

Electromagnetic form factors and charge radii of light nuclei from chiral effective field theory

Arseniy Filin

Institut für Theoretische Physik II, Ruhr-Universität Bochum, Germany

in collaboration with

V. Baru, E. Epelbaum, C. Körber, H. Krebs, D. Möller, A. Nogga, and P. Reinert

PRL 124 082501 (2020) Phys.Rev.C 103 024313 (2021)

Nuclear charge radii from chiral effective field theory

Precise calculations of charge radii of super-light nuclei

Motivation:

- Precision tests of nuclear chiral effective field theory (Chiral EFT)
- A new way to extract the neutron and the proton charge radii from few-nucleon data
- Help to resolve long-standing issue with underpredicted radii of medium-mass and heavy nuclei
- Search for **Beyond-Standard-Model** physics (lepton universality breaking)

Charge radii of A \leq 4 nuclei — experimental data

Number of neutrons N

Basic features of chiral effective field theory

Chiral effective field theory

- Low-energy effective field theory of QCD
- Degrees of freedom are pions and nucleons
- Most general Lagrangian consistent with symmetries and symmetry-breaking pattern of QCD
- Expansion parameter $Q = \frac{\max(m_{\pi}, p)}{\Lambda_{\nu}}$

- Systematically improvable

. . .

- Observables are calculated order by order

LO = Leading Order NLO = Next-to-leading order N²LO = Next-to-next-to-leading order m_{π} = pion mass

p = typical momentum scale

 Λ_{χ} = chiral symmetry breaking scale

- Higher orders contain more free parameters, which have to be fitted to data

Chiral effective field theory - precise, accurate and consistent

New high-precision chiral NN forces (N⁴LO⁺) Reinert et al. PRL 126, 092501 (2021)

- Nearly perfect description of pp and pn scattering data up to pion production threshold

Chiral 3N forces (general N²LO; selected terms at N⁴LO) Epelbaum:2019kcf

- LECs cD and cE (N²LO) are fitted to RIKEN Nd DCS data and ³He binding energy
- Consistent regularisation of N³LO is in progress
- Inclusion of the N³LO off-shell effects are in progress (talk by Sven Heihoff on Tuesday)

2N Chiral electromagnetic currents (general N²LO; isoscalar N⁴LO)

- N²LO (isoscalar N⁴LO) is derived and regularised consistently with the chiral NN forces
- Consistent regularisation of N³LO (isovector) is in progress

Kolling:2009iq Kolling:2012cs Krebs:2019aka Krebs:2020pii (Review)

Reliable methods to quantify truncation uncertainty of the EFT expansion

Epelbaum et al. EPJA 51 (2015); Furnstahl et al. PRC 92, 024005 (2015); Melendez et al. PRC 96, 024003 (2017), Wesolowski et al. J. Phys. G 46, 045102 (2019); Melendez et al. PRC 100, 044001 (2019), ...

Chiral effective field theory - precise, accurate and consistent

New high-precision chiral NN forces (N⁴LO⁺) Reinert et al. PRL 126, 092501 (2021)

- Nearly perfect description of pp and pn scattering data up to pion production threshold

Chiral 3N forces (general N²LO; selected terms at N⁴LO) Epelbaum:2019kcf

- LECs cD and cE (N²LO) are fitted to RIKEN Nd DCS data and ³He binding energy
- Consistent regularisation of N³LO is in progress
- Inclusion of the N³LO off-shell effects are in progress (talk by Sven Heihoff on Tuesday)

2N Chiral electromagnetic currents (general N²LO; isoscalar N⁴LO)

- N²LO (**isoscalar N⁴LO**) is derived and regularised consistently with the chiral NN forces
- Consistent regularisation of N³LO (isovector) is in progress

Goals of this study:

- consistent χ EFT calculation of isoscalar structure radii of A = 2, 3, 4 nuclei
- aim at N⁴LO level of accuracy even in the incomplete calculation
- careful estimation of uncertainties (truncation, statistical, numerical and other)

Kolling:2009iq Kolling:2012cs Krebs:2019aka Krebs:2020pii (Review)

Chiral EFT calculation of the nuclear charge radius

Charge radius r_c is related to the charge form factor $F_c(Q)$

$$r_C^2 = (-6) \frac{\partial}{\partial Q^2} F_C(Q^2) \Big|_{Q=0}$$

The matrix element is a convolution of nuclear wave function and charge density operator

Nuclear electromagnetic currents

Kolling:2009iq, Kolling:2012cs, Krebs:2019aka Review: H. Krebs, EPJA 56 (2020) 240


~~~~

depend on **3** parameters (LECs)  ${}^{3}S_{1}-{}^{3}S_{1}$  - fitted to deuteron FF data  ${}^{3}S_{1}-{}^{3}D_{1}$  - fitted to deuteron FF data too  ${}^{1}S_{0}-{}^{1}S_{0}$  - fitted to  ${}^{4}He$  FF data

Chen, Rupak, Savage '99; Phillips '07 AF et al. '20

# Structure radius

Nuclear charge radius can be decomposed into structure, proton and neutron radii

$$r_C^2 = r_{str}^2 + \left(r_p^2 + \frac{3}{4m_p^2}\right) + \frac{N}{Z}r_n^2$$

## **Nuclear structure radius**

- depends on distribution of matter (proton and neutrons) inside the nuclei
- depends on many-body electromagnetic currents (meson-exchange currents)
- can be accurately calculated using chiral nuclear forces and EM currents

Structure radius = charge radius if protons and neutrons have point-like charge distributions

# Deuteron structure radius

& extraction of the neutron charge radius





PRL124 082501 (2020) Phys.Rev.C 103, 024313 (2021)





# 



## Deuteron quadrupole form factor



Experimental data
 Parameterisation by I.Sick (not used in the fit)
 Demoment

$$Q_d = 0.2854^{+0.0038}_{-0.0017} fm^2$$
24 (2020) 082501; PRC 103 (2021) 024313

10

# Truncation uncertainty of <sup>2</sup>H structure radius



Cutoff dependence is smaller than the truncation uncertainty

# Uncertainty analysis of deuteron structure radius

We propagate uncertainties from multiple sources



|                                    | Central | Truncation   | $ ho_{ m Cont}^{ m reg}$ | $\pi$ N LECs RSA | 2N LECs and $f_i^2$ | Q range            | Total                |
|------------------------------------|---------|--------------|--------------------------|------------------|---------------------|--------------------|----------------------|
| $r_{\rm str}^2$ (fm <sup>2</sup> ) | 3.8925  | ±0.0030      | ±0.0024                  | ±0.0003          | $\pm 0.0025$        | +0.0035<br>-0.0005 | $+0.0058 \\ -0.0046$ |
| $Q_d$ (fm <sup>2</sup> )           | 0.2854  | $\pm 0.0005$ | $\pm 0.0007$             | $\pm 0.0003$     | ±0.0016             | +0.0035<br>-0.0005 | +0.0038<br>-0.0017   |

# Neutron charge radius from high-accuracy xEFT calculation of deuteron structure radius



 $(r_d^2 - r_p^2) = 3.82070(31) fm^2$ 

Atomic spectroscopy Hydrogen-deuterium 1S-2S isotope shift

+ QED corrections Pachucki et al., PRA 97, 062511 (2018) Jentschura et al. PRA 83 (2011)

of the deuteron structure radius

of the neutron charge radius

$$r_n^2 = (r_d^2 - r_p^2) - \frac{3}{4m_p^2} - \frac{r_{str}^2}{r_{nt}^2} r_{str}^2$$

$$r_n^2 = -0.105^{+0.005}_{-0.006} fm^2$$

AF, Möller, Baru, Epelbaum, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

## Our extraction of the neutron charge radius

$$r_n^2 = -0.105^{+0.005}_{-0.006} fm^2$$

~2 $\sigma$  deviation from the PDG (2022) weighted average  $r_n^2 = -0.1155(17)fm^2$ 



## Our extraction of the neutron charge radius

$$r_n^2 = -0.105^{+0.005}_{-0.006} fm^2$$

~2 $\sigma$  deviation from the PDG (2022) weighted average  $r_n^2 = -0.1155(17)fm^2$ 



# Neutron charge radius in PDG 2022

R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022) and 2023 update

### n MEAN-SQUARE CHARGE RADIUS

| VALUE (fm <sup>2</sup> )                                                                                        | DOCUMENT ID          |    | COMMENT                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------|----|---------------------------------------|--|--|--|--|--|
| -0.1155±0.0017 OUR AVERAGE                                                                                      |                      |    |                                       |  |  |  |  |  |
| $-0.115 \ \pm 0.002 \ \pm 0.003$                                                                                | KOPECKY              | 97 | <i>ne</i> scattering (Pb)             |  |  |  |  |  |
| $-0.124 \pm 0.003 \pm 0.005$                                                                                    | KOPECKY              | 97 | <i>ne</i> scattering (Bi)             |  |  |  |  |  |
| $-0.114 \pm 0.003$                                                                                              | KOESTER              | 95 | <i>ne</i> scattering (Pb, Bi)         |  |  |  |  |  |
| $-0.115 \pm 0.003$                                                                                              | <sup>1</sup> KROHN   | 73 | <i>ne</i> scattering (Ne, Ar, Kr, Xe) |  |  |  |  |  |
| ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$ $ullet$ |                      |    |                                       |  |  |  |  |  |
| $-0.1101\!\pm\!0.0089$                                                                                          | <sup>2</sup> HEACOCK | 21 | n interferometry                      |  |  |  |  |  |
| $-0.106 \ \begin{array}{c} +0.007 \\ -0.005 \end{array}$                                                        | <sup>3</sup> FILIN   | 20 | chiral EFT analysis                   |  |  |  |  |  |
| $-0.117 \ \begin{array}{c} +0.007 \\ -0.011 \end{array}$                                                        | BELUSHKIN            | 07 | Dispersion analysis                   |  |  |  |  |  |
| $-0.113 \pm 0.003 \pm 0.004$                                                                                    | KOPECKY              | 95 | <i>ne</i> scattering (Pb)             |  |  |  |  |  |
| $-0.134 \pm 0.009$                                                                                              | ALEKSANDR.           | 86 | <i>ne</i> scattering (Bi)             |  |  |  |  |  |
| $-0.114 \pm 0.003$                                                                                              | KOESTER              | 86 | <i>ne</i> scattering (Pb, Bi)         |  |  |  |  |  |
| $-0.118 \pm 0.002$                                                                                              | KOESTER              | 76 | <i>ne</i> scattering (Pb)             |  |  |  |  |  |
| $-0.120 \pm 0.002$                                                                                              | KOESTER              | 76 | <i>ne</i> scattering (Bi)             |  |  |  |  |  |
| $-0.116 \pm 0.003$                                                                                              | KROHN                | 66 | <i>ne</i> scattering (Ne, Ar, Kr, Xe) |  |  |  |  |  |

 $^1$  KROHN 73 measured  $-0.112\pm0.003~{\rm fm}^2$ . This value is as corrected by KOESTER 76.  $^2$  HEACOCK 21 extract the value from Pendelloesung interferometry to measure the neutron structure factors of silicon. This value is strongly anti-correlated with the mean-square thermal atomic displacement.

<sup>3</sup> FILIN 20 extract the value based on their chiral-EFT calculation of the deuteron structure radius and use as input the atomic data for the difference of the deuteron and proton charge radii.

# **4He charge radius**

Precision test of the chiral EFT for <sup>4</sup>He





Preliminary results

# Prediction of 4He structure radius

Our preliminary prediction for 4He structure radius:

$$r_{str}({}^{4}\text{He}) = 1.4763 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$$
 (Preliminary)

#### Estimation of truncation error:



Cutoff dependence is smaller than the truncation uncertainty

Chiral EFT expansion converges well

He

# Extensive uncertainty analysis

Propagation of uncertainties from data and theory



# Prediction for <sup>4</sup>He charge radius

 $r_{str}({}^{4}\text{He}) = 1.4763 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$  (Preliminary)

Our prediction for <sup>4</sup>He **charge** radius

 $r_C(^4$ **He**) = (1.6778 ± 0.0036) fm

$$r_{C}(^{4}\text{He}) = r_{str}^{2}(^{4}\text{He}) + \left(r_{p}^{2} + \frac{3}{4m_{p}^{2}}\right) + r_{n}^{2}$$

preliminary, using CODATA 2018  $r_{\text{p}}$  and own determination of  $r_{\text{n}}$ 



Our prediction for <sup>4</sup>He charge radius is fully consistent with the muonic-atom spectroscopy

# Indications of BSM physics?

All data used to constrain chiral EFT LECs are from strong interaction / electron-based experiments:

π N Roy-Steiner analysis Hoferichter:2015tha, Hoferichter:2015hva

NN pn and pp scattering data, deuteron BE Reinert:2020mcu

Deuteron charge and quadrupole FF data JLABt20:2000qyq, Nikolenko:2003zq

Deuteron-proton radii difference from atomic spectroscopy Pachucki:2018yxe, Jentschura et al. PRA 83 (2011)

Proton charge radius CODATA2018

<sup>4</sup>He form factor data Erich:1971rhg, Mccarthy:1977vd, VonGunten:1982yna, Ottermann:1985km, Frosch:1967pz,

Arnold:1978qs, Camsonne:2013df

Binding energies of <sup>3</sup>He and <sup>4</sup>He

Nd DCS minimum @ 70 MeV RIKEN data

No muonic data is used in our chiral EFT predictions

Our prediction for <sup>4</sup>He charge radius is consistent with the muonic experiment **No indication of lepton universality breaking** at this accuracy level

# Isoscalar nucleon charge radius from data on <sup>4</sup>He



# Proton charge radius from isoscalar nucleon radius

Our determination of the

isoscalar nucleon charge radius from <sup>4</sup>He

 $(r_n^2 + r_p^2) = (0.605 \pm 0.011) fm$  preliminary

Our determination of the

neutron charge radius from <sup>2</sup>H

 $r_n^2 = -0.105^{+0.005}_{-0.006} fm^2$ 

AF, Möller, Baru, Epelbaum, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

New determination of the proton charge radius:  $r_p = (0.843 \pm 0.007) fm$ 

preliminary



Our extraction supports the "small" proton radius

# Prediction for isoscalar 3N charge radius

With all LECs being fixed, we can predict the isoscalar 3N charge radius:

$$r_C^{isoscalar3N} = (1.9062 \pm 0.0026) fm$$

preliminary, using CODATA 2018  $r_{\text{p}}$  and own determination of  $r_{\text{n}}$ 

#### Our result is 10x more precise than current experimental data:

the <sup>3</sup>H charge radius from e<sup>-</sup> scattering experiments: $r_C^{3H} = (1.7550 \pm 0.0860) fm$  Amroun et al. '94 (world average)the <sup>3</sup>He charge radius from muonic <sup>3</sup>He: $r_C^{3He} = (1.9701 \pm 0.0009) fm$  CREMA 2023 arXiv:2305.11679Exp. 3N isoscalar charge radius: (using muonic <sup>3</sup>He and old <sup>3</sup>H) $r_{C, exp.}^{isoscalar3N} = (1.9010 \pm 0.0260) fm$ 

T-REX experiment in Mainz [Pohl et al.] aims at measuring  $r_C^{3H}$  within ±0.0002 fm (400x more precise) The isoscalar 3N radius will be then known within ±0.0009 fm

⇒ precision tests of nuclear chiral EFT!



 $r_C^{isoscalar3N} = \sqrt{\frac{1}{3}(r_C^{3H})^2 + \frac{2}{3}(r_C^{3He})^2}$ 

# Summary

Precise and accurate calculation of A = 2, 3, 4 isoscalar charge radii in chiral effective field theory Extensive uncertainty analysis

Nuclear structure calculations with sub-percent accuracy!

Charge radii of neutron and proton from light nuclei:

- <sup>2</sup>H r<sub>str</sub> combined with isotope-shift data => extracted the neutron charge radius (2σ tension with PDG)
- <sup>4</sup>He r<sub>str</sub> combined with spectroscopic data => extracted isoscalar nucleon and proton charge radii preliminary

<sup>4</sup>He calculation: preliminary

- calculated <sup>4</sup>He charge radius (0.2% accuracy) agrees with the new µ<sup>4</sup>He measurement
- no indications of lepton universality breaking at this accuracy level

<sup>3</sup>H-<sup>3</sup>He: preliminary

- predicted the isoscalar 3N charge radius r<sub>C</sub> (0.1% accuracy)
- our r<sub>C</sub> is in agreement with the current exp. value (which has 10x larger errors)
- the ongoing T-REX (<sup>3</sup>H) exp. in Mainz will allow for a precision test of nuclear chiral EFT

# Outlook

### In progress:

- Consistent inclusion of isovector 2N currents at N<sup>3</sup>LO and N<sup>4</sup>LO
- Consistent inclusion of  $N^{3}LO$  and  $N^{4}LO$  three-nucleon forces
- Analysis of magnetic form factors (PhD thesis of D. Möller)
- Application to processes with two photons (polarizabilities, ...)
- Calculation of isoscalar N4LO charge radii for nuclei with A>4 (work in progress by LENPIC collaboration)





## Low-energy constants from a fit to charge and quadrupole form factors



## Importance of 2N charge density

![](_page_30_Figure_1.jpeg)

Individual contributions to A=2,3,4 structure radii from

- single-nucleon charge density (1N)
- 2N one-pion exchange density (OPE)
- 2N contact densities (CT 3S1, 3D1, 1S0)

2N charge density contribution to structure radii squared:

| deuteron        | <b>~</b> 0.7% |
|-----------------|---------------|
| isoscalar 3N    | <b>~</b> 2.5% |
| <sup>4</sup> He | ~ 6%          |

For A=2,3,4 importance of 2N charge grows with A

# Estimation of <sup>3</sup>H charge radius

## Our preliminary prediction for isoscalar 3N charge radius:

![](_page_31_Figure_2.jpeg)

Our <sup>3</sup>H radius estimation:

$$r_C^{(3H)} = (1.7714 \pm 0.0087) fm$$

This estimation is 10x more precise than e<sup>-</sup> data  $r_C^{3H} = (1.7550 \pm 0.0860) fm$  Amroun et al. '94 (world average)

But it suffers from parametric amplification of uncertainties (both from theory and from <sup>3</sup>He data)

=> isoscalar 3N charge radius should be used for precision tests

# Prediction for <sup>4</sup>He charge radius

 $r_{str}({}^{4}\text{He}) = 1.4763 \pm 0.0030_{trunc} \pm 0.0013_{stat} \pm 0.0007_{num} fm$  (Preliminary)

Our prediction for <sup>4</sup>He **charge** radius

 $r_C(^4$ **He**) = (1.6778 ± 0.0036) fm

$$r_{C}(^{4}\text{He}) = r_{str}^{2}(^{4}\text{He}) + \left(r_{p}^{2} + \frac{3}{4m_{p}^{2}}\right) + r_{n}^{2}$$

preliminary, using CODATA 2018  $r_{\text{p}}$  and own determination of  $r_{\text{n}}$ 

![](_page_32_Figure_6.jpeg)

Our prediction for <sup>4</sup>He charge radius is fully consistent with the muonic-atom spectroscopy