(-8d^2 + 33d - 32\right)m^2M^2 - (d^2 - 5d + 6\right)M^4\right) + (\ldots)}{(d-2)(3d-4)F^4m} T_{\rm II}^{(2)} \\ &+ \frac{4ig_A^2M^2 \left(m^2 - M^2\right) \left((4d-6)m^2 + (d-2)M^2\right) + (\ldots)}{(d-2)(3d-4)F^4m} T_{\rm II}^{(2)} \\ &- \frac{ig_A^2m(p^2 - m^2)(\ldots + \ldots)}{2(d-2)(3d-4)F^4} T_{\rm IV}^{(2)} - \frac{3ig_A^2mM^2 + (\ldots)}{F^4} T_{\rm V}^{(2)} - \frac{3ig_A^2mM^4 + (\ldots)}{F^4} T_{\rm VI}^{(2)} \end{split}$$

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	00	•	00	00	O	00
Renorr	naliza	tion					

Extended-on-mass-shell (EOMS) renormalization: divergent + only power-counting breaking (PCB)

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
O	000	00	•	00	00	O	00
Renorr	naliza	tion					

Extended-on-mass-shell (EOMS) renormalization: divergent + only power-counting breaking (PCB)

Dressed propagator (with contact terms Σ_c) $\tilde{m} = m + \Sigma_c = m - 4c_1M^2 - \hat{e}_1M^4 + \hat{g}_1M^6$

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	00	•	00	00	O	00
Renorr	naliza	tion					

Extended-on-mass-shell (EOMS) renormalization: divergent + only power-counting breaking (PCB)

Dressed propagator (with contact terms Σ_c) $\tilde{m} = m + \Sigma_c = m - 4c_1M^2 - \hat{e}_1M^4 + \hat{g}_1M^6 \longrightarrow 1 \rightarrow 2 \rightarrow 1$

Renormalization corrections:

- One-loop: $\tilde{m}^{\text{Bare}} = m_0 + \Sigma_c^{\text{R}} \Sigma^{(1),\text{div}+\text{PCB}} + \mathcal{O}(\hbar^2)$
- Two-loop: δg_A , δd_i , δc_i , δe_i , δZ_N from [Siemens et al., PhyRevC 94, 014620, 2016] with main changes:
 - $m_N \to m_0 + \Sigma_c^{\mathsf{R}}$
 - chiral limit

• One-loop off-shell:
$$\xrightarrow{p} \delta Z_N p$$

 $\stackrel{\rightarrow}{\longrightarrow} \xrightarrow{} \hat{} = i\delta Z_N \left(p - \tilde{m}^{\mathsf{R}} \right)$

• No two-loop off-shell: $p^2 - \tilde{m}^2 = \mathcal{O}(M^3, \hbar)$

1/m solution of the master integrals

Strategy of regions [Beneke and Smirnov, Nucl.Phys.B 522 321-344, 1998]: Loop momenta $l_i \sim q$ or $l_i \gg q$ then Taylor series in small scale T_q

$$T_{q}\left[\int f(l_{1}, l_{2}, q) dl_{1} dl_{2}\right] = \int T_{q}\left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \sim q \\ l_{2} \sim q}} dl_{1} dl_{2} + \int T_{q}\left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \gg q \\ l_{2} \gg q}} dl_{1} dl_{2} + \left(\int T_{q}\left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \gg q \\ l_{2} \gg q}} dl_{1} dl_{2} + \int T_{q}\left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \gg q \\ l_{2} \sim q}} dl_{1} dl_{2}\right)$$

 \rightarrow purely infrared singular, regular and mixed parts (IRS, IRR, M)

1/m solution of the master integrals

Strategy of regions [Beneke and Smirnov, Nucl.Phys.B 522 321-344, 1998]: Loop momenta $l_i \sim q$ or $l_i \gg q$ then Taylor series in small scale T_q

$$T_{q}\left[\int f(l_{1}, l_{2}, q) dl_{1} dl_{2}\right] = \int T_{q} \left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \sim q \\ l_{2} \sim q}} dl_{1} dl_{2} + \int T_{q} \left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \gg q \\ l_{2} \gg q}} dl_{1} dl_{2} + \left(\int T_{q} \left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \gg q \\ l_{2} \gg q}} dl_{1} dl_{2} + \int T_{q} \left[f(l_{1}, l_{2}, q)\right]_{\substack{l_{1} \gg q \\ l_{2} \sim q}} dl_{1} dl_{2}\right)$$

 \rightarrow purely infrared singular, regular and mixed parts (IRS, IRR, M)

1/m solution of the master integrals

Strategy of regions [Beneke and Smirnov, Nucl.Phys.B 522 321-344, 1998]: Loop momenta $l_i \sim q$ or $l_i \gg q$ then Taylor series in small scale T_q

$$\begin{split} T_q \left[\int f(l_1, l_2, q) \mathrm{d}l_1 \mathrm{d}l_2 \right] &= \int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \sim q \\ l_2 \sim q}} \mathrm{d}l_1 \mathrm{d}l_2 + \int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \gg q \\ l_2 \gg q}} \mathrm{d}l_1 \mathrm{d}l_2 \\ &+ \left(\int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \sim q \\ l_2 \gg q}} \mathrm{d}l_1 \mathrm{d}l_2 + \int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \gg q \\ l_2 \sim q}} \mathrm{d}l_1 \mathrm{d}l_2 \right) \end{split}$$

 \rightarrow purely infrared singular, regular and mixed parts (IRS, IRR, M)

The infrared regular part

- is analytic in M^2 (no M^3 or $\ln(M/m)$)
- contains PCB terms

1/m solution of the master integrals

Strategy of regions [Beneke and Smirnov, Nucl.Phys.B 522 321-344, 1998]: Loop momenta $l_i \sim q$ or $l_i \gg q$ then Taylor series in small scale T_q

$$\begin{split} T_q \left[\int f(l_1, l_2, q) \mathrm{d}l_1 \mathrm{d}l_2 \right] &= \int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \sim q \\ l_2 \sim q}} \mathrm{d}l_1 \mathrm{d}l_2 + \int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \gg q \\ l_2 \gg q}} \mathrm{d}l_1 \mathrm{d}l_2 \\ &+ \left(\int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \sim q \\ l_2 \gg q}} \mathrm{d}l_1 \mathrm{d}l_2 + \int T_q \left[f(l_1, l_2, q) \right]_{\substack{l_1 \gg q \\ l_2 \sim q}} \mathrm{d}l_1 \mathrm{d}l_2 \right) \end{split}$$

 \rightarrow purely infrared singular, regular and mixed parts (IRS, IRR, M)

The infrared regular part

- is analytic in M^2 (no M^3 or $\ln(M/m))$
- contains PCB terms

 $\rightarrow m_N = m_0 + k_1 M^2 + \dots + k_n M^6$ with k_i (LECs)

Motivation Basics Reduction O Renormalization Solutions Comparison Summary Appendix OO Numeric solution of the master integrals

Numerical calculation of the integrals via sector decomposition SecDec [Binoth and Heinrich, Nucl. Phys. B 585, 741-759, 2000] pySecDec [Borowka et al., Comput. Phys. Commun. 222, 313-326, 2018]

- Result computed in powers of ε with d = 4 − 2ε one-loop: ¹/_ε, ε⁰, ε two-loop: ¹/_{ε²}, ¹/_ε, ε⁰
- Double MIs: uncertainty/result = 5 \times 10 $^{-5}$ (\approx 1 h)
- Significant differences to analytics for $T_{\rm III}^{(2)}$, $T_{\rm VI}^{(2)}$ and $T_{\rm VIII}^{(2)}$

Motivation Basics Reduction Renormalization Solutions Comparison Summary Appendix Numeric solution of the master integrals

Numerical calculation of the integrals via sector decomposition SecDec [Binoth and Heinrich, Nucl. Phys. B 585, 741-759, 2000] pySecDec [Borowka et al., Comput. Phys. Commun. 222, 313-326, 2018]

- Result computed in powers of ε with d = 4 − 2ε one-loop: ¹/_ε, ε⁰, ε two-loop: ¹/_{ε²}, ¹/_ε, ε⁰
- Double MIs: uncertainty/result = 5 \times 10 $^{-5}~(\approx$ 1 h)
- Significant differences to analytics for $T_{\rm III}^{(2)}$, $T_{\rm VI}^{(2)}$ and $T_{\rm VIII}^{(2)}$ Renormalized result:
 - Subtract the (finite) PCB terms
 - $\bullet~$ Leading order removed $\rightarrow~$ less relative accuracy

Differences EOMS \leftrightarrow IR:

- Renormalization corrections: different finite parts
- One-loop

• IR
$$\doteq$$
 whole IRR part – EOMS \doteq only the PCB

•
$$\rightarrow$$
 (1)+(2)+(2)+(1)+(, \rightarrow (1)+(4)+(1)+(, \rightarrow (1)+(2)+(3)+(...)

- Two-loop
 - Analytic differences from purely IRR and mixed

• Non-analytic: mixed parts in EOMS give $\ln(M/\mu) \ln(m/\mu)$

 $\begin{array}{c|cccc} \mbox{Motivation} & \mbox{Basics} & \mbox{Reduction} & \mbox{Renormalization} & \mbox{Solutions} & \mbox{Comparison} & \mbox{Summary} & \mbox{Appendix} & \mbox{Oppendix} & \mbox{Op$

Differences EOMS \leftrightarrow IR:

- Renormalization corrections: different finite parts
- One-loop

• IR
$$\doteq$$
 whole IRR part – EOMS \doteq only the PCB

•
$$\rightarrow (1 \rightarrow 2) \rightarrow (2 \rightarrow 2) \rightarrow (1 \rightarrow -, \rightarrow (1 \rightarrow 4) \rightarrow (1 \rightarrow -, \rightarrow (1 \rightarrow 2) \rightarrow (3 \rightarrow -, \cdots))$$

Two-loop

• Analytic differences from purely IRR and mixed

- Non-analytic: mixed parts in EOMS give $\ln(M/\mu)\ln(m/\mu)$ $m_N^{\rm IR}\to m_N^{\rm EOMS}$ by

 $x^{\mathsf{R},\mathsf{IR}} = x^{\mathsf{R},\mathsf{EOMS}} + \Delta x(m_0,\mathsf{LECs}), \quad x \in \{d_i, \hat{e}_1, \hat{e}_2, \hat{g}_1\}$

Comparison – 1/m vs. numeric

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	00	0	00	00	●	00
Summa	ary an	d Outlo	ok				

Summary

- Expressed the self-energy in terms of MIs (including IRR)
- Applied strategy of regions for two-loop calculation
- Calculated $m_N(M_\pi)$ as 1/m result
 - in EOMS
 - $\bullet\,$ and confirmed HB and IR
- Numerical computation of all MIs
- First numerical computation of the \hbar^2/F^4 part of m_N

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	00	0	00	00	●	00
Summa	ary an	d Outlo	ok				

Summary

- Expressed the self-energy in terms of MIs (including IRR)
- Applied strategy of regions for two-loop calculation
- Calculated $m_N(M_\pi)$ as 1/m result
 - in EOMS
 - and confirmed HB and IR
- Numerical computation of all MIs
- First numerical computation of the \hbar^2/F^4 part of m_N

Outlook:

- Derive the full numerical result for m_N
- Comparison with lattice results

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix
0	000	00	0	00	00	O	●0

Appendix: Overview

Motivation	Basics	Reduction	Renormalization	Solutions	Comparison	Summary	Appendix			
0	000	00	0	00	00	O	○●			
Appendix: LECs										

