Proton and neutron electromagnetic radii and magnetic moments from lattice QCD

Miguel Salg, Dalibor Djukanovic, Georg von Hippel, Harvey B. Meyer, Konstantin Ottnad, Hartmut Wittig [arXiv:2309.06590], [arXiv:2309.07491], [arXiv:2309.17232]

MENU 2023, October 16, 2023

1 Motivation

2 Lattice setup

- **③** Direct Baryon χ PT fits
- 4 Model average and final results
- 5 Zemach radius
- 6 Conclusions and outlook

Outline

Motivation

2 Lattice setup

- **③** Direct Baryon χ PT fits
- 4 Model average and final results
- 5 Zemach radius
- 6 Conclusions and outlook

Motivation

- "Proton radius puzzle": discrepancy between different determinations of the electric and magnetic radii of the proton
- In lattice QCD as in the context of scattering experiments: radii extracted from electromagnetic form factors
- Tension between Q^2 -dependence of form factors from different experiments

- Full calculation of the proton and neutron form factors from first principles necessitates explicit treatment of the numerically challenging quark-disconnected contributions
- Neglected in many previous lattice studies, in particular no simultaneous control of all relevant systematics

3

1 Motivation

2 Lattice setup

- 3 Direct Baryon χ PT fits
- 4 Model average and final results
- 5 Zemach radius
- 6 Conclusions and outlook

- Coupling of QCD is large at large distances / low energies
- Low-energy regime of QCD is hence inaccessible to perturbative methods
- Powerful tool for the non-perturbative study: lattice QCD
- Replace space-time by a four-dimensional Euclidean lattice
- Gauge-invariant UV-regulator for the quantum field theory due to the momentum cut-off
- Path integral becomes finite-dimensional and can be computed numerically
- $\bullet\,$ Allows a systematic extrapolation to the continuum and infinite-volume limit, $a\to 0$ and $V\to\infty$

4

Ensembles

Coordinated Lattice Simulations (CLS)¹

- Non-perturbatively $\mathcal{O}(a)\text{-improved}$ Wilson fermions
- $N_f = 2 + 1$: 2 degenerate light quarks ($m_u = m_d$), 1 heavier strange quark ($m_s > m_{u,d}$)
- tr $M_q = 2m_l + m_s = \text{const.}$
- Tree-level improved Lüscher-Weisz gauge action
- $\mathcal{O}(a)\text{-improved conserved vector current}$

Figure: Overview of the ensembles used in this study

¹Bruno et al. 2015 [JHEP **2015** (2), 43]; Bruno, Korzec, and Schaefer 2017 [PRD **95**, 074504].

Miguel Salg (JGU Mainz)

Proton and neutron electromagnetic radii

Nucleon two- and three-point correlation functions

- Measure the two- and three-point correlation functions of the nucleon
- For three-point functions, Wick contractions yield connected and disconnected contribution
- Compute the quark loops via a stochastic estimation using a frequency-splitting technique²
- Extract the effective form factors $G_{E,M}^{\rm eff}$ using the ratio method 3

²Giusti et al. 2019 [EPJC **79**, 586]; Cè et al. 2022 [JHEP **2022** (8), 220]; ³Korzec et al. 2009 [PoS **066**, 139]. Miguel Salg (JGU Mainz) Proton and neutron electromagnetic radii MENU 2023, October 16, 2023

Excited-state analysis

- Cannot construct exact interpolating operator for the proton (any hadron) on the lattice
- All possible states with the same quantum numbers contribute
- Effect of heavier excited states suppressed exponentially with the distance between operators in Euclidean time
- For baryons, the relative statistical noise grows also exponentially with the source-sink separation

$$t_{\rm sep} = y_0 - x_0$$

Excited-state analysis: summation method

- Explicit treatment of the excited-state systematics required
- Summation of the effective form factors over the operator insertion time,

$$S_{E,M}(Q^2; t_{\rm sep}) = \sum_{t=t_{\rm skip}}^{t_{\rm sep}-t_{\rm skip}} G_{E,M}^{\rm eff}(Q^2; t, t_{\rm sep}), \quad t_{\rm skip} = 2a$$
(1)

- Parametrically suppresses the effects of excited states ($\propto e^{-\Delta t_{sep}}$ instead of $\propto e^{-\Delta t}$, $e^{-\Delta (t_{sep}-t)}$ [Δ : energy gap to lowest-lying excited state]) \rightarrow "summation method"
- $\bullet\,$ For $t_{\rm sep}\to\infty,$ the slope as a function of $t_{\rm sep}$ is given by the ground-state form factor,

$$S_{E,M}(Q^2; t_{\text{sep}}) \xrightarrow{t_{\text{sep}} \to \infty} C_{E,M}(Q^2) + \frac{1}{a}(t_{\text{sep}} + a - 2t_{\text{skip}})G_{E,M}(Q^2)$$
(2)

8

Excited-state analysis: window average

- Apply summation method with varying starting values $t_{
 m sep}^{
 m min}$ for the linear fit
- \bullet Perform a weighted average over $t_{\rm sep}^{\rm min}$, where the weights are given by a smooth window function 4

E300 ($M_{\pi} = 176$ MeV, a = 0.049 fm)

⁴Djukanovic et al. 2022 [PRD **106**, 074503]; Agadjanov et al. 2023 [arXiv:2303.08741].

Miguel Salg (JGU Mainz)

Proton and neutron electromagnetic radii

q

Excited-state analysis: window average

D450 (M_{π} = 218 MeV, a = 0.076 fm)

- Reliable detection of the plateau with reduced human bias (same window on all ensembles)
- Conservative error estimate

Motivation

2 Lattice setup

- 3 Direct Baryon χ PT fits
- 4 Model average and final results
- 5 Zemach radius
- 6 Conclusions and outlook

- $\bullet\,$ Combine parametrization of the $Q^2\mbox{-dependence}$ with the chiral, continuum, and infinite-volume extrapolation
- Simultaneous fit of the pion-mass, Q^2 -, lattice-spacing, and finite-volume dependence of the form factors to the expressions resulting from covariant chiral perturbation theory⁵
- Include contributions from the ho (ω and ϕ) mesons in the isovector (isoscalar) channel
- Reconstruct proton and neutron observables from separate fits to the isovector and isoscalar form factors
- Perform fits with various cuts in M_{π} and Q^2 , as well as with different models for the lattice-spacing and finite-volume dependence, in order to estimate systematic uncertainties
- $\bullet\,$ Large number of degrees of freedom $\Rightarrow\,$ improved stability against lowering the $Q^2\text{-cut}$

⁵Bauer, Bernauer, and Scherer 2012 [PRC 86, 065206].

Miguel Salg (JGU Mainz)

Q^2 -dependence of the isovector form factors on E300

- Direct $B\chi PT$ fit describes data very well
- Reduced error due to the inclusion of several ensembles in one fit

Q^2 -dependence of the isoscalar form factors on E300

Motivation

- 2 Lattice setup
- **③** Direct Baryon χ PT fits
- Model average and final results
- 5 Zemach radius
- 6 Conclusions and outlook

Model average

• Perform a weighted average over the results of all fit variations, using weights derived from the Akaike Information Criterion⁶,

$$w_{i} = \exp\left(-\frac{1}{2}\text{BAIC}_{i}\right) / \sum_{j} \exp\left(-\frac{1}{2}\text{BAIC}_{j}\right), \quad \text{BAIC}_{i} = \chi^{2}_{\text{noaug,min},i} + 2n_{f,i} + 2n_{c,i},$$
(3)

where n_f is the number of fit parameters and n_c the number of cut data points

- Strongly prefers fits with low n_c , *i.e.*, the least stringent cut in $Q^2 \Rightarrow$ apply a flat weight over the different Q^2 -cuts to ensure strong influence of our low-momentum data
- Determine the final cumulative distribution function (CDF) from the weighted sum of the bootstrap distributions⁷
- $\bullet\,$ Quote median of this CDF together with the central $68\,\%$ percentiles

Miguel Salg (JGU Mainz)

⁶Akaike 1974 [IEEE Trans. Autom. Contr. **19**, 716]; Neil and Sitison 2022 [arXiv:2208.14983]; ⁷Borsányi et al. 2021 [Nature **593**, 51].

CDFs of the electromagnetic radii and magnetic moment of the proton

Miguel Salg (JGU Mainz)

Proton and neutron electromagnetic radii

MENU 2023, October 16, 2023 15

Model-averaged proton form factors at the physical point

- \bullet Slope of the electric form factor closer to that of PRad^8 than to that of $\mathsf{A1}^9$
- Good agreement with A1 for the magnetic form factor

⁸Xiong et al. 2019 [Nature **575**, 147]; ⁹Bernauer et al. 2014 [PRC **90**, 015206]. Miguel Salg (JGU Mainz) Proton and neutron electromagnetic radii MENU 2

Model-averaged neutron form factors at the physical point

(Mostly) compatible with the collected experimental world data¹⁰ within our errors

Miguel Salg (JGU Mainz)

¹⁰Ye et al. 2018 [PLB **777**, 8].

Electromagnetic radii and magnetic moments

Magnetic moments reproduced, low value for $\sqrt{\langle r_E^2 \rangle^p}$ clearly favored, $\sqrt{\langle r_M^2 \rangle^p}$ agrees with A1

Motivation

- 2 Lattice setup
- 3 Direct Baryon χ PT fits
- 4 Model average and final results
- 5 Zemach radius
- 6 Conclusions and outlook

- Determination of nuclear properties from atomic physics
- Magnetic spin-spin interaction between the nucleus and the orbiting lepton gives rise to the hyperfine splitting (HFS)
- $\bullet\,$ Electromagnetic structure of the proton influences the HFS of the $S\mbox{-state}$ of hydrogen
- Relevant parameter deduced from the HFS: Zemach radius¹¹,

$$r_{Z}^{p} = -\frac{4}{\pi} \int_{0}^{\infty} \frac{dQ}{Q^{2}} \left(\frac{G_{E}^{p}(Q^{2})G_{M}^{p}(Q^{2})}{\mu_{M}^{p}} - 1 \right) = -\frac{2}{\pi} \int_{0}^{\infty} \frac{dQ^{2}}{(Q^{2})^{3/2}} \left(\frac{G_{E}^{p}(Q^{2})G_{M}^{p}(Q^{2})}{\mu_{M}^{p}} - 1 \right)$$
(4)

• Firm theoretical prediction of the Zemach radius required both to guide the atomic spectroscopy experiments and for the interpretation of their results

¹¹Zemach 1956 [Phys. Rev. 104, 1771]; Pachucki 1996 [PRA 53, 2092]. Miguel Salg (JGU Mainz) Proton and neutron electromagnetic radii

Zemach radius from the lattice

- B $\chi {\rm PT}$ including vector mesons only trustworthy for $Q^2 \lesssim 0.6 \, {\rm GeV}^2$
- Tail of the integrand suppressed: contribution of the form factors above $0.6~{\rm GeV^2}$ to r_Z less than 0.9~%
- Extrapolate $B\chi PT$ fit results using a z-expansion¹² ansatz
- Incorporate the large- Q^2 constraints on the form $\rm factors^{13}$
- For integration, smoothly replace BχPT parametrization by z-exp.

¹²Hill and Paz 2010 [PRD **82**, 113005]; ¹³Lepage and Brodsky 1980 [PRD **22**, 2157]; Lee, Arrington, and Hill 2015 [PRD **92**, 013013].

Miguel Salg (JGU Mainz)

20

Comparison to other studies

- Model-averaged result: $r_Z^p = 1.013(15) \text{ fm}$ \Rightarrow low value favored
- Agrees within $2\,\sigma$ with most of the experimental determinations
- Our estimate is ~ 80 % correlated with the electromagnetic radii (based on the same form factor data)
- Low result for r_Z^p expected, no independent puzzle

Outline

1 Motivation

2 Lattice setup

- 3 Direct Baryon χ PT fits
- Model average and final results

5 Zemach radius

6 Conclusions and outlook

- Determination of the electromagnetic form factors of the proton and neutron from lattice QCD including connected and disconnected contributions, as well as a full error budget
- Chiral, continuum, and infinite volume extrapolation via matching with the predictions from covariant baryon chiral perturbation theory
- Magnetic moments of the proton and neutron agree well with the experimental values
- Small electric and magnetic radii of the proton favored
- Competitive errors, in particular for the magnetic radii
- First lattice calculation of the Zemach radius of the proton \rightarrow small value favored (80 % correlation with electromagnetic radii)
- Further investigations required, in particular for the magnetic proton radius

Backup slides

From correlation functions to form factors

- Average over the forward- and backward-propagating nucleon and over x-, y-, and z-polarization for the disconnected part
- Calculate the ratios

$$R_{V_{\mu}}(\mathbf{q}; t_{\rm sep}, t) = \frac{C_{3, V_{\mu}}(\mathbf{q}; t_{\rm sep}, t)}{C_2(\mathbf{0}; t_{\rm sep})} \sqrt{\frac{\bar{C}_2(\mathbf{q}; t_{\rm sep} - t)C_2(\mathbf{0}; t)C_2(\mathbf{0}; t_{\rm sep})}{C_2(\mathbf{0}; t_{\rm sep} - t)\bar{C}_2(\mathbf{q}; t)\bar{C}_2(\mathbf{q}; t_{\rm sep})}},$$
(5)

where
$$t_{
m sep} = y_0 - x_0$$
, $t = z_0 - x_0$, and $\bar{C}_2(q; t_{
m sep}) = \sum_{\tilde{\mathbf{q}} \in q} C_2(\tilde{\mathbf{q}}; t_{
m sep}) \Big/ \sum_{\tilde{\mathbf{q}} \in q} 1$

• At zero sink momentum, the effective form factors can be computed from the ratios as

$$G_E^{\text{eff}}(Q^2; t_{\text{sep}}, t) = \sqrt{\frac{2E_q}{m + E_q}} R_{V_0}(\mathbf{q}; t_{\text{sep}}, t),$$
(6)

$$G_M^{\text{eff}}(Q^2; t_{\text{sep}}, t) = \sqrt{2E_{\mathbf{q}}(m + E_{\mathbf{q}})} \frac{\sum_{j,k} \epsilon_{ijk} q_k \operatorname{Re} R_{V_j}^{\Gamma_i}(\mathbf{q}; t_{\text{sep}}, t)}{\sum_{j \neq i} q_j^2}$$
(7)

Q^2 -dependence of the isovector form factors on E250

Q^2 -dependence of the isoscalar form factors on E250

Residuals of the $B\chi PT$ fits

Histograms

Q-Q plots

- $\bullet\,$ Scale the statistical variances of the individual fit results by a factor of $\lambda=2\,$
- Repeat the model averaging procedure
- Assumptions:
 - Above rescaling only affects the statistical error of the averaged result
 - Statistical and systematic errors add in quadrature
- Contributions of the statistical and systematic errors to the total error,

$$\sigma_{\text{stat}}^2 = \frac{\sigma_{\text{scaled}}^2 - \sigma_{\text{orig}}^2}{\lambda - 1}, \qquad \sigma_{\text{syst}}^2 = \frac{\lambda \sigma_{\text{orig}}^2 - \sigma_{\text{scaled}}^2}{\lambda - 1}$$
(8)

• Consistency check: results are almost independent of λ (if it is chosen not too small)

$$\begin{split} \langle r_E^2 \rangle^{u-d} &= (0.785 \pm 0.022 \pm 0.026) \, \mathrm{fm}^2 \\ \langle r_M^2 \rangle^{u-d} &= (0.663 \pm 0.011 \pm 0.008) \, \mathrm{fm}^2 \\ \mu_M^{u-d} &= 4.62 \pm 0.10 \pm 0.07 \end{split}$$

$$\begin{split} \langle r_E^2 \rangle^{u+d-2s} &= (0.554 \pm 0.018 \pm 0.013) \, \mathrm{fm}^2 \\ \langle r_M^2 \rangle^{u+d-2s} &= (0.657 \pm 0.030 \pm 0.031) \, \mathrm{fm}^2 \\ \mu_M^{u+d-2s} &= 2.47 \pm 0.11 \pm 0.10 \end{split}$$

$$\begin{split} \langle r_E^2 \rangle^p &= (0.672 \pm 0.014 \pm 0.018) \, \mathrm{fm}^2 \\ \langle r_M^2 \rangle^p &= (0.658 \pm 0.012 \pm 0.008) \, \mathrm{fm}^2 \\ \mu_M^p &= 2.739 \pm 0.063 \pm 0.018 \end{split}$$

$$\begin{split} \langle r_E^2 \rangle^n &= (-0.115 \pm 0.013 \pm 0.007) \, \mathrm{fm}^2 \\ \langle r_M^2 \rangle^n &= (0.667 \pm 0.011 \pm 0.016) \, \mathrm{fm}^2 \\ \mu_M^n &= -1.893 \pm 0.039 \pm 0.058 \end{split}$$

- $\bullet\,$ Model-independent description of the $Q^2\mbox{-dependence}$ of the form factors
- Map domain of analyticity of the form factors onto the unit circle,

$$z(Q^2) = \frac{\sqrt{\tau_{\rm cut} + Q^2} - \sqrt{\tau_{\rm cut} - \tau_0}}{\sqrt{\tau_{\rm cut} + Q^2} + \sqrt{\tau_{\rm cut} - \tau_0}},\tag{9}$$

where
$$\tau_{\rm cut} = 4M_{\pi,{\rm phys}}^2$$
, and we employ $\tau_0 = 0$
a Expand the form factors as

• Expand the form factors as

$$G_E(Q^2) = \sum_{k=0}^n a_k z(Q^2)^k, \quad G_M(Q^2) = \sum_{k=0}^n b_k z(Q^2)^k$$
(10)

• We fix $G_E(0) = a_0 = 1$, use n = 7, and incorporate the 4 sum rules for each form factor

Zemach integrand

Crosscheck of direct fits with z-expansion: proton magnetic moment

- Use n = 2 and no sum rules (focus on low-momentum region)
- Magnetic moment significantly smaller than direct fits, which are compatible with experiment

Crosscheck of direct fits with z-expansion: proton electromagnetic radii

- Radii in good agreement with direct fits, albeit with significantly larger errors
- Not sufficiently stable against fluctuations on single momenta or ensembles